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Abstract
This survey presents an exposition of the foundational concepts of information geometry from a 
probabilistic viewpoint, as well as recent developments in differential geometry related to this area 
of information science. We conclude with a non-exhaustive but motivating list of applications of the 
theory in probability.
Keywords: Fisher metric; Statistical model; Dual connection; Statistical manifold; Exponential 
family; Mixture family.

Resumen
En este estudio se exponen los conceptos fundamentales de la geometría de la información desde una 
perspectiva probabilística y se presentan los avances recientes en geometría diferencial relacionados 
con esta área de las ciencias de la información. Concluimos con una lista, no exhaustiva, pero sí 
motivadora, de aplicaciones de la teoría en probabilidad.
Palabras clave: Métrica de Fisher; Modelo estadístico; Conexión dual; Variedad estadística; Familia 
exponencial; Familia mezcla.

Introducción
Information science is a term used to describe the interdisciplinary studies to explore and to 
analyze information theory and data scenarios (Kolp, Snoeck, Vanderdonckt &Wautelet, 
2019). These type of studies rely on the interaction of several fields, such as statistical 
inference, signal processing, machine learning, or neural networks. A fundamental part 
of this interaction is the role of statistics, with probability theory playing a key part in 
interpreting data and modeling uncertainty. However, the scope of science information 
extends beyond statistics, and new developments have emerged in other branches of 
mathematics. One notable example of this interaction is the so called geometric science 
information. Information geometry is a specialized field within geometry science 
information that applies concepts from differential geometry to the study of statistical 
models. Its foundation goes back to the independent works of H. Hotelling (1930) and 
R. Rao (1945), who proposed a mathematical framework to give a new point of view to 
families of probability distributions. A central concept in this field is the Fisher information 
metric, which provides a differentiable structure on the space of probability densities. This 
metric allows for the exploration of various geometric properties within statistical models, 
such as distances between probability distributions and their curvature. The Fisher metric 
is deeply connected to key statistical concepts, including expected value, entropy, and 
divergence, making it a powerful tool for understanding the geometry of information theory. 
For a more detailed discussion of this topic, we refer to Nielsen’s work on information 
geometry (Nielsen, 2022) and (Amari & Nagaoka, 2000) comprehensive insights.
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In the probability setting, the exponential and mixture families are two fundamental statisti-
cal concepts that describe two types of probability densities, each with its own statistical and
algebraic characteristics. These families gain importance in information geometry, where
they not only provide statistical properties but also induce geometric structures, such as
dual connections, torsion, geodesics, curvatures, divergences, and symmetric 3-tensors. In
this work, we focus our results to dual connection, Amari-Chentsov tensor and divergence
functions. Divergence functions are generating functions that quantify the distance between
two probability distributions, playing a crucial role in understanding of their geometric re-
lations. The notion of dual structure, introduced by Amari and Chentsov, builds on the
relationship between the exponential and mixture families, where each family is associ-
ated with a specific affine connection. This duality allows the analysis of statistical models
from two complementary perspectives, providing deeper insights into their geometry. The
Amari-Chentsov tensor together with divergences, offers a comprehensive framework for
studying both, the statistical and geometric, properties of probability distributions, bridging
the gap between statistical inference and geometry. The relationship between divergence,
dual structure, and the Amari-Chentsov tensor lies at the heart of information geometry.

The aim of this manuscript is to provide an introduction to the field of information geometry,
relating the probabilistic framework with tools from differential geometry. Along the way,
several key concepts will be introduced, and some recent applications will be discussed.

Organization of the paper: Section geometrical setting, is a brief summary of the ex-
plicit description of the Riemannian geometry used in the manuscript, including the main
geometric notion of affine connection and the special case of Levi-Civita connection for
Riemannian metrics. Section statistical model and its structure, contains the main notions
of the geometry of statistical model, including the Fisher metric, exponential and mixture
families and torsion-free dual connections with explicit examples. In section geometric
concepts for information geometry, we abstract the notion of statistical model to any Rie-
mannian manifold summarizing classical results. In particular, we present new proofs for
already known facts on information geometry (Theorem 0.19 and Theorem 0.26) avoiding
the use of Christoffel symbols (which are the usual proofs in the literature) and include key
relations between nearly-statistical and dual structures and also solitons in geometry (see
Lemma 0.33, Proposition 0.34 and Proposition0.35). We close this section by giving new
results in isostatistical inmersion in Proposition 0.37. Section applications deals with some
recent applications of the previous geometrical construction on statistical manifolds, in par-
ticular we present relation with Bayes’ theorem, Monte Carlo method, student t-distribution,
MLE (maximum likelihood estimation) and clustering patterns

Geometrical setting

Let us begin by presenting some basic concepts of Riemannian manifolds. We refer the
reader to (Jost & Jost, 2008) for a more detailed description.

A manifold M of dimension n is a connected paracompact Hausdorff space for which every
point x ∈ M has a neighborhood Ux that is homeomorphic to an open subset Ωx of Rn. Such
a homeomorphism φx : Ux → Ωx is called a coordinate chart. If for two charts the function
φx ◦φ−1

y : Ωy → Ωx is a Cr-diffeomorphism we say that the manifold has a Cr-differentiable
structure. The collection {(Ux,φx)} is called differentiable structure or smooth structure for
M. We denote TxM to the vector space which consists of all tangent vectors to curves in
M on the point x. It is called the tangent space of M at the point x. The disjoint union of
all tangent spaces, T M = ⊔x∈MTxM is known as tangent bundle and is also equipped with
differentiable structure. In this way, we can construct smooth functions X : M → T M so that
X(m) ∈ TmM which are known as vector fields, and the space of vector fields (or sections of
T M) is denoted by Γ(T M). By construction, tangent vectors (with fixed m ∈ M) can also
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be seen as linear function Xm : C∞(M)→ R satisfying Leibniz rule, in other words they are
derivations of the algebra C∞(M). When we do not fix points in M, i.e we have a vector
field, we get X : C∞(M)→C∞(M) linear and satisfying a Leibniz rule, again is a derivation,
but in addition we have a natural operation [X ,Y ] := X ◦Y −Y ◦X , named Lie bracket.

A Riemannian metric on a differentiable manifold M is given by an inner product g on each
tangent space TxM which depends smoothly on the base point x. A Riemannian manifold
is a differentiable manifold equipped with a Riemannian metric. In any system of local
coordinates (x1, . . . ,xn) from coordinates charts, the Riemannian metric is represented by a
positive definite, symmetric matrix (gi j(x))1≤i, j≤n where the coefficients depend smoothly
on x.

Let γ : [a,b]→ M be a smooth curve. The length of γ is defined as:

L(γ) =
∫ b

a
∥γ ′(t)∥dt,

where the norm of the tangent vector γ ′ is given by the Riemannian metric as ∥γ ′(t)∥2 =
gγ(t)(γ ′(t),γ ′(t)). This value is invariant under re-parametrization of the curve. Taking the
infimum of the values L(γ) among all the curves γ joining two points p,q ∈ M we can define
a distance function on M and the topology of this distance coincides with the topology of
the manifold structure of M.

The metric tensor g also allows us to define a natural differential operation on vector fields
that extends the notion of directional derivatives in the Euclidean case. This is known
as Levi-Civita connection ∇(0) : Γ(T M)×Γ(T M) → Γ(T M) that is R-bilinear but for the
algebra of C∞(M) it is tensorial in the first variable and satisfies Leibniz rule for the second
variable, i.e.,

∇(0)
f XY = f ∇(0)

X Y and ∇(0)
X fY = (X f )Y + f ∇(0)

X Y,

where f ∈ C∞(M). A fundamental theorem of Riemannian geometry states that this is the
unique connection that is torsion free and metric, that is:

∇(0)
X Y −∇(0)

Y X = [X ,Y ] and Zg(X ,Y ) = g(∇(0)
Z X ,Y )+g(X ,∇(0)

Z Y ),

for any three vector fields X ,Y,Z in M, and [·, ·] is the commutator of vector fields as first-
order differential operator, i.e., [X ,Y ] = X ◦Y −Y ◦X .

Remark 0.1. Levi-civita connection is a particular class of affine connection over a man-
ifold M. An affine connection is a R-linear map ∇ : Γ(T M)×Γ(T M)→ Γ(T M) so that for
all smooth function f and any pair of vector field X ,Y it holds:

∇ f XY = f ∇XY and ∇X fY = (X f )Y + f ∇XY. (1)

Affine connections are the natural extension of directional derivative when we change the
metric on the configuration space. This structure can also be extended to any vector bundle
in order to define a right notion of directional derivative. In addition, this is the geometric
notion suitable to define the curvature (as Riemann tensor and scalar curvature) that are
also used in the Einstein field equation in cosmology

R(X ,Y ) = ∇X ∇Y −∇Y ∇X −∇[X ,Y ]

Rs(X ,Y ) =
g(R(X ,Y )Y,X)

g(X ,X)g(Y,Y )−g(X ,Y )2 ,

This operation also can be used for the tangent of a curve (also interpreted as the vector field
along a curve) and gives us the following situation: given a smooth curve γ : (a,b) → M,
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the curve is called geodesic if it satisfies ∇γ ′γ ′ = 0. In a local coordinates (x1, . . . ,xm), the
geodesics can be written for each i = 1, . . . ,m as the second-order ODE:

x′′i (t)+∑
j,k

Γi
jk(γ(t))x

′
j(t)x

′
k(t) = 0,

where the functions Γi
jk are known as the Christoffel symbols of ∇.

Theorem 0.2. (Jost & Jost, 2008, Theorem 1.4.2) Let M be a Riemannian manifold, x ∈ M
and v ∈ TxM. Then there exist ε > 0 and precisely one geodesic c : [0,ε]→ M with c(0) =
x,c′(0) = v. In addition, c depends smoothly on x and v.

Statistical model and its structure

The purpose of this section is to define the statistical model and its structure, based on dif-
ferential manifolds whose points are probability distributions. First, we construct manifolds
as finite sets of signed measurements, which statistically correspond to the sample space of
any particular event. Second, we define the Fisher metric on tangent vectors of the manifold
as an inner product. Considering the above, we define a statistical model and special classes
of families to study its geometric structure. For more details, associated concepts, and ap-
plication we refer to (Amari & Nagaoka, 2000) and (Ay, Jost, Vân Lê, & Schwachhöfer,
2017) and reference therein.

0.1 Finite sample space

From a particular geometrical perspective (Ay et al., 2017), we will determine the probabil-
ity space for finite sample spaces, i.e., Ω = I where I = {1,2, ...,n}. From linear algebra, it
is known that S(I) is a vector space (as the space of real-valued function from I, and with
dual space S(I)∗), that can be identified with the linear forms µ : S(I)∗ −→ R, which in
canonical dual basis {δ 1, · · ·δ n}, is written as:

µ = ∑
i∈I

µiδ i, (2)

where each element δ i is the dual covector, that is δ i( j) = δi j. Indeed, the election of this
basis allows us to define the identification (as smooth manifold) ψ : S(I) −→ Rn by the
coordinate map:

ψ(µ) = ψ(∑
i∈I

µiδ i) = (µ1, · · · ,µn). (3)

In other words, this is the coordinate function of S(I) which endows a differentiable struc-
ture for S(I) with local model Rn.

A first goal is to endow with a geometry the space of probability. Let us begin with the open
submanifold M (I) of S(I), as the positive measures on I:

M+(I) := {µ ∈ S(I) : µi > 0,∀i ∈ I}, (4)

whose topological closure is given by the non-negative measures:

M (I) := {µ ∈ S(I) : µi ≥ 0,∀i ∈ I}, (5)

as manifold with corners. Now consider the map φ : S(I) −→ R (defined by φ(µ) =
∑n

i=1 µi), from the regular value theorem we get the submanifold

P+(I) := M+(I)∩φ−1(1) = {µ ∈ P(I) : µi > 0,∀i ∈ I,∑
i∈I

µi = 1}, (6)

4
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as level set on the open submanifold M+(I). And also, we have the closure of P+(I), as:

P(I) := {µ ∈ M (I) : µi ≥ 0,∀i ∈ I,∑
i∈I

µi = 1}. (7)

It worth to mention that, as φ−1(1) is a level set, then P+(I) decrease in 1 the dimension
of M+(I).

Example 0.3. For the set of natural numbers I = {1, · · · ,n,n+1} let us consider:

U := {x = (x1, · · · ,xn) ∈ Rn : xi > 0,∀i ∈ I,
n

∑
i=1

xi < 1}, (8)

and the application ϕ(x) : U −→ P+(I), by:

ϕ(x) =
n

∑
i=1

xiδ i +(1−
n

∑
i=1

xi)δ n+1, (9)

that defines the smooth structure for P+(I), and gives us explicit coordinates system. ⋄

0.2 Fisher metric and statistical model

We want to introduce an inner product that considers the point-wise data in M+(I). This
idea will be promoted to a metric on the whole manifold M+(I). For this, we will begin
with an inner product that will depend on each element µ of the set of positive measures on
I. Let us fix µ ∈ M+(I) and define the inner product ⟨·, ·⟩µ on S(I)∗ as follows:

⟨ f ,g⟩µ = µ · ( f g) =
n

∑
i=1

µi figi (10)

for any f ,g ∈ S(I)∗.

It is well known that S(I) and S(I)∗ are canonical isomorphic, but we also can obtain a
family of isomorphisms parametrized by M+(I). Just note that when consider the basis
{ei} and {δ i} on S(I)∗ and S(I) respectively, the element µ ∈ M+(I) (with representation
µ = ∑i∈I µiδ i) induces an isomorphism between S(I)and S(I)∗ by da

dµ := ∑i∈I
ai
µi

ei in S(I)∗.
Thus, we rewrite the relation (10) in S(I) by:

⟨a,b⟩µ = ⟨ da
dµ

,
db
dµ

⟩µ = ∑
i

1
µi

aibi (11)

with a,b ∈ S(I).
In order to promote the inner product ( 11) to a Riemannian metric on M+(I) we first define
its tangent space. It is a straightforward computation to verify that tangent space of a vector
space (seen as a manifold) is again the same vector space. In our scenario, we get the
following:

Tµ S(I) � {µ}×S(I), and TµM+(I) � {µ}×S(I). (12)

Definition 0.4. (Ay et al., 2017, Definition 2.1) The Fisher metric (or metric tensor g) on
M+(I) is defined on each µ ∈ M+(I) by gµ : TµM+(I)×TµM+(I) −→ R such that, for
two tangent vectors A ∼ (µ,a),B ∼ (µ,b) ∈ TµM+(I)

gµ(A,B) := ⟨a,b⟩µ . (13)

A statistical model for a n-dimensional manifold M is a pair (g, p), with g a Riemannian
metric in M and an embedding p : M → M+(I) (ξ ∈ M → p(ξ ) = ∑i∈I pi(ξ )δ i), such that
the pull-back of the Fisher metric coincides with g, i.e. for X ,Y ∈ Tξ M

gξ (X ,Y ) = gp(ξ )(d pξ X ,d pξY ). (14)
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The main example of statistical model is the space M = P+(I) with the natural embedding
on M+(I).

In particular, if this manifold is composed of points of probability, it gives rise in statistics to
Fisher information matrix. To illustrate the above, we take the manifold P+(I) of example
0.3, obtaining the respective information matrix associated with Fisher metric:

Example 0.5. Consider the coordinate system 9 of P+(I). The coefficients of the informa-
tion matrix associated with Fisher’s metric are given by:

gi j(µ) =
n

∑
k=1

1
µk

δkiδk j +
1

µn+1
=


1
µi
+ 1

µn+1
si i=j

1
µn+1

in another case
(15)

Explicitly we have:

G(µ) := (gi j(µ)) =
1

µn+1




µn+1
µ1

+1 1 . . . 1
1 µn+1

µ2
+1 . . . 1

...
...

. . .
...

1 1 . . .
µn+1

µn
+1




The inverse matrix of G(µ) is the probability covariance matrix of µ , each element i ∈
{1, . . .n} has a probability µi, the coefficients are:

gi j(µ) =


µi(1−µi) si i=j
−µiµ j in another case

In statistics, the diagonal of the matrix G−1(µ), are the values of the variances of the vari-
ables and the remaining coefficients give the value of the correlation between the variables.
In fact, this is the statistical origin of the Fisher metric as a covariance matrix (Rao, 1992).⋄

Example 0.6. In the case of I = {1,2}, the space P+(I) is the positive part of the plane
x+ y+ z = 1. For convenience of the reader, we choose two points ν = (1/3,1/3,1/3)
and µ = (0.12,0.08,0.80) for which the Figure 1. shows the centered balls (for the Fisher
metric) with the same radio in P+(I).

Figura 1. Balls in Fisher metric centered at ν and µ with same radii.

It is worth to note that the meaning of the size of the ball is the quantity of information at
each point. To clarify this claim, note that the third coordinate in µ is close to 1, the other
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two coordinates must be closed to 0, but for ν this data is homogeneous. For this reason
the ball centered at µ will have more restriction that the one centered at ν , i.e, we get more
information on µ . ⋄

In order to find the expression of g, it is sufficient to take the canonical directions of tangent
X = ∂ pi

∂ξl
,Y = ∂ pi

∂ξ j
in M+(I), to obtain:

gξ (X ,Y ) = ∑
i∈I

1
pi(ξ )

∂ pi

∂ξl
(ξ )

∂ pi

∂ξ j
(ξ ).

Now, applying the logarithmic derivative the Fisher metric is rewritten as:

gξ (X ,Y ) = ∑
i∈I

pi(ξ )
∂ log pi

∂ξl
(ξ )

∂ log pi

∂ξ j
(ξ ).

This representation of the Fisher metric is more familiar in the standard treatment of infor-
mation geometry, using the definition of expected value:

gξ (X ,Y ) := E[
∂ log pi

∂ξl
(ξ )

∂ log pi

∂ξ j
(ξ )] (16)

Using again the notion of logarithmic derivative but on the statistical model P+(I), we
obtain:

∑
i∈I

pi
∂ log pi

∂ξl
= ∑

i∈I

∂ pi

∂ξl
=

∂
∂ξl

∑
i∈I

pi =
∂

∂ξl
1 = 0,

which implies

0 =
∂

∂ξl
E[

∂
∂ξ j

log pi] = ∑
i

∂
∂ξl

(pi
∂

∂ξ j
log pi) = ∑

i
((

∂
∂ξl

pi)
∂

∂ξ j
log pi)+(pi

∂
∂ξl

∂
∂ξ j

log pi)

= ∑
i
(pi(

∂ log pi

∂ξl
)

∂ log pi

∂ξ j
)+(pi

∂
∂ξl

∂
∂ξ j

log pi) = gξ (X ,Y )+∑(pi
∂

∂ξl

∂
∂ξ j

log pi).

Finally, this yields another equivalent way to define the Fisher metric on P+(I):

gξ (X ,Y ) :=−E[
∂ 2 log pi

∂ξl∂ξ j
(ξ )]. (17)

Remark 0.7. Everything that has been done so far with finite I can be extended in a similar
way to measurable spaces equipped with probability measures, where I is not necessarily
finite but is endowed with a σ -algebra and forms a measurable space. A more detailed
treatment of this theory can be found in reference (Ay et al., 2017, Section 3.2.1), however
we will give a brief introduction to an equivalent way to tackle this situation in Section 0.3.
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In order to apply the formulae for the Fisher metric (20) in this case with, we should note
that

lnN (x; µ,σ) =− (x−µ)2

2σ2 − 1
2

ln(2πσ2).

When we take partial derivatives and integration with respect to the distribution we obtain

g(µ,σ) =

( 1
σ2 0
0 2

σ2

)
. (19)

For a detailed computation for this metric, we refer to (Garatejo Escobar, 2024, section
1.3). ⋄

Note that, the previous example says that the statistical model for normal distribution iden-
tifies isometrically with the hyperbolic space:

(H := {(µ,σ) : µ ∈ R,σ > 0}, dµ2 +2dσ2

σ2 ).

A remarkable geometrical consequence of this identification lies in the distance-minimizing
curves in this geometry. Although, in the usual euclidean space the minimizing distance
between two normal distributions is a segment of a line in the plane, the Fisher metric is
not. Indeed, a geodesic is a section of a semicircle because these are the geodesic in the
hyperbolic plane, as shown in Figure 2:

Figura 2. Shortest path between the normal distributions p = N (−0.75,0.5) and
q = N (1.25,0.5) in the Fisher metric .

0.3 Statistical models: another way to understand them

For this brief section, we will adopt the introduction given in (Amari & Nagaoka, 2000)
for the space of probability distribution and its adaptation to finite positive measures. This
approach has the advantage that it it also works on non-finite sample space.

Let us begin with a σ -algebra on a manifold Ω and M+(Ω,Θ) as the space of finite positive
measures on Ω parametrized by an open set Θ ⊂ RN . Indeed, we will assume that the
parametrization p(x, ·) of finite positive measure on Ω can be identified with a point in Θ in
such a way that the assignment x → p(x, ·) is smooth. In this case, the space of probability
measures can be seen as P+(Ω,Θ) := {µ ∈ M+(Ω,Θ) :

∫
Ω µ = 1} which is a 1 corank

submanifold of M+(Ω,Θ). In the space M+(Ω,Θ), we define the Fisher metric tensor as

gξ (X ,Y ) =
∫

Ω
p(·,ξ )X(log p(·,ξ ))Y (∂ log p(·,ξ )),

for each pair of tangent vectors X ,Y at ξ ∈ M+(Ω,Θ) where are seen as derivation of real
functions.
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An again, we can use the definition 0.4 for a statistical model p : M → M+(Ω,Θ) for a
n-dimensional manifold M.

Example 0.9. By a similar computation as in equation (16), but for the general case of
M = P+(Ω,Θ) with the natural embedding, the Fisher metric takes the following form

gξ (X ,Y ) :=−E[
∂ 2 log pi

∂ξl∂ξ j
(ξ )]. (20)

⋄

Example 0.10. The following examples show some specific probability distributions in
terms of statistical model, for which there is possible to use (20) to compute the Fisher
metric.

• Normal Distribution: x ∈ R, Θ = {(µ1,µ2)|−∞ < µ1 < ∞,0 < µ2 < ∞}

p(x;Θ) =
1√

2πµ2
exp

[
− (x−µ1)

2

2µ2
2

]
(21)

The matrix associated with the Fisher metric is Garatejo Escobar, 2024, section 
1.3:

G(µ1,µ2) =

( 1
µ2

2
0

0 2
µ2

2

)
. (22)

• Multivariate Normal Distribution: x∈Rk, with k> 1, Θ= {(µ, µ̄)|µ ∈Rk, µ̄ ∈Rk×k :
positive de f inite}

p(x;Θ) = (2π)
−k
2 (det(µ̄))

−1
2 exp{−1

2
(x−µ)t µ̄−1(x−µ)}

⋄

0.4 Cramer-Rao inequality

The Cramér–Rao theorem is a fundamental result in statistical estimation theory that pro-
vides a lower bound on the variance of unbiased estimators. Specifically, it states that un-
der regularity conditions, the variance of any unbiased estimator of a parameter cannot be
smaller than the reciprocal of the Fisher information. An estimator is a map: ξ̂ : Ω −→ Θ,
that associates to every data x ∈ Ω a probability distribution. We say that ξ̂ is an unbiased
estimator if: Eξ [ξ̂ (x)] = ξ for ∀ξ ∈ Θ.

The mean squared error of an unbiased estimator ξ̂ may be expressed as the variance-
covariance matrix Vξ [ξ̂ ] = [vi j

ξ ] where:

vi j
ξ := Eξ [(ξ̂ i(x)−ξ i)(ξ̂ j(x)−ξ j]

Theorem 0.11 (Cramér-Rao inequality). (Amari & Nagaoka, 2000, Theorem 2.2) The
variance-covariance matrix Vξ [ξ̂ ] of an unbiased estimator ξ̂ satisfies

Vξ [ξ̂ ]≥ g−1
ξ (23)

in the sense that Vξ [ξ̂ ]−g−1
ξ is positive semidefinite.

An unbiased estimator ξ̂ that achieves the equality Vξ [ξ̂ ] = g−1
ξ for all ξ is called an efficient

estimator.
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Exponential and mixture families in geometry

In probability and statistics, exponential families and mixture families are two fundamental
classes of probability distributions with rich geometric and statistical structures. Exponen-
tial families are important because they admit efficient statistical inference, possess con-
jugate priors in Bayesian analysis. In contrast, mixture families arise when distributions
are combined using convex combinations. Together, exponential and mixture families pro-
vide the core of information geometry in the for of dually flat geometry enabling a deep
geometric understanding of statistical models and inference.

Definition 0.12. (Ay et al., 2017, Definition 3.1) An exponential family is a family of prob-
ability distributions p(·;ϑ) with embedding p : M → P+(Ω,Θ), of the form:

p(x;ϑ) = exp[γ(x)+
n

∑
i=1

fi(x)ϑ i −ψ(ϑ)], (24)

where, x is a real random variable, ϑ = (ϑ 1, . . . ,ϑ n) is a n-dimensional parameter with
function γ(x), f1(x), . . . fn(x) and ψ(ϑ), under the normalized condition

∫
M p(x;ϑ)dx = 1.

From the defining relation (24) of exponential family, we have log p(x;ϑ)= γ(x)+∑n
i=1 fi(x)ϑ i−

ψ(ϑ), which gives us:
∂ 2 log p(x;ϑ)

∂ϑ i∂ϑ j =− ∂ 2

∂ϑ i∂ϑ j ψ(ϑ).

As the right hand side is independent of the variable x, we get that:

−
∫

M

∂ 2 log p(x;ϑ)

∂ϑ i∂ϑ j p(x;ϑ)dx =
∂ 2

∂ϑ i∂ϑ j ψ(ϑ)
∫

M
p(x;ϑ)dx,

which finally gives us an equivalent version of (20) as:

gi j(p) =−E
[∂ 2 log p(x;ϑ)

∂ϑ i∂ϑ j

]
=

∂ 2

∂ϑ i∂ϑ j ψ(ϑ), (25)

thus, the function ψ(ϑ) = log
∫

exp[γ(x) + ∑n
i=1 fi(x)ϑ i]dx allows us to give an explicit

expression for the components of the information matrix associated to the Fisher metric.
Therefore, the exponential family is a statistical model whose Fisher metric is defined by
the coefficients in (25). The example 0.8 can be revisited in terms of the exponential family
as follows:

Example 0.13. Rewriting the expression (18), we get:

N (x; µ,σ2)= exp(ln(
1√

2πσ2
))exp(−x2 −2µx+µ2

2σ2 )= exp(
µx
σ2 −

x2

2σ2 −
µ2

2σ2 −ln(
√

2πσ2)),

and use a new inner product to obtain

N (x; µ,σ2) = exp((x,x2) · ( µ
σ2 ,−

1
2σ2 )−

µ2

2σ2 − 1
2

ln(2πσ2)), (26)

expressed in new variables with the following change of variables ϑ 1 = µ
σ2 and ϑ 2 =− 1

2σ2 .
The normal distribution takes the form (24) with parameters ϑ = (ϑ 1,ϑ 2) and we note that
µ2

2σ2 =− (ϑ 1)2

4ϑ 2 y σ2 =− 1
2ϑ 2 , which directly implies that:
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N (x;ϑ 1,ϑ 2) = exp
(
(x,x2) · (ϑ 1,ϑ 2)−

(
− (ϑ 1)2

4ϑ 2 +
1
2

ln(π)− 1
2

ln(−ϑ 2)
))

,

where the function ψ(ϑ) is:

ψ(ϑ) =− (ϑ 1)2

4ϑ 2 +
1
2

ln(π)− 1
2

ln(−ϑ 2).

According to (25), the components of the Fisher information matrix for the exponential
family are calculated with the second partial derivatives in each parameter of ψ(ϑ) yielding
again (19). ⋄

Definition 0.14. (Ay et al., 2017, section 4.2) An mixture family is a family of probability
distributions p(·;η) with embedding p : M → P+(Ω,Θ), of the form:

p(x;η) = c(x)+
d

∑
i=1

hi(x)ηi, (27)

where x is a real random variable, η = η1, . . . ,ηd is a parameter d-dimensional, c(x) y
h1(x), . . . ,hd(x) are integrable functions under normalization property

∫
M c(x)dx = 1 and∫

M hi(x)dx = 0

From the expression (27) we have ∂ 2

∂ηi∂η j
log p(x;η)=− hi(x)h j(x)

[p(x;η)]2
, which yields (cf. (Nielsen,

2020, expression (94))):

gi j(p) =
∫

M

hi(x)h j(x)
p(x;η)

dx, (28)

which corresponds to the coefficients of the matrix associated with the Fisher metric.

An example of probability distribution grouped in this family, is the collection of probability
functions for a finite sample, as was presented in the example 0.3 and coefficients in (15).

0.5 Geometric notions associated to exponential and mixture families

Once we fix these two families, we proceed to obtain more geometrical data. One of the
possible geometrical notions, we can apply is the parallel transport. This construction is
based on the exposition in (Ay et al., 2017, section 2.4). Let µ and ν be two points in
M+(Ω,Θ), and A ∼ (µ,a) in TµM+(Ω,Θ) a tangent vector. Denote Π(e)

µ,ν as a parallel
transport in TM+(Ω,Θ) with coordinate system (e), given by:

Π(e)
µ,ν : TµM+(Ω,Θ)−→ TνM+(Ω,Θ)

a → (ν ,(φ̃−1
ν ◦ φ̃µ)(a)) = ∑

i
νi

ai

µi
δ i. (29)

Denote Π(m)
µ,ν as a parallel transport in TM+(Ω,Θ) with coordinate system (m), given by:

Π(m)
µ,ν : TµM+(Ω,Θ)−→ TνM+(Ω,Θ)

a −→ ∑
i

aiδ i = a. (30)

The remarkable behavior of metric concerning parallel transport in A∼ (µ,a) and B∼ (ν ,b)
is:

gν(Π
(e)
µ,ν A,Π(m)

µ,ν B) = ∑
i

1
νi
(νi

ai

µi
)bi = ∑

i

1
µi

aibi = gµ(A,B), (31)
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indicating the invariance of the Fisher metric, for the two parallel transports.

It is a well known fact in differential geometry, that any parallel transport defines an affine
connection which is the global notion associated to derivations, torsion, curvature, and
geodesics. In this case, the parallel transports Π(e)

µ,ν and Π(m)
µ,ν will determine two types

of affine connections, (Ay et al., 2017, Proposition 2.4) as follows: given a curve γ :
(−ε,ε)−→M+(Ω,Θ) with γ(0) = µ and γ̇(0) = A, we define affine e-connection ∇̃(e)

A B|µ
in M+(Ω,Θ) as:

∇̃(e)
A B|µ = lim

t→0

1
t
(Π(e)

γ(t),µ(Bγ(t))−B) ∈ TµM+(Ω,Θ),

applying (29) on B = ∑i bµ,iδ i, we rewrite:

∇̃(e)
A B|µ = (µ, lim

t→0

1
t
(∑

i
µi

bγ(t),i

γi(t)
δ i −∑

i
bµ,iδ i))

= (µ,∑
i

µi{
∂bi
∂aµ

(µ)γi(t)−bγ(t),iγ̇i(t)

γ2(t)
}t=0δ i),

evaluating at t = 0, with γi(0) = µi y γ̇i(0) = aµ,i:

∇̃(e)
A B|µ =(µ,∑

i
µi{

∂bi
∂aµ

(µ)γi(0)−bγ(0),iγ̇i(0)

γ2(0)
}δ i)

=(µ,∑
i

∂bi

∂aµ
(µ)δ i −∑

i

1
µi

bµ,iaµ,iδ i),

by expressions (2) y (13), we have:

∇̃(e)
A B|µ =(µ,

∂b
∂aµ

(µ)−µ(
daµ

dµ
·

dbµ

dµ
)) = (µ,

∂b
∂aµ

(µ)−gµ(A,B)). (32)

Similarly for a curve γ : (−ε,ε) −→ M+(Ω,Θ), γ(0) = µ and γ̇(0) = A, we define affine
m-connection ∇̃(m)

A B|µ as:

∇̃(m)
A B|µ = lim

t→0

1
t
(Π(m)

γ(t),µ(Bγ(t))−B) ∈ TµM+(Ω,Θ),

also, by (30) in the previous relation, we get:

∇̃(m)
A B|µ = (µ, lim

t→0

1
t
(∑

i
bγ(t),iδ i −∑

i
bµ,iδ i)) = (µ,

∂b
∂aµ

(µ)), (33)

as we have that the main model for information geometry is the space of probability mea-
sures P+(Ω,Θ) with the induced Fisher metric, we must consider connection on P+(Ω,Θ).
For this, we need to project the connections on the tangent space of probability measure as
follows:

∇(m)
A B = ∇̃(m)

A B, (34)

∇(e)
A B = (µ,∑

i

∂bi

∂aµ
(µ)δ i −∑

i

1
µi

bµ,iaµ,iδ i +∑
i

gµ(Aµ ,Bµ)µiδi), (35)
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where the first projection is the same because ∇̃(m) belong to TP+(Ω,Θ) whenever it is
evaluated in vector fields of P+(Ω,Θ), while the second connection must be projected
with the extra term, ∑i gµ(Aµ ,Bµ)µiδi. A direct consequence of this definition is that:

Agµ(B,C) = gµ(∇
(m)
A B,C)+gµ(B,∇

(e)
A C),

for A =
∂

∂ µk
,B =

∂
∂ µl

,C =
∂

∂ µs
in P+(Ω,Θ). This relation allows us to prove the follow-

ing property along vector fields

Proposition 0.15. The connections ∇(m) and ∇(e) satisfy the condition:

Agµ(B,C) = gµ(∇
(m)
A B,C)+gµ(B,∇

(e)
A C),

for any A,B,C vector field in P+(Ω,Θ). In addition, ∇(m) and ∇(e) are torsion-free.

A proof can be found in (Calin & Udrişte, 2014, Proposition 1.10.4), but for convenience
of the reader we give a coordinate free proof of the claim,

Proof. For the first claim, we just note that we have proved for a basis of local vector fields.

Now, we will use the fact on A =
∂

∂ µk
,B =

∂
∂ µl

,C =
∂

∂ µs
and extend (via Leibniz rule

for the connections and the vector fields) as C∞(P+(Ω,Θ))-module. For this, consider b a
smooth function in P+(Ω,Θ), and we will prove the relation for bA as follows:

b(Agµ(B,C)) = gµ(b∇(m)
A B,C)+gµ(B,b∇(e)

A C) = gµ(∇
(m)
bA B,C)+gµ(B,∇

(e)
bAC);

and in a similar way we will prove for bB:

Agµ(bB,C) = A(bgµ(B,C)) = (Ab)gµ(B,C)+bAgµ(B,C)

= (Ab)gµ(B,C)+b(gµ(∇
(m)
A B,C)+gµ(B,∇

(e)
A C))

= gµ((Ab)B+b∇(m)
A B,C)+gµ(bB,∇(e)

A C)

= gµ(∇
(m)
A bB,C)+gµ(bB,∇(e)

A C),

yielding the desired result. For bC, the verification is the same as for bB. Finally, extend the
relation linearly and the relation holds.

For the second claim, recall that the torsion of a connection is the tensor determined by
∇AB−∇BA− [A,B], so we must verify that ∇AB−∇BA = [A,B], for m-connection and e-
connection. From the defining relation (34), we just note that for any vector fields A =

∑i ai ∂
∂ei y B = ∑ j b j ∂

∂e j , we get:

∇(m)
A B−∇(m)

B A = ∑
i, j

ai ∂b j

∂ei −b j ∂ai

∂e j ,

which is the same as [A,B]. Similarly for the relation in (35), then we get torsion free in
both cases. □

Remark 0.16. The previous fact is a well known fact and a key starting point on the theory
of information geometry these connections. A proof can be found in (Calin & Udrişte, 2014,
Proposition 1.10.4). All the proofs known in the literature use Christhoffel symbols, but our
proof avoids this geometrical notion and shows that depends only on the local direction
because the identity Agµ(B,C) = gµ(∇

(m)
A B,C)+gµ(B,∇

(e)
A C) is tensorial.
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Geometric concepts for information geometry

Motivated by the geometry on statistical models, the Fisher metric and dual connections,
we will define statistical manifolds as an abstraction of this structures for any Riemannian
manifold. The main goal of this section is to present the difference between statistical
model and statistical manifold. The technique we will use is to endow those manifolds with
a particular geometric structure and verify that such structures coincide with the statistical
model.

0.6 Statistical models and dual structure

This section takes as reference (Amari & Nagaoka, 2000, section 3.1) and (Ay et al., 2017,
section 4.2) to study the dual structure and the notion of torsion-free connections for any
Riemannian manifold extending the notion of statistical models previously defined.

Definition 0.17. Two affine connections ∇(1) and ∇(−1) on a Riemannian manifold (M,g)
are called dual connection if for any three vector fields they satisfy:

Zg(X ,Y ) := g(∇(1)
Z X ,Y )+g(X ,∇(−1)

Z Y ). (36)

In this case, the triple (g,∇(1),∇(−1)) is called dual structure on M.

Recall that the torsion of an affine connection ∇ is Tor(X ,Y ) = ∇XY −∇Y X − [X ,y], and
is called torsion-free if Tor(X ,Y ) = 0. A Riemannian manifold (M,g) is called statistical
manifold if it is endowed with a pair of torsion-free dual connections (∇(1),∇(−1)).

Lemma 0.18. Let (M,g) be a Riemannian manifold and ∇(1) an affine connection, then
there exists a unique dual connection ∇(1) with respect to g.

Proof. The existence of ∇(−1) is a direct consequence of the identity (36) defining the dual
connection. Now, consider ∇̄ and ∇(−1) dual connections to ∇(1) with respect to (M,g), that
is, for all tangent vectors X ,Y,Z in M, we have:

g(X ,Y ) = g(∇(1)ZX ,Y )+g(X , ∇̄ZY )

Zg(X ,Y ) = g(∇(1)ZX ,Y )+g(X ,∇(−1)ZY );

in particular we get 0 = g(X ,(∇̄−∇(−1))ZY ), which finally yields ∇̄ = ∇(−1). Both conclu-
sions depend on the non-degeneracy of the metric tensor g. □

We will present a summary of well known facts of geometry of dual connections, but we
state them in a general version and give coordinate-free proofs that are not available in the
literature.

Theorem 0.19. Let (M,g) be a Riemannian manifold, and (∇(1),∇(−1)) any two connec-
tions in M.

1. (∇(1),∇(−1)) is dual structure if and only if (α∇(1)+β∇(−1),β∇(1)+α∇(−1)) is dual
structure for any combination such that α +β = 1.

2. (∇(1),∇(−1)) are torsion-free if and only if (α∇(1) + β∇(−1),β∇(1) +α∇(−1)) are
torsion-free for any combination such that α +β = 1,

3. If (∇(1),∇(−1)) are dual and torsion free, then 2∇(0) = ∇(1) +∇(−1),

4. whenever 2∇(0) = ∇(1) +∇(−1), then ∇(1) is torsion free if and only if ∇(−1) is also
torsion free.
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Proof. Before we give the proofs of each item, we must remark that any R-linear combina-
tion of affine connection is again affine connection, just because all the defining conditions
(as in Remark ?) are preserved by linearity.
Proof of (1):First assume that (∇(1),∇(−1)) are dual structures, then by linearity of the met-
ric we get

g = ((α∇(1) +β∇(−1))XY,Z)+g(Y,(β∇(1) +α∇(−1))X Z)

= α(g(∇(1)
X Y,Z)+g(Y,∇(−1)

X Z))+β (g(∇(−1)
X Y,Z)+g(Y,∇(1)

X Z)) = Xg(Y,Z).

For the other direction, just note that

∇(1) = α̃(α∇(1) +β∇(−1))+ β̃ (β∇(1) +α∇(−1))

∇(−1) = β̃ (α∇(1) +β∇(−1))+ α̃(β∇(1) +α∇(−1)),

with α̃ =
α

α −β
and β̃ =

−β
α −β

. Note that we also have that α̃ + β̃ = 1, and the results

follow from the previous claim.

Proof of (2): This verification follows the same argument as previous item.

Proof of (3):Just note that for α =
1
2
= β , we get (α∇(1) +β∇(−1),β∇(1) +α∇(−1)) is dual

structure and torsion-free (previous items). Indeed, in this case, we have:

α∇(1) +β∇(−1) = β∇(1) +α∇(−1),

which means that it is self-dual, or in other words it is a metric connection. By fundamental
theorem in Riemannian geometry, we get that α∇(1) + β∇(−1) is the Levi-Civita connec-
tion, and the claim holds.

Proof of (4): An easy verification from the identity 2∇(0) = ∇(1) +∇(−1), leads us to note
that:

∇(1)
X Y −∇(1)

Y X = 2∇(0)
X Y −∇(−1)

X Y − (2∇(0)
Y X −∇(−1)

X Y ) = 2[X ,Y ]− (∇(−1)
X Y −∇(−1)

Y X),

which yields that ∇(1)
X Y −∇(1)

Y X − [X ,Y ] = [X ,Y ]−(∇(−1)
X Y −∇(−1)

Y X), and the claim holds.
□

In what follows, we work only with this type of combination, in particular, we will consider
the family of α-connection, with α ∈ [−1,1], as:

(∇(α) =
1+α

2
∇(1) +

1−α
2

∇(−1),∇(−α) =
1−α

2
∇(1) +

1+α
2

∇(−1)) (37)

or in its equivalent version:

∇(α) = ∇(−1) + (
1+α

2
)(∇(1)−∇(−1)), ∇(−α) = ∇(1)− (

1+α
2

)(∇(1)−∇(−1)). (38)

As a direct consequence of the previous theorem, we get:

Corollary 0.20. If (g,∇(1),∇(−1)) is a torsion-free dual structure in M, then (g,∇(α),∇(−α))
is also torsion-free dual structure, for any −1 ≤ α ≤ 1. and we get that,

∇(0) =
1
2
(∇(α) +∇(−α)). (39)
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Example 0.21. Using the notation:

∇(1) := ∇(e) ∇(−1) := ∇(m)

we recall that the statistical model (P+(Ω,Θ),g,∇(−1),∇(1)) is also a statistical mani-
fold. Additionally, the previous definition yields that α-connections are torsion-free and
dual structure. Furthermore, using (32) and (33), applied to B in the direction of A (in
P+(Ω,Θ)) gives local representation as:

∇(α)
A B|µ =

(
µ,∑

i

( ∂bi

∂aµ
(µ)− 1+α

2
gµ(A,B)

)
δ i
)
, ∇(−α)

A B|µ =
(

µ,∑
i

( ∂bi

∂aµ
(µ)− 1−α

2
gµ(A,B)

)
δ i
)
.

(40)

As final remark in this section is that the usual prove of the previous results lie on Christof-
fel symbols for the two dual connections on statistical manifolds, however, we give a
coordinate-free proof of these facts and even in the more general setting of statistical struc-
ture (Ay et al., 2017, cf. Section 4.2).

0.7 Tensor Amari-Chentsov

We now want to measure the difference between two dual structures (∇(1),∇(−1)), in explicit
way we want to compute T = ∇(−1)−∇(1) : X2(M)→ X(M). We can study this difference
by using the metric tensor g, i.e we define the following tensor: or T : X3(M)→C∞(M):

T (X ,Y,Z) = g(∇(−1)
X Y −∇(1)

X Y,Z) = g(T (X ,Y ),Z) (41)

Note the special case of ∇(0) of Levi-Civita connection, this tensor vanishes identically. In
the Literature, T (simialry T ) is known as Amari-Chentsov tensor.

Example 0.22. Observe, ∇(−1)
A B|µ = ∂b

∂aµ
(µ) and ∇(1)

A B|µ = ∂b
∂aµ

(µ)−gµ(A,B), the differ-
ence between them on A ∼ (µ,aµ),B ∼ (µ,bµ) ∈ TµM+(Ω,Θ) is:

T (A,B) := ∇(−1)
A B|µ −∇(1)

A B|µ = gµ(A,B) = ∑
i∈I

1
µi

aibi (42)

Using the Fisher metric with respect to other tangent vector C = (µ,cµ) on µ ∈M+(Ω,Θ),
the relation (41) yields (Ay et al., 2017, section 2.5.1):

Tµ(Aµ ,Bµ ,Cµ) = ∑
i∈I

µi
aµ,i

µi

bµ,i

µi

cµ,i

µi
. (43)

In this way the Amari-Chentsov in M+(Ω,Θ) is:

Tξ = Ep

[ ∂
∂ξi

log p
∂

∂ξ j
log p

∂
∂ξk

log p
]

(44)

Proposition 0.23. (Ay et al., 2017, Theorem 4.1) The Amari-Chentsov tensor T from a
torsion-free dual structure (g,∇(1),∇(−1)) is a symmetric 3-tensor.

We remark that all proof of this claim lies on the Christoffel symbols, but here we will do it
globally.
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We remark that all proof of this claim lies on the Christoffel symbols, but here we will do it
globally.
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X Z)−g(Y,∇(1)
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T (X ,Y,Z) = g(∇(−1)
X Y,Z) = g(([X ,Y ]+∇(−1)

Y X)− ([X ,Y ]+∇(1)
Y X),Z) = T (Y,X ,Z).

These two relations show that T is symmetric on the three components. It remains to verify
that it is tensorial, but this follows directly from the fact that:
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X Y −∇(1)
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f T (X ,Y,Z) = f T (X ,Z,Y ) = T (X ,Z, fY ) = T (X , fY,Z)

and similar for f T (X ,Y,Z) = T ( f X ,Z,Y ). □

Definition 0.24. (Ay et al., 2017, Definition 4.2) A statistical structure on a manifold M
consists of a metric g and a 3-tensor T that is symmetric in all arguments.

Indeed, both structures are the same, as it is showed in the following results. We give
complete and explicit construction to show the dependence on the Levi-Civita connection.

Proposition 0.25. (Ay et al., 2017, Theorem 4.2) Each statistical structure (M,g,T ) induces
a statistical manifold (M,g,∇(1),∇(−1)), i.e dual and torsion-free.

Proof. The idea is to use an auxiliary connection to construct two connections, and condi-
tions from the auxiliary translate to the new ones. Let us denote by ∇̄ an auxiliary connec-
tion and define two new connections:

∇ZX = ∇̄ZX − 1
2
T (Z,X), ∇∗

ZX = ∇̄ZX +
1
2
T (Z,X). (45)

It is a straightforward computation to verify that are R-linear. So it remains to study the
behavior with respect to product with f ∈ C∞(M). We give the proof for ∇ and for ∇∗ the
computation is the same.

∇Z( f X) = ∇̄Z( f X)− 1
2
T (Z, f X) = f (∇̄ZX − 1

2
T (Z,X))+Z( f )X = f ∇ZX +Z( f )X

∇ f Z(X) = ∇̄ f Z(X)− 1
2
T ( f Z,X) = f (∇̄ZX − 1

2
T (Z,X)) = f ∇ZX .

Then, ∇ and ∇∗ are affine connections. Now, we study the torsion tensor of ∇:

∇ZX −∇X Z − [Z,X ] = ∇̄ZX − 1
2
T (Z,X)− (∇̄X Z − 1

2
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= ∇̄ZX − ∇̄X Z − [Z,X ].
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ZX −∇∗

X Z − [Z,X ] =
∇̄ZX − ∇̄X Z− [Z,X ]. Thus, if we impose that ∇̄ is torsion-free, we also have same property
for both ∇ and ∇∗.
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∇(1) := ∇(e) ∇(−1) := ∇(m)

we recall that the statistical model (P+(Ω,Θ),g,∇(−1),∇(1)) is also a statistical mani-
fold. Additionally, the previous definition yields that α-connections are torsion-free and
dual structure. Furthermore, using (32) and (33), applied to B in the direction of A (in
P+(Ω,Θ)) gives local representation as:

∇(α)
A B|µ =

(
µ,∑

i

( ∂bi

∂aµ
(µ)− 1+α

2
gµ(A,B)

)
δ i
)
, ∇(−α)

A B|µ =
(

µ,∑
i

( ∂bi

∂aµ
(µ)− 1−α

2
gµ(A,B)

)
δ i
)
.

(40)

As final remark in this section is that the usual prove of the previous results lie on Christof-
fel symbols for the two dual connections on statistical manifolds, however, we give a
coordinate-free proof of these facts and even in the more general setting of statistical struc-
ture (Ay et al., 2017, cf. Section 4.2).
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X Y −∇(1)

X Y,Z) = g(T (X ,Y ),Z) (41)

Note the special case of ∇(0) of Levi-Civita connection, this tensor vanishes identically. In
the Literature, T (simialry T ) is known as Amari-Chentsov tensor.

Example 0.22. Observe, ∇(−1)
A B|µ = ∂b

∂aµ
(µ) and ∇(1)

A B|µ = ∂b
∂aµ

(µ)−gµ(A,B), the differ-
ence between them on A ∼ (µ,aµ),B ∼ (µ,bµ) ∈ TµM+(Ω,Θ) is:

T (A,B) := ∇(−1)
A B|µ −∇(1)

A B|µ = gµ(A,B) = ∑
i∈I

1
µi

aibi (42)

Using the Fisher metric with respect to other tangent vector C = (µ,cµ) on µ ∈M+(Ω,Θ),
the relation (41) yields (Ay et al., 2017, section 2.5.1):

Tµ(Aµ ,Bµ ,Cµ) = ∑
i∈I

µi
aµ,i

µi

bµ,i

µi

cµ,i

µi
. (43)
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The duality condition follows a similar argument, just by noticing that:

g(∇ZX ,Y )+g(X ,∇∗
ZY ) = [g(∇̄ZX ,Y )− 1

2
T (Z,X ,Y )]+ [g(X , ∇̄ZY )+

1
2

T (Z,Y,X)]

= g(∇̄ZX ,Y )+g(X , ∇̄ZY )− 1
2

T (Z,X ,Y )+
1
2

T (Z,Y,X)

= g(∇̄ZX ,Y )+g(X , ∇̄ZY ).

Therefore, if it is also assumed that ∇̄ is a metric connection, we have:

g(∇ZX ,Y )+g(X ,∇∗
ZY ) = Zg(X ,Y ).

From previous discussion, if we choose ∇̄ as the Levi-Civita connection for (M,g), then the
symmetric tensor T yields (from (45)) (M,g,∇(1) = ∇,∇(−1) = ∇∗) a statistical manifold.

□

Furthermore, these two procedures are inverse of each other, since given the dual structure
(∇,∇∗) regarding the metric g we have T = ∇∗−∇, the statistical structure (g,T ) and this
produces the dual structure, as follows:

∇′ = ∇(0)− 1
2
T =

1
2

∇+
1
2

∇∗ − 1
2
(∇∗ −∇) = ∇

∇′∗ = ∇(0) +
1
2
T =

1
2

∇+
1
2

∇∗+
1
2
(∇∗ −∇) = ∇∗

On the other hand: (g,T ) produces (∇,∇∗) = (∇(0)− 1
2T ,∇(0) + 1

2T ) in turn gives,

T ′ = (∇(0) +
1
2
T )− (∇(0)− 1

2
T ) = T

In conclusion,

Theorem 0.26. For any Riemannian metric (M,g), there is a one-to-one relation between
torsion-free dual structures (statistical manifold) and statistical structure.

0.8 Canonical divergence

A divergence function is a non negative function D : M ×M → R so that D|∆ = 0 and for
any two vector fields X ,Y in M we get X1Y 2D|∆ > 0 where the superscript X1 and Y 2

represent the lifting to M ×{q} and {p}×M respectively. We will say that a divergence
function generates the structure (g,∇(1),∇(−1),T ) if g = g(D), (∇(1) = ∇(D),∇(−1) = ∇(D∗))
and T = T (D) for the following relations:

g(D)(V,W )|p :=−D(V∥W )(p), (46)

g(D)(∇(D)
V W,Z) :=−D(VW∥Z), (47)

g(D)(∇(D∗)
V W,Z) :=−D∗(VW∥Z), with D∗(p,q) = D(q, p), (48)

T D(X ,Y,Z) :=−D(XY∥Z)+D(Z∥XY ). (49)

where we are using the usual notation:
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D(V1 · · ·Vn∥W1 · · ·Wm)(p) := (V1)
1 · · ·(Vn)

1(W1)
2 · · ·(Wm)

2D|∆.

The problem of the existence of a divergence function that generates a statistical manifold
(and also the statistical structure) is already solved by (Amari & Nagaoka, 2000, Amari et
al)., indeed there exist many of such functions. For more details and references we refer to
(Ay et al., 2017, section 4.4).

As a consequence of the isostatistical immersion theorem, we have the following corollary:

Corollary 0.27. (Ay et al., 2017, Corollary 4.5) For any statistical manifold (M,g,T ) we
can find a divergence D of M which defines g and T by the formulas (46)-(49).

A related question is if there exists a natural choice among all of these divergence functions.
The answer comes as canonical divergence, that, in addition to the definition of divergence
must satisfy:

1. D generates the dualistic structure (g,∇(1),∇(−1)),

2. D is one half of the squared Riemannian distance, i.e. 2D(p,q) = d(p,q)2, when the
statistical manifold is self-dual, namely when ∇(1),∇(−1) are equal and coincide with
the Levi–Civita connection,

3. D is the canonical divergence, when (M,g,∇(1),∇(−1)) is dually flat; this is Bregman
divergence.

It was computed that canonical divergence is induced by the geodesics in the following way:
On a manifold M which has the associated connection ∇ concerning the metric g, given a
pair of (closed enough) points q, p ∈ M, there exists a unique curve ∇−geodesic.

γq,p : [0,1]−→ M,

which satisfies γq,p(0) = p y γq,p(1) = q.

Remark 0.28. This is equivalent to saying that for each pair of points q and p there ex-
ists a unique vector X(q, p) ∈ TqM that satisfies expq(X(q, p)) = p where exp denotes the
exponential map associated with ∇.

Theorem 0.29. (Ay et al., 2017, section 4.4.2) Giving an affine connection ∇ and a metric g
on M, it is possible to define the canonical divergence D : M×M →R associated to (g,∇)
as:

D(p∥q) =
∫ 1

0
t∥γ̇p,q(t)∥2dt, (50)

for γ the geodesic with initial point p and ends in q. In similar way, it also defines the dual
canonical divergence as D∗(p∥q) := D(q∥p).

As a direct consequence, for the statistical model, we get:

Corollary 0.30. (Ay et al., 2017, Theorem 4.8) The statistical model (P+(Ω,Θ),g,∇(e),∇(m),T )
coincides with

(P+(Ω,Θ),g(D),∇(D),∇∗(D∗),T (D)).

A particular class of canonical divergence in P+(Ω,Θ) is the KL-divergence which is de-
fined by

DKL(µ∥ν) = ∑
i∈I

µi log
µi

νi
. (51)
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The idea behind the proof is that for a torsion-free dual structure (∇(1),∇(−1)), the formulae
in (50) can be expressed as:

D(p∥q) = Ψ(p)+ϕ(q)−ϑ i(p)ηi(q),

for suitable function Ψ,ϕ,ϑ i and ηi, and verify that this description of D coincides with
equation (51) defining the KL-divergence. For more details we reefeer to (Ay et al., 2017,
Section 4.4.3).

A key property at this point is that the Kullback–Leibler (KL) divergence is closely as-
sociated with many of the geometric concepts arising in information theory (Amari &
Nagaoka, 2000, section 3.2). In particular, the KL divergence between a mixture distri-
bution and its components plays a central role in variational inference and in expectation-
maximization (EM) algorithms for learning latent structures. Moreover, the KL divergence
provides a bridge between global information, as quantified by Shannon entropy, and local
information, as characterized by the Fisher information metric (as divergence in P+) and

DKL(p∥q) = h(p,q)−h(p)

where h(p,q) is the differential cross-entropy of p and q, and h(P) is the marginal differen-
tial entropy of p. See proof in (Ay et al., 2017, section 4.3).

0.9 Hessian geometry

On a usual Riemann manifold, we mean by Hessian of a function the 2-order differential op-
erator given by the differential and the metric tensor. This notion can be promoted to a more
general setting, where we again have second order derivative, i.e the notion of derivation.
As we have seen, this can be realized by a connection ∇ on M. We will say that a Rieman-
nian metric g on a flat manifold (M,∇) is a Hessian metric if for any point x ∈ M, there
exists a local function ϕ (on an open set around x) such that g = ∇dϕ . A Hessian structure
for which there exists a global 1-form α so that g = ∇α , then g is called Koszul type with
respect to ∇. A nice description of such structure is the follwing equivalent statement in
(Shima, 2007)

Proposition 0.31. For a flat torsion free manifold (M,∇) equipped with Riemannian metric
g, the following conditions are equivalent:

1. g is Hessian metric for ∇

2. (∇X g)(Y,Z) = (∇Y g)(X ,Z)

3. g(γXY,Z) = g(Y,γX z) where γXY = ∇(0)
X Y −∇XY

An additional equivalent way, that is far from this notes but it worth to mention, is the
existence of Kähler metric on the tangent bundle T M.

The notion of information geometric Hessian structure, also is generalized as follows:

Definition 0.32. A nearly statistical structure on a manifold M is a pair (h,∇) of a 2-tensor
field h and a connection on M, so that

(∇X h)(Y,Z) = (∇Y h)(X ,Z) (52)

for all X ,Y,Z vector fields on M. The pair (h,∇) with torsion T∇, is a quasi statistical
structure if

d∇h(X ,Y,Z) := (∇X h)(Y,Z)− (∇Y h)(X ,Z)−h(T∇(X ,Y ),Z) (53)

vanishes for all vector fields on M.
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A direct consequence of the definition is the direct relation among the new notions and the
torsion of the connection:

Lemma 0.33. Consider a (0,2) tensor h and a connection ∇, then any two of the following
hypothesis

(a)(h,∇) is nearly statistical (b)(h,∇) is quasi statistical (c)Im(T∇)⊂ Ker(h)

imply the third one. In particular, if h is non-degenerated, then condition (c) can be change
by (c’) torsion-frenees of ∇.

A straighforward computation on a Riemannian manifold (M,g) with dual structure (∇(1),∇(−1))
yields

(∇(1)
X g)(Y,Z) = (∇(1)

Y g)(X ,Z)+TAC(X ,Z,Y )−TAC(Y,Z,X)

(d∇(1)
g)(X ,Y,Z) = TAC(X ,Z,Y )−TAC(Y,Z,X)−g(T∇(1) (X ,Y ),Z).

Therefore, for any statistical structure (i.e torsion-free dual structure or TAC symmetric), the
pair (g,∇(1)) is nearly statistical and quasi statistical structure. On the other direction, we
can verify the following equivalence:

Proposition 0.34. Let (M,g) be a Riemannian manifold with dual structure (∇(1),∇(−1)),
then (g,TAC) is statistical structure if and only if (g,∇(1)) is nearly statistical and TAC(X ,Y, ·)=
TAC(Y,X , ·).

Proof. The proof just follows that

TAC(X ,Y, ·) = TAC(Y,X , ·), and TAC(X , ·,Y ) = TAC(Y, ·,X)

generate the whole symmetries of TAC. □

We conclude this section by showing a closed relation beteween nearly-statistical structures
and other type of geometric structure called almost-tensor solitons in Equation 54:

Proposition 0.35. Let (M,g) a Riemannian manifold with a metric connection ∇ (i.e ∇g =
0) so that

∇·ξ + J = λ Id (54)

ξ is tensor field, J : T M → T M and λ is a smooth function. We get that, (hξ ,∇) is nearly
statistical if and only if

R(X ,Y )ξ + J(T (X ,Y )) = λT (X ,Y )

for any X ,Y vector fields in M.

Proof. From the fact that ∇g = 0, and the definition of torsion and curvature, we have

(∇X hξ )(Y,Z)− (∇Y hξ )(X ,Z) = g((∇[X ,Y ] +R(X ,Y ))ξ +∇[Y,X ]+T (Y,X)ξ ,Z)

= g(R(X ,Y )ξ +λT (Y,X)− J(T (Y,X)),Z)

where the last equality comes from the almost-tensor-soliton. As the relation holds for all
vector field Z, the result is proved. □
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0.10 Immersion

In the previous section, we conclude that there is a one-to-one relation between statistical
structures and statistical manifolds, but both of them are motivated by the statistical model
(P+(I),g). A natural question arises when we want to see any statistical structure as a
statistical model. For this question, we should consider the following notion:

Definition 0.36. (Ay et al., 2017, Definition 4.9) Let h be a smooth application of a statis-
tical manifold (M1,g1,T1) to a statistical manifold (M2,g2,T2). The map h will be called
isostatistical immersion if it is an immersion of M1 into M2 such that g1 = h∗(g2) and
T1 = h∗(T2).

A first result related to this notion is an original extension of the statement in (Ay et al.,
2017, Lemma 4.6) for Fisher metric. It is important to highlight that (Ay et al., 2017,
Lemma 4.6) just prove item a., and in this note we give a proof for the rest of the claims:

Proposition 0.37. Let Ω be a measurable space and pi : Ω × Mi −→ [0,1] measurable
functions with

∫
Ω×Mi

pi(x;ξi)dx = 1 (for i = 1,2), such that h : (M1,g1,T1)−→ (M2,g2,T2)
is an isostatistical immersion between this two statistical structures, then we have:

a. If g1 and g2 are Fischer metrics, then h∗p2(x;ξ2) = p1(x;ξ1).

b. If h∗p2(x;ξ2) = p1(x;ξ1), and g2 is Fisher metric, then g1 it also a Fisher metric.

c. If h∗p2(x;ξ2) = p1(x;ξ1) and T2 is Amari-Chentsov tensor, then T1 is Amari-Chentsov
tensor.

Proof. As we commented before the statement of the proposition, we just prove the second
and third claim:

b. Given h∗p2 = g1, and Fisher metric g2, we have,

g1(V1,V2)=Eh∗p2 [
∂

∂V1
logh∗p2(x;ξ2)

∂
∂V2

logh∗p2(x;ξ2)] =Ep1 [
∂

∂V1
log p1(x;ξ1)

∂
∂V2

log p1(x1;ξ1)],

then g1 is Fisher metric

c. Given h∗T2 = T1 and T1 is Amari-Chentsov tensor.

T1(V1,V2,V3) = Eh∗p2

[ ∂
∂V1

logh∗p2(x;ξ2)
∂

∂V2
logh∗p2(x;ξ2)

∂
∂V3

loghp2(x;ξ2)
]

= Eh∗p1

[ ∂
∂V1

log p1(x;ξ1)
∂

∂V2
log p1(x;ξ1)

∂
∂V3

logh∗p1(x;ξ1)
]

then T1 is Amari-Chentsov tensor.

□

Applications

Here we will give a brief exposition of some applications of the Fisher metric in statistical
theory. The aim of this last section is to open new horizons in the research and use of this
new technique and to join different branches of mathematics and statistics. We give explicits
reference for convenience of the reader.
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The 1-dimensional statistical model

(Ly, Marsman, Verhagen, Grasman, & Wagenmakers, 2017) In the case of Bernoulli
model, we have Ω = {0,1} and p(x,µ) = µx(1−µ)1−x, then from (20) we get

gµ =
1

µ(1−µ)
: R→ R

as metric tensor in one dimension. Despite this seems a simply computation, in Bayesian
probability theory this will have a very nice interpretation. One problem of interest in this
theory is the principle of insufficient reason, this is a rule for assigning prior probabilities
when there is no reason to favor one possibility over another. In particular this suggest to
extend data by a Bernoulli distribution with prior of parameter of interest. After that, the
Bayes’ theorem can be stated as

F(µ|X) =
p(x,µ)F(µ)∫

X p(x,µ)F(µ)dµ
,

where F(µ|X) is knwon as poteriori density of µ and the integral is known as marginal like-
lihood. In some data models, we might not be able to derive such a distribution analytically,
as the integration involved in the marginal likelihood is typically hard to perform. However,
Jeffrey´s rule (Jeffreys, 1946) interpretation in information geometry depends on the fisher
metric along the derivative of ln p, and in the 1-dimensional particular case this can be seen
as

F(µ) =
√gµ∫

Ω
√gµ dµ

for the Fisher metric. For further references on the interpretation of Jeffrey´s rule in in-
formation geometry, we refer to (Li, Sun, & Peng, 2022) and (Snoussi & Mohammad-
Djafari, 2003).

Riemannian Hamiltonian Monte Carlo

(Betancourt, 2013) Hamiltonian Monte Carlo is a powerful Markov Chain Monte Carlo
(MCMC) method for sampling probability distributions. It originates in physics but gains
deep insight in information geometry. HMC augments the original probability space of
interest (say, the posterior distribution π(θ)) by introducing auxiliary momentum variables
p, and simulates dynamics on this phase space using Hamiltonian mechanics where the
main tool are the position and momentum coordinates. The Hamiltonian is typically

H(θ , p) =− ln(π(θ))+
1
2

pT M−1 p,

where M is a mass matrix. The mass matrix M interprets a global decorrelation and the po-
tential (similar to the potential function in classical mechanics) comes as log|M|. The com-
mon Hamiltonian Monte Carlo algorithm considers the measure-preserving underdamped
Langevin process [Stoltz, Rousset] and hamiltonian trajectories are related to geodesic for
the metric on M.

Riemannian Manifold HMC (RMHMC) uses a position-dependent metric, typically related
to the Fisher information matrix or the negative Hessian of the log-posterior. But this intro-
duces a technical challenge: the Hessian may not be positive definite, which is essential for
defining a valid Riemannian metric. A solution comes with the SoftAbs metric (introduced
by Betancourt in 2013) which provides a smooth, positive-definite approximation of the
Hessian using a soft absolute value function applied to the eigenvalues. If the initial metric
has eigenvalues λi, we choose suitable regularizing values α so that the new metric
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X = Qdiagabs(
λi

tanh(αλi)
)QT

is positive-defined.

For more detail we refeer to (Stoltz, Rousset, et al., 2010). and (?, ?)

q-exponential and bivariated Student’s t-distributions

(Sakamoto & Matsuzoe, 2015) From a usual computation, we know that limq→1+ expq(t)=

et for the function expq(t)= (1+(1−q)t)
1

1−q . This allows us to define expq as q-exponential.
This same idea can be extended to exponential family, where we define q-exponential family
as:

p(x;ϑ) = expq[γ(x)+
n

∑
i=1

fi(x)ϑ i −ψ(ϑ)],

In the same spirit of exponential family, we can define q-Fisher metric as gi j =
∂

∂ϑi
∂

∂ϑ j
ψ .

In addition, we can adapt the construction of Amari-Chentsov tensor (44) to induce q(α)-
connection (for α ∈ [−1,1]) in the same way as we did with the Amari-Chentsov tensor:

g(∇q(α)
X Y,Z) = g(∇q(0)

X Y,Z)− α
2

Tq(X ,Y,Z)

for the Levi-Civita connection ∇q(0) of the Fisher metric form q-exponential family. As
usual, we define the q-exponential connection and q-mixture connection as:

∇q(e)
X = ∇q(1)

X , ∇q(m)
X = ∇q(−1)

X

respectively.

Example 0.38. Recall that n-dimensional Student’s t-distribution with degree of freedom ν
or a q-Gaussian distribution is given by

pq(x,µ, µ̄) =
Γ( 1

q−1 )

(πν)d/2Γ( ν
2 )

√
|µ̄|

(
1+

1
ν
(x−µ)T µ̄−1(x−µ)

) 1
q−1

.

With the change of variables

zq =
(πν)d/2Γ( ν

2 )
√
|µ̄|

Γ( 1
q−1 )

, R =
zq−1

q

(1−q)d +2
µ̄−1, and θ = 2Rµ

this is also q-exponential:

pq(x,µ, µ̄) = expq

( d

∑
i=1

θ ixi −
d

∑
i=1

Riix2
i −2∑

i j
Ri jxix j −

1
4

θ T R−1θ + lnq(
1
zq
)
)
.

The associated Fisher metric comes as second derivatives of ψ(θ) = 1
4 θ T R−1θ − lnq(

1
zq
).

⋄

A direct consequence of the example and from previous construction is the following theo-
rem, which gives a new result on the product of random variables:

24



25

A survey on information geometry:
statistical manifolds and statistical modelsdoi: https://doi.org/10.18257/raccefyn.3260

Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 2025

Theorem 0.39. Let X1 and X2 two random variables with t-Student distribution pi(xi)
respectively with same parameter q. Then there exists a bivariate t-Student distribution
p(x1,x2) such that X1 and X2 are independent with

p = p1 ⊗ p2 ⊗ (−c)

where c = (lnq(
1

zq(σ1
)+ lnq(

1
zq(σ2

))− lnq(
1
zq
) and zq is the m-normalization function for the

bivariate Student’s t-distribution.

0.11 Some results on MLE

Maximum likelihood estimator (MLE) is a well known estimator in statistics. The asymp-
totic properties of MLEs on Euclidean spaces is of great interest, but their studies on man-
ifolds are still insufficient. If X1, . . . ,Xn are independent random samples from a family of
distributions p(x,θ), a maximum likelihood estimator is any θ̂n which solves

max
θ

1
n

n

∑
i=1

log p(Xi,θ) =
1
n

n

∑
i=1

log p(Xi, θ̂n).

Example 0.40. When we work in the space of symmetric positive define matrices (SPD)
with the Fisher metric (in this particular example called Rao’s distance), it is possible to
compute the MLE as

θ̂n = argminθ

n

∑
i=1

d2(Xi,θ)

which is unique (as MLE) and converge in probability to some element on SPD. ⋄

To study asymptotic efficiency of MLE, in (Heyde, 1997)there was defined a generaliza-
tion of estimating functions on a measurable space Ω with family of probabilities (pm)m∈M
parametrized by M. An estimating form on Ω along M is a function ω : Ω×M → T ∗M
such that

Eθ [ω(x,θ)Xθ ] = 0

for all Xθ ∈ Tθ M. Note that given a function l on M (parametrized by Ω) it is possible to get

its derivative dl : Ω×M → T ∗M and we can define the matrix Γ =

(
E F
G H

)
comparing ω

and dl via a fixed θ0 ∈ M,

Ea,b = Eθ0 [dl(x,θ)eadl(x,θ)eb],

Fa,b = Eθ0 [dl(x,θ)eaω(x,θ)eb] = Gb,a,

Ha,b = Eθ0 [ω(x,θ)eaω(x,θ)eb],

where {ea} is a frame of T M. This data gives the following estimates:

Proposition 0.41. If Γ is positive defined, then E−1 <−(E[∇dl(ea,eb)]
−1)HF−1 and E−1

is the limit distribution when ω = dl. In addition, if (a1, . . . ,an) are the coordinates of
Logθ0(θ̄) with E[Logθ0(θ̄)] = 0, then the Cramer-Rao inequality (23) holds for F−1 and
curvature terms where

Fi j = E[d(
n

∑
i=1

log p(xi,θ0)eid(
n

∑
i=1

log p(xi,θ0)e j].
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Clustering Patterns

(Amari & Cichocki, 2010) Nulla in ipsum. Praesent eros nulla, congue vitae, euismod
ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper
in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum
ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est.
Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla.
Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in,
cursus faucibus, augue. Clustering is an important technique in data analysis. It is used to
group patterns or data points into subsets, called clusters, that share similar characteristics.
One way to implement clustering using information geometry is via divergence, which is
an asymmetric measure of the difference between probability distributions.

We represent patterns as vectors x in a pattern manifold X ⊂ Rn, and we study the case
where a divergence is defined between two patterns x and x′.

The dual φ -divergence between two patterns x and x′

Dφ [x : x′] = φ(x)−φ(x′)−∇φ(x′) · (x− x′),

is constructed from a dual convex function φ .

A cluster C consists on k patterns x1, · · · ,xk in X. The goal is to determine a representative
for C that is as close as possible to all its members. To achieve this, we compute the average
of φ -divergences among C a vector η , given by:

Dφ [C : η ] =
1
k ∑

xi∈C
Dφ [xi : η ].

and the procedure finish by minimizing the term Dφ [C : η ]. Indeed, it is possible to obtain:

Theorem 0.42. (Amari & Cichocki, 2010, Theorem 11.1) The φ -center of cluster C is given
by

ηC =
1
k ∑xi

for any φ .

Remark 0.43. It is possible to generalize the situation by considering that, instead of a
cluster C, a probability distribution p(x) over x is given. In this case, the center of the
distribution is defined as the minimizer of the expression:

Dφ [p : η ] =
∫

Dφ [x : η ]p(x)dx.

Thus, the center is simply the expectation of x for any φ , given by:

ηp =
∫

xp(x)dx.

Next step is to propose an algorithm that classifies patterns into clusters based on their
centers. This approach, known as the k-means clustering algorithm, iteratively refines
the cluster centers to minimize variance within each cluster and better represent the data
structure. It can be summarized in the following steps:

1. Initial Step: Choose m cluster centers η1, . . . ,ηm arbitrarily such that they are all
different.

26



27

A survey on information geometry:
statistical manifolds and statistical modelsdoi: https://doi.org/10.18257/raccefyn.3260

Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 2025

2. Classification Step: For each xi, calculate the φ -divergences to the m cluster centers.
Assign xi to cluster Ch that minimizes the φ -divergence:

xi ∈Ch : Dφ [xi : ηh] = min
j
{Dφ [xi : η j]}.

Thus, new clusters C1, . . . ,Cm are formed.

3. Renewal Step: Calculate the φ -centers of the renewed clusters, obtaining new cluster
centers η1, . . . ,ηm.

4. Termination Step: Repeat the above procedures until convergence.

It is known that the procedures terminate within a finite number of steps, giving a good
clustering result, although there is no guarantee that it is optimal.

Conclusion and Remarks

In this manuscript, we focus on particular concepts of geometry and probability, namely
information geometry. However, there is a long list of geometric structures that can be used
or adapted to deeper notions in probability and statistics structures. A non exhaustive list of
these connections includes: support vector machine, Hessian structures, time series, clas-
sification of a Stochastic process, clustering, geometric deep learning, deformed entropy,
cross-entropy, relative entropy among others. More applications and recent research on the
subject can be found in the series of book on geometric science information and in the link
https://franknielsen.github.io/GSI/
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