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Laboratorio FRACTAL (Fractional Research Analysis, Convexity and Their Applications Laboratory), Quito 
170525, Pichincha, Ecuador. mjvivas@puce.edu.ec

Resumen

En este artı́culo se presenta la transformada doble de Laplace non-conformable, creada para 
resolver ecuaciones diferenciales de funciones de dos variables dentro del cálculo frac-
cionario local. Se demuestran sus propiedades principales y se incluyen ejemplos de la 
resolución de ecuaciones diferenciales parciales non-conformables.
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Abstract

In this paper, we introduce the non-conformable double Laplace transform, developed to 
solve differential equations of functions of two variables within the framework of local 
fractional calculus. Its main properties are established, and examples are provided to illus-
trate the solution of non-conformable partial differential equations.

Keywords: Laplace transform; Fractional calculus; Non-conformable derivative.

1 Introducción

El desarrollo del cálculo fraccionario ha estado motivado, desde sus orı́genes en el siglo 
XVII, G. W. Leibniz. (ver Leibniz (1692)), por un interés en extender las operaciones de 
derivación e integración más allá de los órdenes enteros. En sus inicios, las discusiones sobre 
la posibilidad de derivadas de orden no entero, como las planteadas por l’Hôpital y Leibniz, 
fueron en parte, la razón por que formalizaciones progresivas en el cálculo de la 
variabilidad, siguieron formulándose de manera sistemática a través de trabajos de Euler, 
Riemann, Caputo, entre otros.

En los últimos años, diversas motivaciones provenientes de fenómenos reales y modelos 
fı́sicos han revelado procesos con memoria y estructuras que desafı́an la mecánica clásica. 
Tal es el caso, por ejemplo, de la biologı́a, la dinámica automatizada, y la teorı́a de control.

Las contribuciones de investigadores de distintas áreas, han impulsado nuevas formula-
ciones tanto en la derivación fraccionaria como en la integración fraccionaria.

En los últimos años, ha cobrado relevancia una familia particular de operadores deriva-
dos, conocida como derivadas fraccionarias locales. Para profundizar en este tema, pueden 
consultarse diversas referencias (Abdeljawad (2015), Anastassiou (2011), Atangana and 
Baleanu (2015), Diethelm (2010), Gozutok and Gozutok (2018), Guzmán et al. (2020b), 
Kilbas et al. (2006), Mhalian et al. (2020), Miller and Ross (1993), Nápoles Valdes et al.
(2020), Ross et al. (1994), Vivas-Cortez et al. (2021a), Vivas-Cortez et al. (2024), Vivas-
Cortez et al. (2022), Vivas-Cortez et al. (2021b), Vivas-Cortez et al. (2025a), Vivas-Cortez
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et al. (2025b), Vivas-Cortez et al. (2023), Yang (2011b), Yang et al. (2013), Yang (2011a),
Yang (2016)). En este conjunto, la derivada conformable es particularmente relevante, in-
troducida por Khalil (Khalil et al. (2014)).

Años más tarde, Paulo Guzmán en (Guzmán et al. (2018)) introducen la derivada frac-
cionaria local non-conformable.

Estas últimas derivadas ofrecen un comportamiento más cercano a la derivada fraccionaria
local, con ciertas ventajas como la linealidad de la derivación aditiva, al estar definidas en
términos locales (ver González et al. (2020), Guzmán and Nápoles Valdes (2019), Guzmán
et al. (2020a), Martı́nez et al. (2022), Martı́nez and Nápoles Valdes (2020), Nápoles Valdes
et al. (2018)).

La aparición de estas derivadas ha motivado una revisión sistemática de herramientas del
análisis clásico en este nuevo marco conformable y non-conformable. Entre ellas, la trans-
formada de Laplace ocupa un lugar central, especialmente en la resolución de ecuaciones
diferenciales lineales.

El objetivo de este artı́culo es proponer una transformada doble de Laplace adecuada al con-
texto de derivación non-conformable. Aunque algunas extensiones han sido desarrolladas
en un contexto fraccionario local, como la propuesta dada por Sami Injrou and Iyad Hatem
(2022) en Injrou and Hatem (2022), que fusiona la derivación dada por Francisco González
en González et al. (2020) con la doble transformada de Laplace, no se ha estudiado una
versión que combine la derivación dada en Guzmán et al. (2018) con la transformada de
Laplace en más de una variable.

Este trabajo se propone: (a) establecer la doble transformada de Laplace non-conformable
para Guzmán et al. (2018), (b) estudiar sus propiedades fundamentales, y (c) aplicar dicha
herramienta en la resolución de ecuaciones diferenciales parciales con derivadas fraccionar-
ias locales. Se ha obtenido los mismos resultados a los de Teorema 1, Lema 1 y Teorema
2 de Injrou and Hatem (2022), pero utilizando las definiciones de derivación, integral y
transformada simple de Guzmán et al. (2018) en Teoremas 1, 2 y 3, en el Teorema 1 se han
incorporado algunas propiedades adicionales, en cuanto a los ejemplos dados en Injrou and
Hatem (2022), se han obtenido distintas soluciones.

2 Preliminares

Ahora, presentamos la definición de derivada fraccionaria non-conformable y algunas nota-
ciones y propiedades importantes.

Definición 1 ver Guzmán et al. (2018)

Sea h : [0,∞)→R una función. La derivada fraccionaria non-conformable Nφ
1 f(τ), de orden

φ ∈ (0,1) en τ ∈ (0,∞), se define como:

Nφ
1 f(τ) = lim

ε→0

h(τ + εeτ−φ
)−h(τ)

ε

Se dice que h es φ -non-conformable en un punto τ > 0 cuando el limite dado existe.

La siguiente definción fue establecida por M. Vivas-Cortez en Vivas-Cortez et al. (2021b)
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Definición 2 ver Vivas-Cortez et al. (2021b)

Dado τ ∈R+ un número real positivo, la exponencial fraccionariaEφ (τ) está definida como:

EN1
φ ,q(τ) = eq

∫ τ
0 e−u−φ

du

Definición 3 ver Guzmán et al. (2018)

Para φ ∈ (0,1], y 0 ≤ u ≤ v. Se dice que una función h(ζ ) : [u,v] → R es φ -fraccional
integrable en [u,v] si la integral

N1
Jφ

u h(ζ ) :=
∫ ζ

0

(
e−u−φ

)
h(u)du

existe y es finita.

A continuación presentamos las definiciones de la transformada doble de Laplace y trans-
formada simple de Laplace non-conformables de una función de dos variables y mostramos
algunas propiedades.

3 Transformada doble de Laplace non-conformable

Definición 4
Dada f(ζ ,τ) una función continua a trozos en [0,∞)× [0,∞) es de orden exponencial gen-
eralizado; es decir, existen constantesM, q y r tales que

|f(ζ ,τ)| ≤MEN1
φ ,q(τ)E

N1
ψ,r(ζ ) =Meq

∫ τ
0 e−u−φ

du er
∫ ζ

0 e−u−ψ
du

Definición 5
Sean φ ,ψ ∈ (0,1) y q,r ∈ R. Sea f una función continua a trozos definida para τ ≥ 0 y
ζ ≥ 0, donde además se consideran w,v ∈ C.

Definimos entonces la expresión

F(v,w) = L φ
N1,τ L ψ

N1,ζ
[
f(ζ ,τ)

]
,

la cual puede expresarse como

∫ ∞

0

∫ ∞

0
e−τ−φ

e−ζ−ψ
EN1

φ ,−w(τ)E
N1
ψ,−v(ζ ) f(ζ ,τ)dζ dτ

=
∫ ∞

0

∫ ∞

0
e−τ−φ

e−ζ−ψ
e−w

∫ τ
0 e−u−φ

du e−v
∫ ζ

0 e−u−ψ
du f(ζ ,τ)dζ dτ

que es la transformada doble de Laplace non-conformable de f(ζ ,τ). En este caso, las inte-
grales que aparecen se consideran como integrales fraccionarias non-conformables, tomadas
con respecto a las variables τ y ζ .

Definición 6

Sea f(ζ ,τ) una función continua a trozos definida en (0,∞)× (0,∞) y de orden exponencial
generalizado.
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Consideremos primero la transformada de Laplace non-conformable con respecto a ζ , definida
por

F(v,τ) = L ψ
N1,ζ

[
f(ζ ,τ)

]
=

∫ ∞

0
e−v

∫ ζ
0 e−u−ψ

du f(ζ ,τ)dζ .

Esta integral representa la transformada de Laplace non-conformable de f(ζ ,τ) respecto a
la variable ζ .

De manera análoga, la transformada de Laplace non-conformable respecto a τ se escribe
como

F(ζ ,w) = L φ
N1,τ

[
f(ζ ,τ)

]
=

∫ ∞

0
e−w

∫ τ
0 e−u−φ

du f(ζ ,τ)dτ.

Aquı́, la integral corresponde a la transformada de Laplace non-conformable con respecto a
la variable τ .

Propiedades de la transformada doble de Laplace non-conformable

Las transformadas de Laplace non-conformables con respecto a τ y ζ conmutan, es decir:

L φ
N1,τL

ψ
N1,ζ

{f(ζ ,τ)}= L ψ
N1,ζ

L φ
N1,τ{f(ζ ,τ)}= F(v,w).

Teorema 1

Consideremos dos funciones f(ζ ,τ) y g(ζ ,τ) que poseen transformada doble de Laplace
non-conformable. Bajo estas condiciones, se cumplen las siguientes propiedades:

1) La linealidad de la transformada doble de Laplace non-conformable se expresa como

L φ
N1,τL

ψ
N1,ζ

[q1f(ζ ,τ)+q2g(ζ ,τ)] = q1L
φ

N1,τL
ψ

N1,ζ
[f(ζ ,τ)]+q2L

φ
N1,τL

ψ
N1,ζ

[g(ζ ,τ)].

2) La transformada doble de Laplace non-conformable de la función constante se da por

L φ
N1,τL

ψ
N1,ζ

[1] =
1

vw
.

De este resultado se deduce que

L φ
N1,τL

ψ
N1,ζ

[q] = qL φ
N1,τL

ψ
N1,ζ

[1] =
q

vw
.

3) Se cumple también que

L φ
N1,τL

ψ
N1,ζ

[
EN1

φ ,q(τ)E
N1
ψ,r(ζ )

]
=

1
v− r

· 1
w−q

.

4) Para la combinación con una función f, se tiene

L φ
N1,τL

ψ
N1,ζ

[
f(ζ ,τ)EN1

φ ,q(τ)E
N1
ψ,r(ζ )

]
= F(v− r,w−q),

con

L φ
N1,τL

ψ
N1,ζ

[f(ζ ,τ)] = F(v,w), q,r ∈ R, w−q > 0, v− r > 0.
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5) La transformada doble de Laplace non-conformable de las funciones seno se expresa
como

L φ
N1,τL

ψ
N1,ζ

[
sin

(
q
∫ τ

0
e−µ−φ

dµ
)

sin
(

r
∫ ζ

0
e−µ−ψ

dµ
)]

=
r

v2 + r2 · q
w2 +q2 .

6) De manera similar, para las funciones coseno se cumple

L φ
N1,τL

ψ
N1,ζ

[
cos

(
q
∫ τ

0
e−µ−φ

dµ
)

cos
(

r
∫ ζ

0
e−µ−ψ

dµ
)]

=
v

v2 + r2 · w
w2 +q2 .

7) Para las funciones hiperbólicas seno, se tiene

L φ
N1,τL

ψ
N1,ζ

[
sinh

(
q
∫ τ

0
e−µ−φ

dµ
)

sinh
(

r
∫ ζ

0
e−µ−ψ

dµ
)]

=
r

v2 − r2 · q
w2 −q2 .

8) En el caso de las funciones hiperbólicas coseno, se tiene

L φ
N1,τL

ψ
N1,ζ

[
cosh

(
q
∫ τ

0
e−µ−φ

dµ
)

cosh
(

r
∫ ζ

0
e−µ−ψ

dµ
)]

=
v

v2 − r2 · w
w2 −q2 .

9) Finalmente, las derivadas parciales de F(v,w) se expresan como

∂ m+nF(v,w)
∂vm∂wn = (−1)m+nL φ

N1,τL
ψ

N1,ζ

[(∫ τ

0
e−µ−φ

dµ
)n(∫ ζ

0
e−µ−ψ

dµ
)m

f(ζ ,τ)
]
.

Demostración.

1) Se obtiene directamente de la definición.

2) Para la demostración de la transformada doble non-conformable de la función constante,
tenemos:

L φ
N1,τL

ψ
N1,ζ

[1] =
∫ ∞

0

∫ ∞

0
e−τ−φ

e−ζ−ψ
e−w

∫ τ
0 e−µ−φ

dµ e−v
∫ ζ

0 e−µ−ψ
dµ dζ dτ

=
∫ ∞

0

∫ ∞

0
e−wze−vw dzdw

=

(∫ ∞

0
e−vw dw

)(∫ ∞

0
e−wz dz

)
=

1
v
· 1

w

3) Para demostrar la transformada doble de Laplace non-conformable de EN1
φ ,q(τ)E

N1
ψ,r(ζ ),

se tiene que:

L φ
N1,τL

ψ
N1,ζ

[
EN1

φ ,q(ζ )E
N1
ψ,r(τ)

]

es igual a

=
∫ ∞

0

∫ ∞

0
e−τ−φ

e−ζ−ψ
e−w

∫ τ
0 e−µ−φ

dµ e−v
∫ ζ

0 e−µ−ψ
dµ e−q

∫ τ
0 e−µ−φ

dµ e−r
∫ ζ

0 e−µ−ψ
dµ dζ dτ

=
∫ ∞

0

∫ ∞

0
e−τ−φ

e−ζ−ψ
e−(w−q)

∫ τ
0 e−µ−φ

dµ e−(v−r)
∫ ζ

0 e−µ−ψ
dµ dζ dτ

=
∫ ∞

0

∫ ∞

0
e−(w−q)ze−(v−r)w dzdw

=

(∫ ∞

0
e−(v−r)w dw

)(∫ ∞

0
e−(w−q)z dz

)
=

1
v− r

· 1
w−q

5
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4) Para la conmbinación del literal 3) con una función f.
Suponemos L φ

N1,τL
ψ

N1,ζ
[f(ζ ,τ)] = F(v,w), para w > k y v > k, entonces se tiene que:

L φ
N1,τL

ψ
N1,ζ

[
f(ζ ,τ)EN1

φ ,q(ζ )E
N1
ψ,r(τ)

]

es igual a

=
∫ ∞

0

∫ ∞

0
e−τ−φ

e−ζ−ψ
e−(w−q)

∫ τ
0 e−µ−φ

dµ e−(v−r)
∫ ζ

0 e−µ−ψ
dµ

· f(ζ ,τ)dζ dτ
= F(v− r,w−q)

5) Para la demostración de sin
(

q
∫ τ

0 e−µ−φ
dµ

)
sin

(
r
∫ ζ

0 e−µ−ψ
dµ

)
, tenemos que:

L φ
N1,τL

ψ
N1,ζ

[
sin

(
q
∫ τ

0
e−µ−φ

dµ
)

sin
(

r
∫ ζ

0
e−µ−ψ

dµ
)]

por definición es igual a

=
∫ ∞

0

∫ ∞

0
e−τ−φ

e−ζ−ψ
e−w

∫ τ
0 e−µ−φ

dµ e−v
∫ ζ

0 e−µ−ψ
dµ

· sin
(

q
∫ τ

0
e−µ−φ

dµ
)

sin
(

r
∫ ζ

0
e−µ−ψ

dµ
)

dζ dτ

=
∫ ∞

0

∫ ∞

0
e−wz1e−vz2 sin(qz1)sin(rz2)dz1 dz2

=

(∫ ∞

0
e−vz2 sin(rz2)dz2

)(∫ ∞

0
e−wz1 sin(qz1)dz1

)

=
r

v2 + r2 · q
w2 +q2

6) Se obtiene de manera similar a 5).

7) Se obtiene utilizando las definiciones del sinh, y la definición 5.

8) Se obtiene utilizando las definiciones del cosh, y la definición 5.

9) Por último, se tiene que:

∂ m+nF(v,w)
∂vm∂wn
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utilizando la definición es igual a

=
∂ m

∂vm
∂ n

∂wn

[∫ ∞

0

∫ ∞

0
e−ζ−ψ

e−v
∫ ζ

0 e−µ−ψ
dµ e−τ−φ

e−w
∫ τ

0 e−µ−φ
dµ f(ζ ,τ)dτ dζ

]

=

∫ ∞

0
e−ζ−ψ ∂ m

∂vm

(
e−v

∫ ζ
0 e−µ−ψ

dµ
)[∫ ∞

0
e−τ−φ ∂ n

∂wn

(
e−w

∫ τ
0 e−µ−φ

dµ
)
f(ζ ,τ)dτ

]
dζ

=
∫ ∞

0
e−ζ−ψ

(−1)m
(∫ ζ

0
e−µ−ψ

dµ
)m

e−v
∫ ζ

0 e−µ−ψ
dµ

[∫ ∞

0
e−τ−φ

(−1)n
(∫ τ

0
e−µ−φ

dµ
)n

e−w
∫ τ

0 e−µ−φ
dµ f(ζ ,τ)dτ

]
dζ

= (−1)m+nL φ
N1,τL

ψ
N1,ζ

[(∫ τ

0
e−µ−φ

dµ
)n(∫ ζ

0
e−µ−ψ

dµ
)m

f(ζ ,τ)
]

Teorema 2

Con las condiciones de la definición de la transformada doble de Laplace non-conformable,
se tiene que:

1) L φ
N1,τL

ψ
N1,ζ

[
ζ Nψ

1 f(ζ ,τ)
]
= vF(v,w)−F(0,w).

2) L φ
N1,τL

ψ
N1,ζ

[
τ Nφ

1 f(ζ ,τ)
]
= wF(v,w)−F(v,0).

3) L φ
N1,τL

ψ
N1,ζ

[
ζ Nψ

1 τ Nφ
1 f(ζ ,τ)

]
= vwF(v,w)− vF(v,0)−wF(0,w)+F(0,0).

donde ζ Nψ
1 f(ζ ,τ) y τ Nφ

1 f(ζ ,τ) representan las derivadas parciales fraccionarias non-conformables
de orden ψ-ésimo y φ -ésimo respectivamente, y ζ Nψ

1 τ Nφ
1 f(ζ ,τ) es la derivada parcial mixta

fraccionaria non-conformable de orden ψ-ésimo y φ -ésimo.

Demostración:

1) Utilizamos la definición de transformada doble de Laplace non-conformable y la Proposición
3 de Vivas-Cortez et al. (2021b), obteniendo que:

L φ
N1,τL

ψ
N1,ζ

[
ζ Nψ

1 f(ζ ,τ)
]

es igual a

=
∫ ∞

0

∫ ∞

0
e−τ−φ

e−w
∫ τ

0 e−µ−φ
dµ e−ζ−ψ

e−v
∫ ζ

0 e−µ−ψ
dµ

ζ Nψ
1 f(ζ ,τ)dτ dζ

=

∫ ∞

0
e−τ−φ

e−w
∫ τ

0 e−µ−φ
dµ

[∫ ∞

0
e−ζ−ψ

e−v
∫ ζ

0 e−µ−ψ
dµ

ζ Nψ
1 f(ζ ,τ)dζ

]
dτ

=
∫ ∞

0
e−τ−φ

e−w
∫ τ

0 e−µ−φ
dµ

[
L ψ

N1,ζ
[

ζ Nψ
1 f(ζ ,τ)

]]
dτ

=
∫ ∞

0
e−τ−φ

e−w
∫ τ

0 e−µ−φ
dµ

[
vL ψ

N1,ζ
[

ζ f(ζ ,τ)
]
− f(0,τ)

]
dτ

= vF(v,w)−F(0,w).
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2) Se obtiene de forma similar.

3) Para demostrar la transformada doble de Laplace non-conformable de ζ Nψ
1 τ Nφ

1 f(ζ ,τ),
se tiene por definición que:

L φ
N1,τL

ψ
N1,ζ

[
ζ Nψ

1 τ Nφ
1 f(ζ ,τ)

]

es igual a

=
∫ ∞

0

∫ ∞

0
e−τ−φ

e−w
∫ τ

0 e−µ−φ
dµ e−ζ−ψ

e−v
∫ ζ

0 e−µ−ψ
dµ

ζ Nψ
1 τ Nφ

1 f(ζ ,τ)dτ dζ

Sustituyendo h(ζ ,τ) = τ Nφ
1 f(ζ ,τ) y aplicando el resultado del literal 1), se obtiene:

L φ
N1,τL

ψ
N1,ζ

[
ζ Nψ

1 h(ζ ,τ)
]
= vH(v,w)−H(0,w)

donde

H(v,w) = L φ
N1,τL

ψ
N1,ζ

[h(ζ ,τ)] = L φ
N1,τL

ψ
N1,ζ

[
τ Nφ

1 f(ζ ,τ)
]
= wF(v,w)−F(v,0).

y

H(0,w) = L φ
N1,τL

ψ
N1,ζ

[h(0,τ)] = L φ
N1,τL

ψ
N1,ζ

[
τ Nφ

1 f(0,τ)
]
= wF(0,w)−F(0,0).

Reemplazando H(v,w) y H(0,w) en

L φ
N1,τL

ψ
N1,ζ

[
ζ Nψ

1 h(ζ ,τ)
]

se tiene:

L φ
N1,τL

ψ
N1,ζ

[
ζ Nψ

1 h(ζ ,τ)
]
= v [wF(v,w)−F(v,0)]− [wF(0,w)−F(0,0)]

= vwF(v,w)− vF(v,0)−wF(0,w)+F(0,0).

De forma similar se puede probar el siguiente Teorema.

Teorema 3
Sean φ ,ψ ∈ (0,1) y m,n∈N, y supongamos que f(ζ ,τ)∈Cl(R+×R+), donde l =max(m,n).
Además, se cumple que:

f(ζ ,τ), (i)
ζ Nψ

1 f(ζ ,τ),
( j)
τ Nφ

1 f(ζ ,τ) para i = 1, . . . ,m, j = 1, . . . ,n

son N1-transformables. Entonces se tiene que:

1)

L φ
N1,τL

ψ
N1,ζ

[
(m)
ζ Nψ

1 f(ζ ,τ)
]
= vmF(v,w)− vm−1F(0,w)

−
m−1

∑
i=1

vm−1−iL φ
N1,τ

[
(i)
ζ Nψ

1 F(0,τ)
]

8
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2)

L φ
N1,τL

ψ
N1,ζ

[
(n)
τ Nφ

1 f(ζ ,τ)
]
= wnF(v,w)−wn−1F(v,0)

−
n−1

∑
j=1

wn−1− jL ψ
N1,ζ

[
( j)
τ Nφ

1 F(ζ ,0)
]

3)

L φ
N1,τL

ψ
N1,ζ

[
(m)
ζ Nψ

1
(n)
τ Nφ

1 f(ζ ,τ)
]

= vmwn

[
F(v,w)−w−1F(v,0)− v−1F(0,w)

−
m−1

∑
i=1

v−1−iL φ
N1,τ

[
(i)
ζ Nψ

1 F(0,τ)
]

−
n−1

∑
j=1

w−1− jL ψ
N1,ζ

[
( j)
τ Nφ

1 F(ζ ,0)
]

+
m−1

∑
i=1

n−1

∑
j=1

w−1− jv−1−i (i)
ζ Nψ

1
( j)
τ Nφ

1 F(0,0)

+ v−mw−nF(0,0)

]

donde (m)
ζ Nψ

1 f(ζ ,τ) y (n)
τ Nφ

1 f(ζ ,τ) son las m,n veces derivadas fraccionarias non-conformables

de f(ζ ,τ) de orden ψ y φ respectivamente, y (m)
ζ Nψ

1
(n)
τ Nφ

1 f(ζ ,τ) es la derivada parcial mixta
fraccionaria non-conformable de orden ψ y φ de la función f(ζ ,τ).

4 Algunas aplicaciones

A continuación, utilizamos la transformada doble de Laplace non-conformable para resolver
algunas ecuaciones en derivadas parciales fraccionarias, en el sentido de la derivada frac-
cionaria non-conformable. Se ilustran las soluciones obtenidas en los ejemplos para distin-
tos valores de φ y ψ en gráficos de dos y tres dimensiones, para ello se utilizó el software
Python 3.10.

4.1 Ecuación de calor fraccionaria non-conformable.

La siguiente ecuación corresponde a la ecuación del calor non-conformable en el espacio-
tiempo homogéneo:

τ Nφ
1 f(ζ ,τ) =

(2)
ζ Nψ

1 f(ζ ,τ), 0 < ζ , 0 < τ, (1)

con las condiciones iniciales y de contorno:

f(0,τ) = e
∫ τ

0 e−µ−φ
dµ , (2)

f(ζ ,0) = e
∫ ζ

0 e−µ−ψ
dµ , (3)

ζ Nψ
1 f(0,τ) = e

∫ τ
0 e−µ−φ

dµ . (4)

9
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Utilizamos la transformada doble de Laplace non-conformable 1) del Teorema 3 en la parte
derecha de la ecuación (1), se tiene que:

L φ
N1,τL

ψ
N1,ζ

[
(2)
ζ Nψ

1 f(ζ ,τ)
]

es igual a
v2F(v,w)− vF(0,w)−L φ

N1,τ
[

ζ Nψ
1 f(0,τ)

]

= v2F(v,w)− vF(0,w)− ζ Nψ
1 F(0,w).

y 2) del Teorema 2 en la parte izquierda de la ecuación (1), se tiene que

L φ
N1,τL

ψ
N1,ζ

[
τ Nφ

1 f(ζ ,τ)
]

es igual a
wF(v,w)−F(v,0),

Luego, la ecuación (1) se convierte en:

(w− v2)F(v,w) = F(v,0)− vF(0,w)− ζ Nψ
1 F(0,w). (5)

Aplicando la transformada de Laplace simple non.conformable en (2), se obtiene:

L φ
N1,τ [f(0,τ)] = L φ

N1,τ

[
e
∫ τ

0 e−µ−φ
dµ
]

=
∫ ∞

0
e−τ−φ

e−w
∫ τ

0 e−µ−φ
dµ e

∫ τ
0 e−µ−φ

dµ dτ

=
1

w−1
(6)

y este resultado es igual a F(0,w)

Cuando aplicamos la transformada de Laplace simple non-conformable en (3), se tiene:

L ψ
N1,ζ

[f(ζ ,0)] = L ψ
N1,ζ

[
e
∫ ζ

0 e−µ−ψ
dµ
]

=
∫ ∞

0
e−ζ−ψ

e−v
∫ ζ

0 e−µ−ψ
dµ e

∫ ζ
0 e−µ−ψ

dµ dζ

=
1

v−1
(7)

la última expresión es igual a F(v,0)

Al aplicar la transformada de Laplace simple non-conformable en (4), obtenemos:

L φ
N1,τ

[
ζ Nψ

1 f(0,τ)
]
= L φ

N1,τ

[
e
∫ τ

0 e−µ−φ
dµ
]

=
1

w−1
(8)

y se tiene que ζ Nψ
1 F(0,w) =

1
w−1

10
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Sustituyendo (6), (7) y (8) en (5), se tiene:

(w− v2)F(v,w) =
1

v−1
− v

w−1
− 1

w−1

de donde:
F(v,w) =

1
(v−1)(w−1)

.

Por tanto, la solución del problema (1) - (4) es:

f(ζ ,τ) =
(

e
∫ τ

0 e−µ−φ
dµ
)(

e
∫ ζ

0 e−µ−ψ
dµ
)
. (9)
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(a) Gráfica de f(ζ ,1) para
φ = ψ = 0.25,0.5,0.75.
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(b) Superficie 3D de f(ζ ,τ) con φ = ψ = 0.2

Figura 1. Representación de la gráfica 2D y 3D de la función

f(ζ ,τ) =
(

e
∫ τ

0 e−µ−φ
dµ
)(

e
∫ ζ

0 e−µ−ψ
dµ
)

solución del problema (1) - (4).

De las representaciones gráficas de la función

f(ζ ,τ) =
(

e
∫ τ

0 e−µ−φ
dµ
)(

e
∫ ζ

0 e−µ−ψ
dµ
)
,

se pueden observar que, en primer lugar, la función es estrictamente positiva y presenta
un comportamiento monótonamente creciente con respecto a ambas variables, lo cual se
evidencia tanto en las curvas bidimensionales como en la superficie tridimensional.

En el caso bidimensional, al fijar τ = 1, se aprecia que la rapidez de crecimiento depende
de los parámetros φ y ψ: a medida que estos aumentan, las gráficas experimentan un incre-
mento más acelerado. Por su parte, la superficie tridimensional muestra que el crecimiento
conjunto en las variables ζ y τ es simétrico, puesto que la estructura de la función otorga
un papel análogo a ambas variables en la construcción del producto exponencial.

4.2 Ecuación de onda fraccionaria non-conformable homogénea.

Se considera la ecuación de onda fraccionaria non-conformable homogénea en el espacio-
tiempo:

(2)
τ Nφ

1 f(ζ ,τ) =
(2)
ζ Nψ

1 f(ζ ,τ), ζ > 0, τ > 0. (10)
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Con condiciones iniciales y de contorno:

f(0,τ) = 0, (11)

f(ζ ,0) = sin
(∫ ζ

0
e−µ−ψ

dµ
)
, (12)

ζ Nψ
1 f(ζ ,0) = cos

(∫ τ

0
e−µ−φ

dµ
)
, (13)

τ Nφ
1 f(ζ ,0) = 0. (14)

Utilizamos la transformada doble de Laplace non-conformable 1) del Teorema 3 en la parte
derecha de la ecuación (10), y se tiene que:

L φ
N1,τL

ψ
N1,ζ

[
(2)
ζ Nψ

1 f(ζ ,τ)
]

es igual a

v2F(v,w)− vF(0,w)−L φ
N1,τ

[
ζ Nψ

1 f(0,τ)
]

= v2F(v,w)− vF(0,w)− ζ Nψ
1 F(0,w).

Y si usamos la transformada doble de Laplace non-conformable 2) del Teorema 3 en la parte
izquierda de la ecuación (10), tenemos que:

L φ
N1,τL

ψ
N1,ζ

[
(2)
τ Nφ

1 f(ζ ,τ)
]

es igual a

w2F(v,w)−wF(v,0)−L ψ
N1,ζ

[
τ Nφ

1 f(ζ ,0)
]

= w2F(v,w)−wF(v,0)− τ Nφ
1 F(v,0).

Con estos dos últimos resultados, la ecuación (10) se convierte en:

(w2 − v2)F(v,w)+ vF(0,w)−wF(v,0)+ ζ Nψ
1 F(0,w)− τ Nφ

1 F(v,0) = 0. (15)

Utilizando la transformada de Laplace simple non-conformable en (11), se tiene

F(0,w) = L φ
N1,τ [f(0,τ)] = L φ

N1,τ [0] = 0. (16)

Al aplicar la transformada de Laplace simple non-conformable en , (12), obtenemos:

L ψ
N1,ζ

[f(ζ ,0)] = L ψ
N1,ζ

[
sin

(∫ ζ

0
e−µ−ψ

dµ
)]

=
1

v2 +1
. (17)

que es igual a F(v,0).
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Si aplicamos la transformada de Laplace simple non-conformable en (13), tenemos:

L φ
N1,τ

[
ζ Nψ

1 f(0,τ)
]
= L φ

N1,τ

[
cos

(∫ τ

0
e−µ−φ

dµ
)]

=
w

w2 +1
. (18)

que es igual a ζ Nψ
1 F(0,w).

Aplicando la transformada de Laplace simple non-conformable en (14), nos da lo siguiente:

τ Nφ
1 F(v,0) = L ψ

N1,ζ

[
τ Nφ

1 f(ζ ,0)
]

= L ψ
N1,ζ

[0] = 0. (19)

Al sustituir (16), (17), (18) y (19) en (15), se obtiene:

(w2 − v2)F(v,w) =
w(w2 − v2)

(w2 +1)(v2 +1)
,

lo que implica
F(v,w) =

w
(w2 +1)(v2 +1)

.

Luego, la solución del problema (10)–(14) es:

f(ζ ,τ) = sin
(∫ ζ

0
e−µ−ψ

dµ
)

cos
(∫ τ

0
e−µ−φ

dµ
)
. (20)
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Figura 2. Representación de la gráfica 2D y la 3D de la función

f(ζ ,τ) = sin
(∫ ζ

0
e−µ−ψ

dµ
)

cos
(∫ τ

0
e−µ−φ

dµ
)

solución del problema (10) - (14).

En las representaciones gráficas obtenidas se observa que la función

f(ζ ,τ) = sin
(∫ ζ

0
e−µ−ψ

dµ
)

cos
(∫ τ

0
e−µ−φ

dµ
)
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presenta un comportamiento oscilatorio con una atenuación dependiente de los parámetros
fraccionarios φ y ψ . En la gráfica bidimensional, al considerar τ = 1, se aprecia que el
incremento en los valores de φ = ψ produce una disminución en la amplitud y un cambio
más rápido hacia valores negativos. Por otra parte, la gráfica tridimensional muestra de
manera conjunta la interacción entre ζ y τ , generando una superficie con crestas y valles
que evidencian la naturaleza oscilatoria y amortiguada de la solución.

4.3 Ecuación de onda non-conformable no homogénea.

Se considera la ecuación de onda fraccionaria non-conformable no homogénea en el espacio-
tiempo:

(2)
τ Nφ

1 f(ζ ,τ)−
(2)
ζ Nψ

1 f(ζ ,τ) = (c2 +1)
(

ec
∫ τ

0 e−µ−φ
dµ
)(

sin
(∫ ζ

0
e−µ−ψ

dµ
))

. (21)

con condiciones iniciales y de contorno:

f(0,τ) = 0, (22)

f(ζ ,0) = sin
(∫ ζ

0
e−µ−ψ

dµ
)
, (23)

ζ Nψ
1 f(0,τ) = ec

∫ τ
0 e−µ−φ

dµ , (24)

τ Nφ
1 f(ζ ,0) = c sin

(∫ ζ

0
e−µ−ψ

dµ
)
. (25)

Al aplicar la transformada doble de Laplace non-conformable 1) del Teorema 3 en (2)
ζ Nψ

1 f(ζ ,τ),

2) del Teorema 3 en (2)
τ Nφ

1 f(ζ ,τ) se tiene:

L φ
N1,τ L ψ

N1,ζ

[
(2)
ζ Nψ

1 f(ζ ,τ)
]
= v2F(v,w)− vF(0,w)− ζ Nψ

1 F(0,w),

L φ
N1,τ L ψ

N1,ζ

[
(2)
τ Nφ

1 f(ζ ,τ)
]
= w2F(v,w)−wF(v,0)− τ Nφ

1 F(v,0).

que al reemplazar en la parte izquierda de la ecuación (21), nos proporciona:

(w2 − v2)F(v,w)+ vF(0,w)+ ζ Nψ
1 F(0,w)−wF(v,0)− τ Nφ

1 F(v,0).

y al aplicar la transformada de Laplace en la parte derecha de la ecuación (21), se tiene:

c2 +1
(w− c)(v2 +1)

.

Con los dos últimos resultados se obtiene:

(w2 − v2)F(v,w)+ vF(0,w)+ ζ Nψ
1 F(0,w)−wF(v,0)− τ Nφ

1 F(v,0) =
c2 +1

(w− c)(v2 +1)
.

(26)

Aplicando la transformada de Laplace simple non-conformable en (22), (23), (24) y (25) se
tiene:
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L φ
N1,τ {f(0,τ)}= 0 = F(0,w), (27)

L φ
N1,τ

{
ζ Nφ

1 f(0,τ)
}
= L φ

N1,τ

[
ec

∫ τ
0 e−µ−φ

dµ
]
=

1
w− c

= ζ Nφ
1 F(0,w), (28)

L ψ
N1,ζ

{f(ζ ,0)}= L ψ
N1,ζ

[
sin

(∫ ζ

0
e−µ−ψ

dµ
)]

=
1

v2 +1
= F(v,0), (29)

L ψ
N1,ζ

{
τ Nφ

1 f(ζ ,0)
}
= L ψ

N1,ζ

[
csin

(∫ ζ

0
e−µ−ψ

dµ
)]

=
c

v2 +1
= τ Nφ

1 F(v,0). (30)

Al reemplazar (27), (28), (29), (30) en (26), se tiene:

(w2 − v2)F(v,w)+0+
1

w− c
− w

v2 +1
− c

v2 +1
=

c2 +1
(w− c)(v2 +1)

.

luego,

F(v,w) =
1

(w− c)(v2 +1)
.

cuya solución es

f(ζ ,τ) =
(

ec
∫ τ

0 e−µ−φ
dµ
)(

sin
(∫ ζ

0
e−µ−ψ

dµ
))

.
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Figura 3. Representación de la gráfica 2D y la 3D de la función

f(ζ ,τ) =
(

ec
∫ τ

0 e−µ−φ
dµ
)(

sin
(∫ ζ

0 e−µ−ψ
dµ

))
solución del problema (21) - (25).
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En las representaciones gráficas de la Figura 3 se observa que la función

f(ζ ,τ) =
(

e
∫ τ

0 e−µ−φ
dµ
)(

sin
(∫ ζ

0
e−µ−ψ

dµ
))

presenta dos tipos de comportamientos. En la gráfica 2D, al considerar τ = 1, se aprecia un
comportamiento oscilatorio cuya amplitud disminuye cuando los parámetros fraccionarios
φ =ψ aumentan. Por otra parte, en la gráfica 3D se pone de manifiesto el efecto exponencial
de la variable τ , que provoca un crecimiento notable de la superficie y genera máximos
definidos, mientras que la variable ζ modula el carácter oscilatorio de la función.

4.4 Ecuación telegráfica fraccionaria non-conformable
no-homogénea.

Consideremos la ecuación telegráfica fraccionaria non-conformable no-homogénea en el
espacio tiempo:

(2)
τ Nφ

1 f(ζ ,τ)−
(2)
ζ Nψ

1 f(ζ ,τ)− τ Nφ
1 f(ζ ,τ)− f(ζ ,τ) =−8

(
e2

∫ τ
0 e−µ−φ

dµ
)

cos
(∫ ζ

0
e−µ−ψ

dµ
)
.

(31)

Con condiciones iniciales y de contorno:

f(0,τ) =
(

e2
∫ τ

0 e−µ−φ
dµ
)
, (32)

f(ζ ,0) = cos
(∫ ζ

0
e−µ−ψ

dµ
)
, (33)

ζ Nψ
1 f(0,τ) = 0, (34)

τ Nφ
1 f(ζ ,0) = 2cos

(∫ ζ

0
e−µ−ψ

dµ
)
. (35)

Al aplicar la transformada doble de Laplace non-conformable 1) del Teorema 3 en (2)
ζ Nψ

1 f(ζ ,τ),

y 2) del Teorema 3 en (2)
τ Nφ

1 f(ζ ,τ), y 2) del Teorema 2 en τ Nφ
1 f(ζ ,τ) se obtiene:

L φ
N1,τL

ψ
N1,ζ

[
(2)
ζ Nψ

1 f(ζ ,τ)
]
= v2F(v,w)− vF(0,w)− ζ Nψ

1 F(0,w),

L φ
N1,τL

ψ
N1,ζ

[
(2)
τ Nφ

1 f(ζ ,τ)
]
= w2F(v,w)−wF(v,0)− τ Nφ

1 F(v,0),

L φ
N1,τL

ψ
N1,ζ

[
τ Nφ

1 f(ζ ,τ)
]
= wF(v,w)−F(v,0).

que al reemplazar en la parte izquierda de la ecuación (31), nos da:

v2F(v,w)− vF(0,w)− ζ Nψ
1 F(0,w)−w2F(v,w)+wF(v,0)+ τ Nφ

1 F(v,0)−wF(v,w)

+F(v,0)−F(v,w)

=
(
v2 −w2 −w−1

)
F(v,w)− vF(0,w)+(w+1)F(v,0)− ζ Nψ

1 F(0,w)+ τ Nφ
1 F(v,0).
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Y al aplicar la transformada doble de Laplace non-conformable en la parte derecha de la
ecuación (31), se obtiene:

− 8v
(w−2)(v2 +1)

.

Con los dos últimos resultados, la ecuación (31) se convierte en:
(
v2 −w2 −w−1

)
F(v,w)− vF(0,w)+(w+1)F(v,0)− ζ Nψ

1 F(0,w)+ τ Nφ
1 F(v,0)

=− 8v
(w−2)(v2 +1)

.
(36)

Ahora aplicamos la transformada de Laplace simple non-conformable a las condiciones
iniciales y de contorno.
Aplicando la transformada de Laplace simple non-conformable en (32), se obtiene:

L φ
N1,τ {f(0,τ)}= L φ

N1,τ

{(
e2

∫ τ
0 e−µ−φ

dµ
)}

=
1

w−2
. (37)

que es igual a F(0,w).

Cuando aplicamos la transformada de Laplace simple non-conformable en (33), tenemos:

L ψ
N1,ζ

{f(ζ ,0)}= L ψ
N1,ζ

{
cos

(∫ ζ

0
ve−µ−ψ

dµ
)}

=
v

v2 +1
(38)

que es igual F(v,0).

Al aplicar la transformada de Laplace simple non-conformable en (34), obtenemos:

L ψ
N1,ζ

{
τ Nφ

1 f(0,τ)
}
= L ψ

N1,τ {0}

= 0. (39)

este resultado es igual a ζ Nψ
1 F(0,w).

Al aplicar la transformada de Laplace simple non-conformable en (35), obtenemos:

L ψ
N1,ζ

{
τ Nφ

1 f(ζ ,0)
}
= L ψ

N1,ζ

{
2cos

(∫ ζ

0
e−µ−ψ

dµ
)}

=
2v

v2 +1
. (40)

que es igual a τ Nφ
1 F(v,0)
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Sustituyendo (37), (38), (39), (40) en (36), se obtiene:

(v2 −w2 −w−1)F(v,w)− v · 1
w−2

+(w+1) · v
v2 +1

−0+
2v

v2 +1

=− 8v
(v2 +1)(w−2)

.

Luego,

F(v,w) =
v

(v2 +1)(w−2)
.

de donde se obtiene la solución:

f(ζ ,τ) =
(

e2
∫ τ

0 e−µ−φ
dµ
)(

cos
(∫ ζ

0
e−µ−ψ

dµ
))

.
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(a) Gráfica de f(ζ ,1) para
φ = ψ = 0.25,0.5,0.75.
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(b) Superficie 3D de f(ζ ,τ) con φ = ψ = 0.2

Figura 4. Representación de la gráfica 2D y la 3D de la función

f(ζ ,τ) =
(

e2
∫ τ

0 e−µ−φ
dµ
)(

cos
(∫ ζ

0 e−µ−ψ
dµ

))
solución del problema (31) - (35).

En las representaciones de la Figura 4 se aprecia que la función

f(ζ ,τ) =
(

e2
∫ τ

0 e−µ−φ
dµ
)(

cos
(∫ ζ

0
e−µ−ψ

dµ
))

combina un comportamiento oscilatorio en la variable ζ con un crecimiento exponencial
en la variable τ . En la gráfica 2D, al considerar τ = 1, se observa que los parámetros
fraccionarios φ = ψ modifican la amplitud y el desplazamiento de los cruces de la función
respecto al eje horizontal. Por otro lado, la superficie tridimensional muestra con claridad
cómo la variable τ potencia la magnitud de la función, generando valores elevados tanto
positivos como negativos.
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Conclusión

En este trabajo se ha establecido la transformada doble de Laplace non-conformable den-
tro del marco del cálculo fraccionario local y se han desarrollado sus propiedades funda-
mentales. La aplicación de esta herramienta a ecuaciones diferenciales non-conformables 
del calor, de onda y telegráfica demuestra que la transformada permite abordar problemas 
que presentan memoria y comportamientos locales, ampliando las capacidades del método 
clásico. Los resultados obtenidos muestran que esta formulación ofrece un marco sólido 
para el análisis de modelos con estructura fraccionaria local y abre perspectivas para su uso 
en diversas áreas de la ciencia y la ingenierı́a.
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