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Resumen

En este articulo se presenta la transformada doble de Laplace non-conformable, creada para resolver
ecuaciones diferenciales de funciones de dos variables dentro del calculo fraccionario local. Se demuestran
sus propiedades principales y se incluyen ejemplos de la resolucion de ecuaciones diferenciales parciales
non-conformables.

Palabras clave: Transformada de Laplace; Célculo fraccionario; Derivada non-conformable.

Abstract

In this paper, we introduce the non-conformable double Laplace transform, developed to solve differential
equations of functions of two variables within the framework of local fractional calculus. Its main
properties are established, and examples are provided to illustrate the solution of non-conformable partial
differential equations.

Keywords: Laplace transform; Fractional calculus; Non-conformable derivative.

1 Introduccion

El desarrollo del cdlculo fraccionario ha estado motivado, desde sus origenes en el siglo
XVII, G. W. Leibniz. (ver Leibniz (1692)), por un interés en extender las operaciones de
derivacion e integracion mds alld de los drdenes enteros. En sus inicios, las discusiones sobre
la posibilidad de derivadas de orden no entero, como las planteadas por I’Hopital y Leibniz,
fueron en parte, la razén por que formalizaciones progresivas en el cdlculo de la
variabilidad, siguieron formuldndose de manera sistematica a través de trabajos de Euler,
Riemann, Caputo, entre otros.

En los tdltimos afios, diversas motivaciones provenientes de fendmenos reales y modelos
fisicos han revelado procesos con memoria y estructuras que desafian la mecénica clasica.
Tal es el caso, por ejemplo, de la biologia, la dindmica automatizada, y la teoria de control.

Las contribuciones de investigadores de distintas areas, han impulsado nuevas formula-
ciones tanto en la derivacién fraccionaria como en la integracion fraccionaria.

En los ultimos afos, ha cobrado relevancia una familia particular de operadores deriva-
dos, conocida como derivadas fraccionarias locales. Para profundizar en este tema, pueden
consultarse diversas referencias (Abdeljawad (2015), Anastassiou (2011), Atangana and
Baleanu (2015), Diethelm (2010), Gozutok and Gozutok (2018), Guzman et al. (2020b),
Kilbas et al. (2006), Mhalian et al. (2020), Miller and Ross (1993), Napoles Valdes et al.
(2020), Ross et al. (1994), Vivas-Cortez et al. (2021a), Vivas-Cortez et al. (2024), Vivas-
Cortez et al. (2022), Vivas-Cortez et al. (2021b), Vivas-Cortez et al. (2025a), Vivas-Cortez
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et al. (2025b), Vivas-Cortez et al. (2023), Yang (2011b), Yang et al. (2013), Yang (2011a),
Yang (2016)). En este conjunto, la derivada conformable es particularmente relevante, in-
troducida por Khalil (Khalil et al. (2014)).

Anos mas tarde, Paulo Guzman en (Guzman et al. (2018)) introducen la derivada frac-
cionaria local non-conformable.

Estas tltimas derivadas ofrecen un comportamiento mdas cercano a la derivada fraccionaria
local, con ciertas ventajas como la linealidad de la derivacidn aditiva, al estar definidas en
términos locales (ver Gonzalez et al. (2020), Guzméan and Népoles Valdes (2019), Guzman
et al. (2020a), Martinez et al. (2022), Martinez and Népoles Valdes (2020), Népoles Valdes
et al. (2018)).

La aparicion de estas derivadas ha motivado una revision sistemdtica de herramientas del
analisis clasico en este nuevo marco conformable y non-conformable. Entre ellas, la trans-
formada de Laplace ocupa un lugar central, especialmente en la resolucién de ecuaciones
diferenciales lineales.

El objetivo de este articulo es proponer una transformada doble de Laplace adecuada al con-
texto de derivacidén non-conformable. Aunque algunas extensiones han sido desarrolladas
en un contexto fraccionario local, como la propuesta dada por Sami Injrou and Iyad Hatem
(2022) en Injrou and Hatem (2022), que fusiona la derivacién dada por Francisco Gonzélez
en Gonzdlez et al. (2020) con la doble transformada de Laplace, no se ha estudiado una
version que combine la derivacién dada en Guzman et al. (2018) con la transformada de
Laplace en mds de una variable.

Este trabajo se propone: (a) establecer la doble transformada de Laplace non-conformable
para Guzman et al. (2018), (b) estudiar sus propiedades fundamentales, y (c) aplicar dicha
herramienta en la resolucion de ecuaciones diferenciales parciales con derivadas fraccionar-
ias locales. Se ha obtenido los mismos resultados a los de Teorema 1, Lema 1 y Teorema
2 de Injrou and Hatem (2022), pero utilizando las definiciones de derivacion, integral y
transformada simple de Guzman et al. (2018) en Teoremas 1, 2 y 3, en el Teorema 1 se han
incorporado algunas propiedades adicionales, en cuanto a los ejemplos dados en Injrou and
Hatem (2022), se han obtenido distintas soluciones.

2 Preliminares

Ahora, presentamos la definicion de derivada fraccionaria non-conformable y algunas nota-
ciones y propiedades importantes.

Definicion 1 ver Guzman et al. (2018)

SeaD:[0,00) — R una funcién. La derivada fraccionaria non-conformable N1¢ f(7), de orden
¢ €(0,1) en T € (0,0), se define como:

TN
fo(r) :gig}) b(t+e€e ; )—Db(7)

Se dice que b es ¢-non-conformable en un punto 7 > 0 cuando el limite dado existe.

La siguiente defincién fue establecida por M. Vivas-Cortez en Vivas-Cortez et al. (2021b)
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Definicion 2 ver Vivas-Cortez et al. (2021b)
Dado 7 € R™ un nimero real positivo, la exponencial fraccionaria €4 (7) estd definida como:
w9

@glq(f) _ eqf(fe’ du

Definicion 3 ver Guzman et al. (2018)

Para ¢ € (0,1], y 0 < u <wv. Se dice que una funcién H(&) : [u,v] — R es ¢-fraccional
integrable en [u,v] si la integral

W0 = [ ()

existe y es finita.

A continuacién presentamos las definiciones de la transformada doble de Laplace y trans-
formada simple de Laplace non-conformables de una funcién de dos variables y mostramos
algunas propiedades.

3 Transformada doble de Laplace non-conformable
Definicion 4

Dada f(&, ) una funcidn continua a trozos en [0,0) x [0,°0) es de orden exponencial gen-
eralizado; es decir, existen constantes I, ¢ y r tales que

T ,—u

o —u
(8, 0)] < MEN (7)€, () = Mol dugrls eV

Definicion 5
Sean ¢,y € (0,1) y g,r € R. Sea f una funcién continua a trozos definida para 7 > 0y
¢ > 0, donde ademas se consideran w,v € C.

Definimos entonces la expresion

Frw) =20 2y (18,2,
la cual puede expresarse como
N
| [t e e me @) nagar
= /00 /oo e—‘r‘D e—C"” e—w,/gefuiqu du e—vﬁ)ce*”iwduf(c’T)dcd,c
0o Jo

que es la transformada doble de Laplace non-conformable de (&, 7). En este caso, las inte-
grales que aparecen se consideran como integrales fraccionarias non-conformables, tomadas
con respecto a las variables Ty (.

Definicion 6

Sea f(&, T) una funcién continua a trozos definida en (0,00) X (0,c0) y de orden exponencial
generalizado.
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Consideremos primero la transformada de Laplace non-conformable con respecto a {, definida
por

B0 =2 [i(60) = [ e g n e,

Esta integral representa la transformada de Laplace non-conformable de (&, T) respecto a
la variable .

De manera andloga, la transformada de Laplace non-conformable respecto a T se escribe
como

——

FCow) =28 [1(¢,0)] = /O“’e—w.fge it 7).

Aqui, la integral corresponde a la transformada de Laplace non-conformable con respecto a
la variable 7.

Propiedades de la transformada doble de Laplace non-conformable

Las transformadas de Laplace non-conformables con respecto a Ty { conmutan, es decir:
L, L0 AHE DY =2 A ATE D} =B vw)
Ni,T7N L8 ’ N LN T ’ HW):
Teorema 1

Consideremos dos funciones {(§,7) y g({,7) que poseen transformada doble de Laplace
non-conformable. Bajo estas condiciones, se cumplen las siguientes propiedades:

1) La linealidad de la transformada doble de Laplace non-conformable se expresa como

fﬁl,rgﬁ,g[mf(ga 7)+¢28(¢,7)] = t]lafﬁlﬂf]&’ig[f(c, 7)) +q2$1$m$1\',’1€[g(§, 7)].

2) La transformada doble de Laplace non-conformable de la funcién constante se da por

A
hoTle’g[l] =
De este resultado se deduce que
q
fﬁ.,ff%g[d =q. 2% Ly 1] =—.

N1 W

3) Se cumple también que

282 [ O] = — - —.

4) Para la combinacién con una funcion f, se tiene

282 [, DEN0)] =5 —rw—aq),
con

L LY (G0 =Fw), greR, w—g>0, v—r>0.
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5) La transformada doble de Laplace non-conformable de las funciones seno se expresa
como

o v o T . S _r q
Ly Ly ¢ [sm <q/0 et d,LL) sin <r/0 e M du)} At

6) De manera similar, para las funciones coseno se cumple

- ¢
9 o foue —uv __V w
Ly, ¢ [cos (q/o e dy) cos (r/o e M d‘uﬂ =P e Wi

7) Para las funciones hiperbdlicas seno, se tiene

. L , & v r q
fﬁmfl\l,’{’; [smh (q/o et d,u) sinh (r/o et du)} = R Ay

8) En el caso de las funciones hiperbélicas coseno, se tiene

29

T ¢
v " -V _ 1% w
Vgl (a e oo (- [Feran) | = 525

9) Finalmente, las derivadas parciales de & (v, w) se expresan como

am+n8'(v7w) m—+n ) v T _yu? " ¢ " "
“owgwn Y fm,ffm,g[(/o et du) (/0 et du) f(C,w]
Demostracion.

1) Se obtiene directamente de la definicion.

2) Para la demostracion de la transformada doble non-conformable de la funcion constante,
tenemos:

z0 LY

V= [ et et e g g
? 0o JO

= / / e e ™ dzdw
0 0
(Ceme) (o)1
0 0 v ow

3) Para demostrar la transformada doble de Laplace non-conformable de (EQ,]' ,(7) (Eﬁ’,lr(c )
se tiene que:

N N
LB [ (O (7))
es igual a

o roo _ _ —u9 —uv —u=? —uY
:/ / e T e T e wlie dﬂef"foce Mg fg et d'uefrfoge g Wdgdr
0 Jo

- /m /m e e Y e ) et v e an g g
0o Jo
)
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4) Para la conmbinacién del literal 3) con una funcién f.
Suponemos .ZA?] -T"ZA‘/‘I.C [f($,7)] = &(v,w), paraw > k y v > k, entonces se tiene que:

25,40 [ D660
es igual a

:/ / e T e CY e vma) fg et T du = (v=r) 5 e Tdp
0 Jo

(€, 7)dldr
=F(v—r,w—gq)

5) Para la demostracién de sin (q I eH 0 [.L) sin (r jg e”f"/du), tenemos que:

. LE— . ¢
gi\(/bl-,fglg:,c [sm (q/o e M d,u) sin (r/o e M Wd]u)}

por definicién es igual a

:/ / e " "’efé “’efwfofe H duefvjoge BT du
0 Jo

T ¢
-sin <q/ et ¢du> sin <r/ et lVd/.t) dldr
0 0

:/ / e "e "2sin(gz1)sin(rzy) dz1 dzs
o Jo

— </ V2 sin(rm)dzg) </ e sin(qZ1)dzl>
0 0

__r 9
_v2+r2 W2+q2

6) Se obtiene de manera similar a 5).
7) Se obtiene utilizando las definiciones del sinh, y la definicién 5.
8) Se obtiene utilizando las definiciones del cosh, y la definicion 5.

9) Por dltimo, se tiene que:

am+ng(v’ W)

dvmown
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utilizando la definicion es igual a
m n oo 00 _ . - _ T —0
= 3o {/ J e e e e dﬂf(c:,r)drdé]
—{ y " fvfge’”iwdu © " —w e’“7¢du
— [T (e | et (e (¢, 7)de|d¢
v S Y
:/eg (—l)m(/e“ du) e Vo et T
0 0
o T N n T
V‘J Ty (/0 ot ¢du> eIt d“f(C,r)dT]dC
_ (_1>m+n$]$] V¥

(o) (o) el

Teorema 2

Con las condiciones de la definicién de la transformada doble de Laplace non-conformable,
se tiene que:

D L5 LY [NV D] = vE(nw) — FO,w).
2) L LY [NIHE )] = wBnw) — §(1,0).
3) L3 L [NV N )] = i w) = vE(3,0) — wiS(0,w) + §(0,0).

donde Cle fl(¢,n)y TN? (&, 7) representan las derivadas parciales fraccionarias non-conformables

de orden y-ésimo y ¢-ésimo respectivamente, y gN;" N ip (£, 7) es la derivada parcial mixta
fraccionaria non-conformable de orden y-ésimo y ¢-ésimo.

Demostracion:

1) Utilizamos la definicion de transformada doble de Laplace non-conformable y la Proposicién
3 de Vivas-Cortez et al. (2021b), obteniendo que:

L LY [NV )]

esigual a

- w/we’ﬂe’wforef”_%“e*?"'e’vfogefu_wd”glef(C?r)drdC
0 0

oo _ T 9 had — S L, —u
I I du[ €Tt NG 9 g e
0
I R P

- WLy [N )] e

= e Tl Py v.i”[:,’jg (¢, 7)] —7(0, T)}d

=vF(,w) —F(0,w).
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2) Se obtiene de forma similar.

3) Para demostrar la transformada doble de Laplace non-conformable de gN 1‘4/ N f) f(¢, 1),
se tiene por definicién que:

L5 0 [NV T(C )

esigual a

B /m/weir¢eiwfore_u_(pd“efg_weivfoce_u_',’d“CN]Werf(gaT) dfdg
0 Jo

Sustituyendo h(&,7) = TN? f(£,7) y aplicando el resultado del literal 1), se obtiene:

L8 LY TNYD(E,T)] =S (v w) — H(0,w)
donde
S(w) = 28 Y D)) = L3 L ¢ [ NTE )] = wBnw) - §(1.0).
y

$(0.w) = L4 LY (0.7 = L4 A [NFT(0,7)] = wE(0,w) ~ 5(0,0).

Reemplazando H(v,w) y H(0,w) en
L4 D [NYD(E. )
se tiene:

L LY [NYDET)] = v (v, w) — F(,0)] — W (0,w) — F(0,0)]
=w(,w) —vF(v,0) —wg(0,w) + F(0,0).

De forma similar se puede probar el siguiente Teorema.

Teorema 3
Sean ¢,y € (0,1) y m,n €N, y supongamos que (£, 7) € C'(R* x R"), donde I = max(m, n).
Ademds, se cumple que:

(60, PNVIET), VNG ) parai=1,.m, =1,

son N;-transformables. Entonces se tiene que:

1)

¢ 4
Ly, 2

Ni,¢ [(gm)N;Vf(C,T)} =V"F(v,w) —V"IF(0,w)

m—1 ) X
- ; vmililg[a,f |:<CZ)NIW%(O? T):|
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2)
28 2 [N D] =W ) =W E(20)
n—1 X
A [VN5(2,0)]
=
3)

L8 A0 [N ONDRE )]

=V"w" [%(V, w) —w L F(1,0) —v I F0,w)

m—1 i
- Y v O]

1 )
_ 717131\]‘!:@ {(TJ)N?TS‘(C,O)}
1

~
I

mZZ -1 J —1-i( N]‘I/‘(L_)N‘Pg,(o 0)

+v "W E(0, 0)]

donde (gm)le f(&,7)y (T”)Nf’ (£, 1) son las m,n veces derivadas fraccionarias non-conformables
de (&, 7) de orden y y ¢ respectivamente, y g")NlW (T">Nf’ (&, 7) es la derivada parcial mixta

fraccionaria non-conformable de orden y y ¢ de la funcién §(&, 7).

4 Algunas aplicaciones

A continuacidn, utilizamos la transformada doble de Laplace non-conformable para resolver
algunas ecuaciones en derivadas parciales fraccionarias, en el sentido de la derivada frac-
cionaria non-conformable. Se ilustran las soluciones obtenidas en los ejemplos para distin-
tos valores de ¢ y y en gréficos de dos y tres dimensiones, para ello se utilizé el software
Python 3.10.

4.1 Ecuacion de calor fraccionaria non-conformable.

La siguiente ecuacion corresponde a la ecuacion del calor non-conformable en el espacio-
tiempo homogéneo:

Ni(G D) =PV D), 0<g 0<T, (1)

con las condiciones iniciales y de contorno:

H0,7) = i du, ®)
H,0) =eli et an, 3)
(NYHO,7) = el an, )
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Utilizamos la transformada doble de Laplace non-conformable 1) del Teorema 3 en la parte
derecha de la ecuacion (1), se tiene que:

2
S A (0]

es igual a
VE(v,w) —vE(0,w) _515/:,1 [CNIWT(OJ)]

=2 F (v, w) —vF(0,w) — gN;V%(O, w).
y 2) del Teorema 2 en la parte izquierda de la ecuacién (1), se tiene que
o 0
2828 [N )]

esigual a

wg(v,w) — F(v,0),

Luego, la ecuacién (1) se convierte en:
(w—v)F,w) = F(1,0) —vF(0,w) — CNIWS'(QW). )
Aplicando la transformada de Laplace simple non.conformable en (2), se obtiene:
24, 0] = 24, [ B 0]
0
1
= m (6)

y este resultado es igual a F(0,w)

Cuando aplicamos la transformada de Laplace simple non-conformable en (3), se tiene:

.g67 -y
2 0] =2, {/ " du]
= /w e*C*“’efvfoge*u’Vd”efogejrvd#dg
0

1
= (7

v—1

la dltima expresi6n es igual a F(v,0)

Al aplicar la transformada de Laplace simple non-conformable en (4), obtenemos:
T 7#*¢
23, [eNYT0.9) =, el "]
Tl ®)

y se tiene que CN:”%(O,W) =_L

w—1
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Sustituyendo (6), (7) y (8) en (5), se tiene:

de donde: 1

- w—1)°

Por tanto, la solucién del problema (1) - (4) es:

f(¢,7) = (efo e”"”) <e- 'oge”d“) : ©)

Sv,w) =

4

(a) Gréfica de f({, 1) para
¢ =w=0.25,0.5,0.75. (b) Superficie 3D de f(§,7) con ¢ =y =0.2

Figura 1. Representacion de la grafica 2D y 3D de la funcién

f(¢,7) = (efgeud?d“) (efoc ‘ruiwd”) solucién del problema (1) - (4).

De las representaciones graficas de la funcién

T(C,T) = (ef(fe”¢ d”) <ef0§e“ll,dlvl> ,

se pueden observar que, en primer lugar, la funcién es estrictamente positiva y presenta
un comportamiento monétonamente creciente con respecto a ambas variables, lo cual se
evidencia tanto en las curvas bidimensionales como en la superficie tridimensional.

En el caso bidimensional, al fijar T = 1, se aprecia que la rapidez de crecimiento depende
de los pardmetros ¢ y y: a medida que estos aumentan, las graficas experimentan un incre-
mento mas acelerado. Por su parte, la superficie tridimensional muestra que el crecimiento
conjunto en las variables { y T es simétrico, puesto que la estructura de la funcién otorga
un papel andlogo a ambas variables en la construccién del producto exponencial.

4.2 Ecuacion de onda fraccionaria non-conformable homogénea.

Se considera la ecuacién de onda fraccionaria non-conformable homogénea en el espacio-
tiempo:

NG D) =PNYE(L D), ¢>0,T>0. (10)

11
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Con condiciones iniciales y de contorno:

f(0,7) =0, (1)
f(£,0) =sin (/0; e“‘”du) , (12)
¢NYF(§,0) = cos (/O're“"’du> : (13)
N{§(£,0) =0. (14)

Utilizamos la transformada doble de Laplace non-conformable 1) del Teorema 3 en la parte
derecha de la ecuacion (10), y se tiene que:

2 B ¢ [N
esigual a
VE(w) —vE(0,w) — .Z]f;] . [Clef(Oa 7)]

=V F(,w) —vF(0,w) — gN;’/ES‘(O,w).

Y si usamos la transformada doble de Laplace non-conformable 2) del Teorema 3 en la parte
izquierda de la ecuacién (10), tenemos que:

B0 [N )

esigual a

W w) —wE(10) LY [NFT(L.0)]
= w2 F(,w) —wF(v,0) — TN?E}(V,O).

Con estos dos dltimos resultados, la ecuacidn (10) se convierte en:
W =) F 0 w) +vF0,w) —wF1,0) + ¢ NYF(0,w) — N F(1,0)=0.  (15)
Utilizando la transformada de Laplace simple non-conformable en (11), se tiene

F(0.w) =2 L[7(0,7)] =23 .[0]=0. (16)

Al aplicar la transformada de Laplace simple non-conformable en , (12), obtenemos:

AT (QUIEEAR {Si“ (/og euwd”)]

1
= . 17
V241 an

que es igual a §(v,0).
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Si aplicamos la transformada de Laplace simple non-conformable en (13), tenemos:

24 o109 = 8, o[ )|

w
= . 1
w241 (18)

que es igual a gNlW{f;(O,w).

Aplicando la transformada de Laplace simple non-conformable en (14), nos da lo siguiente:

NEF,0) =2 [ NFI(E.0)]
=2y [0]=0. (19)

Al sustituir (16), (17), (18) y (19) en (15), se obtiene:

(02 ) () = )
T WD)
lo que implica "
R T SV GRS Y

Luego, la solucién del problema (10)—(14) es:

f(¢,7) =sin (/OC e‘“wdu> cos (/OT e‘“d)du) . (20)

Gréfica 2D de f({, T) con =1

— 4=y-025
15 #=v=05
— ¢=y=075

Hg,1)
o o
o @

1 2 3 4 5 6 7
4

(a) Gréfica de f({, 1) para
¢ =w=0.25,0.5,0.75. (b) Superficie 3D de f(§,7) con ¢ =y =0.2

Figura 2. Representacion de la grafica 2D y la 3D de la funcién
¢ T
f(¢,7) =sin (/ e u,du) Ccos (/ e ¢du) solucién del problema (10) - (14).
0 0

En las representaciones graficas obtenidas se observa que la funcién

f(¢,7) = sin (/Oge”wdu) cos (/Ofe“”’ du)
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presenta un comportamiento oscilatorio con una atenuacion dependiente de los pardmetros
fraccionarios ¢ y y. En la gréfica bidimensional, al considerar T = 1, se aprecia que el
incremento en los valores de ¢ = y produce una disminucién en la amplitud y un cambio
mads rapido hacia valores negativos. Por otra parte, la grafica tridimensional muestra de
manera conjunta la interaccion entre { y 7, generando una superficie con crestas y valles
que evidencian la naturaleza oscilatoria y amortiguada de la solucién.

4.3 Ecuacion de onda non-conformable no homogénea.

Se considera la ecuacién de onda fraccionaria non-conformable no homogénea en el espacio-
tiempo:

PNRC, D) - PNV = (1) (a-ftfe”dﬂ) < ( | Ce—“du» e

con condiciones iniciales y de contorno:

f(0,7) =0, (22)
T(C;O) =sin </C e_“wd/l) ) (23)

0
(NYHO,7) = el an (24)
er f(£,0) = csin </0§ e‘“vdu> . (25)

Al aplicar la transformada doble de Laplace non-conformable 1) del Teorema 3 en ? N, 1"/ f(¢, 1),
2) del Teorema 3 en (TZ>N1¢ (£, 1) se tiene:

L9 LY [ENYHE )] =B (0w) = v B (0.w) - (N (0, w),

25 LY [ONERE, )] =W 0w) — w(1,0) — N (5,0,

que al reemplazar en la parte izquierda de la ecuacién (21), nos proporciona:

(w2 _ v2) F(v,w) +vF(0,w) + gN;"fs'(O, w) —w&(v,0) — TNf‘S'(v, 0).

y al aplicar la transformada de Laplace en la parte derecha de la ecuacién (21), se tiene:

241
w—0)(2+1)
Con los dos ultimos resultados se obtiene:
241

(w—0)(»2+1)
(26)

(W =) F0,w) + v F(0,w) + NV F(0,w) — wF(1,0) — <Nf F(1,0) =

Aplicando la transformada de Laplace simple non-conformable en (22), (23), (24) y (25) se
tiene:
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29 A70.1)} =0=F(0,w), @7)
C |
24 AeVPi0 0} =2 e “”] = = (N FO.w), (28)
[ ¢ 1
f,&’ﬁg {i(£,0)} = X,Q,’f’c _sm (/o oM ‘l’du)] = F(1,0), (29)
r ¢
zgj’g{fN{”f(C,o)} =2y  |esin (/0 e H Wdu)] = ﬁ = N'F(1,0).  (30)

Al reemplazar (27), (28), (29), (30) en (26), se tiene:

1 w ¢ 241
—c V1L 241 (w—o)(V2+1)’

(w2 — vz) Fv,w)+0+
w

luego,

1
(w—0)(v2+1)"

- ) [ ")

Fv,w) =

cuya solucién es

t=1)

(4

(a) Gréfica de f({, 1) para
¢ =w=0.25,0.5,0.75. (b) Superficie 3D de f(§,7) conp =y =0.2

Figura 3. Representacion de la gréfica 2D y la 3D de la funcién
T —u? _
f(¢,1)= (e‘ ot d"‘) (sin (fog e M "’d,u)) solucién del problema (21) - (25).
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En las representaciones gréficas de la Figura 3 se observa que la funcién

o= () ")

presenta dos tipos de comportamientos. En la grafica 2D, al considerar T = 1, se aprecia un
comportamiento oscilatorio cuya amplitud disminuye cuando los pardmetros fraccionarios
¢ = y aumentan. Por otra parte, en la grifica 3D se pone de manifiesto el efecto exponencial
de la variable 7, que provoca un crecimiento notable de la superficie y genera maximos
definidos, mientras que la variable { modula el cardcter oscilatorio de la funcién.

4.4 Ecuacion telegrdfica fraccionaria non-conformable
no-homogénea.

Consideremos la ecuacién telegrafica fraccionaria non-conformable no-homogénea en el
espacio tiempo:

DML 7) = ONYIE ) — V(L) (L 7) = =8 (erof e”du) cos ( | gw%) .

(€20)
Con condiciones iniciales y de contorno:
7(0,7) = (ezfo e”d”), (32)
¢
6.0 =cos ([ e "au). 63)
0
(NY§(0,7) =0, (34)
¢ ¢ —uY
N7 T(£,0) =2cos /0 e du ). (35)

Al aplicar la transformada doble de Laplace non-conformable 1) del Teorema 3 en ?N IW f(¢, 1),
y 2) del Teorema 3 en (TZ)N;PT(C, 7), y 2) del Teorema 2 en Tfo(C, T) se obtiene:

28 LY [PNIHE )] = B 0w) v (0,w) — N FOw),
282 [ONIHE, )] = WP B0 w) - wE(3,0) - N (3,0),

Ly [NETE )] = B w) — §(00).

que al reemplazar en la parte izquierda de la ecuacién (31), nos da:
VE (v w) —vE(0,w) — CN{”E}(O,W) — W F(vw) +wF(v,0) + fo%(v,O) —w&(v,w)

+&(1,0) —F(v,w)
= (P =W —w—1) Fr,w) —vF0,w) + (w+ 1)F(1,0) — (N F(0,w) + N F(v,0).
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Y al aplicar la transformada doble de Laplace non-conformable en la parte derecha de la
ecuacion (31), se obtiene:

8v
(w—2)(v2+1)"

Con los dos tltimos resultados, la ecuacién (31) se convierte en:

(v2 —wr—w— 1) F(v,w) —vF(0,w) + (w+ 1)F(v,0) — CN]WS(O,W) +1N?%(V,O)
8v (36)
(w—=2)(2+1)

Ahora aplicamos la transformada de Laplace simple non-conformable a las condiciones
iniciales y de contorno.
Aplicando la transformada de Laplace simple non-conformable en (32), se obtiene:

24,0} =24, { (@60 ") ]
Twel (37

que es igual a F(0,w).

Cuando aplicamos la transformada de Laplace simple non-conformable en (33), tenemos:

2y ATC0Y =2 . {COS </0CV6‘“Wdu> }

v

= 38
2 (38)
que es igual F(v,0).
Al aplicar la transformada de Laplace simple non-conformable en (34), obtenemos:
Y, { TNf’f(O,r)} =¥ {0}
=0. (39)
este resultado es igual a CNIW F(0,w).
Al aplicar la transformada de Laplace simple non-conformable en (35), obtenemos:
v 0 v ¢ —uv
le,g{TNl f(C,O)}:.le,C 2cos /0 e du
2v
= ) 40
v +1 “0)

que es igual a TN? F(v,0)
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Sustituyendo (37), (38), (39), (40) en (36), se obtiene:
2v

1
2_ 2
(v —w —w—l)‘{‘;(v,w)—v-W_2—|—(w—|—1)-m—0+m
S
(V+1)(w=2)"
Luego,
v

B0 = =2y

de donde se obtiene la solucién:

- (67 o 7o)

5

(a) Grifica de f(¢, 1) para ¢ s .70
¢ =w=0.25,0.5,0.75. (b) Superficie 3D de f(§,7) con ¢ =y =0.2

Figura 4. Representacion de la grafica 2D y la 3D de la funcién
T —u? -
f(¢,1) = (ero et dﬂ) (cos ( JEen ‘”du)) solucién del problema (31) - (35).

En las representaciones de la Figura 4 se aprecia que la funcién

- (20 o ")

combina un comportamiento oscilatorio en la variable { con un crecimiento exponencial
en la variable 7. En la grafica 2D, al considerar 7 = 1, se observa que los parametros
fraccionarios ¢ = y modifican la amplitud y el desplazamiento de los cruces de la funcién
respecto al eje horizontal. Por otro lado, la superficie tridimensional muestra con claridad
como la variable 7 potencia la magnitud de la funcién, generando valores elevados tanto
positivos como negativos.
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Conclusion

En este trabajo se ha establecido la transformada doble de Laplace non-conformable den-
tro del marco del cdlculo fraccionario local y se han desarrollado sus propiedades funda-
mentales. La aplicacién de esta herramienta a ecuaciones diferenciales non-conformables
del calor, de onda y telegrafica demuestra que la transformada permite abordar problemas
que presentan memoria y comportamientos locales, ampliando las capacidades del método
clasico. Los resultados obtenidos muestran que esta formulacién ofrece un marco sélido
para el anélisis de modelos con estructura fraccionaria local y abre perspectivas para su uso
en diversas dreas de la ciencia y la ingenieria.
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