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Abstract
Due to their catalytic properties, fungal laccases are used in various technological fields, from 
bioremediation to biofuel production. Here, we revisited the model selection for extracellular laccase 
activity in Trametes villosa using a central composite design (CCD) with factors including temperature, 
initial pH, and inoculum volume. To address concerns about overfitting and evaluation leakage in 
small‑N RSM studies, we adopted a strict nested cross‑validation (CV) protocol (outer 5‑fold for 
generalization and inner 3‑fold for tuning) and compared three shallow learners: quadratic ridge 
regression, RBF‑kernel support‑vector regression (SVR), and random forests, against two compact 
multilayer perceptrons (MLPs). To preserve physical plausibility, we modeled the response as log(y + 
ε) with ε = 0.1, and reported RMSE and R² from the outer 5‑fold CV on the back-transformed scale. 
Across outer folds, SVR(RBF) achieved the lowest RMSE with the smallest fold‑to‑fold variance; 
the random forest were competitive; MLPs were more variable, and the ridge underfitted. SHAP 
analyses for the best model highlighted temperature as the dominant driver, with pH and inoculum 
showing secondary, non‑monotonic contributions. Our results indicate that shallow nonlinear methods 
generalize best on small RSM datasets and should be preferred for early‑stage process optimization.
Keywords: Central composite design; Fermentation; Machine learning; White-rot fungi.

Resumen
Debido a sus propiedades catalíticas, las lacasas fúngicas tienen aplicación en diversos campos 
tecnológicos, desde la biorremediación hasta la producción de biocombustibles. Aquí reexaminamos la 
selección de modelos para la actividad de la lacasa extracelular en Trametes villosa mediante un diseño 
compuesto central (CCD), considerando factores como la temperatura, el pH inicial y el volumen de 
inóculo. Para abordar las preocupaciones sobre el sobreajuste y la “fuga” en la evaluación en estudios 
RSM de tamaño muestral pequeño (N pequeño), adoptamos un protocolo estricto de validación cruzada 
(CV) anidada (externa de 5 pliegues para la generalización e interna de 3 pliegues para el ajuste de 
hiperparámetros) y comparamos tres modelos de aprendizaje superficial: regresión de cresta cuadrática, 
regresión de vectores de soporte (SVR) de núcleo RBF y bosques aleatorios con dos perceptrones 
multicapa compactos (MLP). Para preservar la plausibilidad física, modelamos la respuesta como 
log (y + ε) con ε = 0,1 y reportamos el RMSE y el R² del CV externo de 5 pliegues en la escala 
retrotransformada. En los pliegues externos, la SVR (RBF) obtuvo el menor RMSE y la menor varianza 
entre pliegues; el bosque aleatorio fue competitivo; los MLP mostraron mayor variabilidad y la cresta 
se ajustó insuficientemente. Los análisis SHAP para el mejor modelo destacaron la temperatura como 
el principal factor determinante, y el pH y el inóculo como contribuciones secundarias, no monótonas. 
Los resultados indican que los métodos no lineales superficiales se generalizan mejor en conjuntos 
de datos RSM pequeños y deberían preferirse para la optimización de procesos en etapas tempranas.
Palabras clave: Aprendizaje automático; Diseño central compuesto; Fermentación; Hongos de 
podredumbre blanca. 
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Introduction
Fungal laccases are multicopper blue oxidases that reduce molecular oxygen to water 
by means of a one-electron oxidation (Wadhwa et al., 2023). In nature, these enzymes 
participate in fungal defense mechanisms; they also play a role in the degradation of wood 
structural components, litter decomposition, sporulation, and pigmentation (Janusz et 
al., 2020). Due to these capabilities and reaction mechanisms, laccases are recognized as 
green catalysts (Agrawal et al., 2018; Mayolo-Deloisa et al., 2020) with high potential 
in circular approaches. For instance, laccases can degrade lignocellulosic biomass from 
agro-industrial activities, rendering biomaterials that can be used as soil amenders, animal 
food supplements, or biosorbents (Loi et al., 2021; Mondal et al., 2023). They have also 
been used to treat effluents from the paper, textile, pharmaceutical, and alcohol industries 
(Paraschiv et al., 2022).

The first step in laccase technology development is enzyme production. The adjustment 
of culture conditions, for example, the type and amount of carbon and nitrogen sources, the 
presence of cofactors and inducers, the initial pH, and the temperature, play a significant 
role in enzyme production (Dhakar & Pandey, 2013; Karp et al., 2015). This information 
is key to scaling-up and application at an industrial scale. 

Response surface methodologies (RSM) have been widely used to study the influence 
of fermentation conditions on one or more outputs (Aragao et al., 2020; Senthivelan et 
al., 2019). Artificial intelligence-based machine learning techniques (AI-ML) have also 
been introduced to help in data modeling, prediction, and classification (Cheng et al., 
2022; Chentamara et al., 2022; da Silva Pereira et al., 2021; de Meneses et al., 2023; 
Wainaina & Taherzadeh, 2023). 

Several authors have compared statistical techniques and AI-ML approaches. For 
instance, Dourado Fernandes et al. (2020) applied an artificial neural network coupled 
with a genetic algorithm (ANN-GA) and RSM to predict Reactive Black 5 decolorization 
by crude enzymes from Pleurotus sajor-caju. Similarly, Vilar et al. (2021) optimized 
enzyme production from Pleurotus sajor-caju using RSM and ANN-GA coupled models.

The catalytic efficiency and optimal conditions for enzyme catalysis have also been 
explored through computational methods. Cao et al. (2024) constructed a machine learning 
model with phosphatase (EC 3.1.3.X) using amino acid frequency and protein molecular 
weight information as features. They applied the K-nearest neighbors regression algorithm 
to predict optimal temperature. Alazmi (2024) evaluated catalytic efficiency prediction 
with conventional neural networks and XGBoost, while optimum pH was addressed by 
Gado et al. (2025) and Zhang et al. (2025). 

  In a previous experiment, we used a central composite design (CCD) to model 
and optimize fungal laccase activity in a native strain of the white-rot fungus T. villosa, 
focusing on temperature, pH, and inoculum volume as inputs. Despite trying standard 
response transformations, the statistical fit was limited. Here, we revisited the same dataset 
to perform principled model selection under a nested cross‑validation protocol that avoids 
data leakage in small designs. We compared shallow learners (quadratic ridge regression, 
support‑vector regression with an RBF kernel, and random forests) with compact neural 
networks, and used SHAP to interpret the best model predictions in terms of process 
variables.

Materials and methods
Organism and fermentation conditions
Trametes villosa (strain LG72) was provided by the Universidad Autónoma de Chiriquí 
(UCH) Herbarium. It was kept by monthly transfers in Petri dishes with an agar basal 
medium (Gutiérrez et al., 2015; Moore et al., 2020) at 26-28°C, alternating 12-hour 
periods of light and darkness. The basal medium composition in g/L was as follows: KCl, 
MgSO4∙7H2O (0.5 of each); FeSO4∙7H2O, ZnSO4, CuSO4∙5H2O (0.01 of each), KH2PO4 
1.0, thiamine 0.001, asparagine 2.0, glucose 10.
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Using 250 mL cell culture flasks, we adjusted 50 mL of the basal fermentation medium 
to different pH values and temperatures, and we inoculated them with different volumes 
of a hyphal suspension according to the CCD matrix (Table 1). This suspension was 
prepared as reported in Caballero et al. (2024). We reached a 120-rpm agitation speed 
in a shaker incubator (Shel Lab SI4, Sheldon Manufacturing Inc., USA). After 10 days 
of fermentation, we vacuum filtered the contents of each flask and kept the filtrate at 7 °C 
before enzymatic analysis.

Enzymatic analysis
To determine laccase activity (U/L), the filtrates were stabilized at room temperature and 
mixed with 50 μL of siringaldazine 0.22 mM (Sigma Aldrich, USA), at 26°C and 1 mL of 
100 mM phosphate buffer pH 6.5. The change in absorbance at 530 nm (ɛ = 65,000 M-1cm-1) 
in two minutes was followed with a Thermo Scientific BiomateTM 6 spectrophotometer. 
One unit of laccase activity was defined as the amount of enzyme needed to oxidize 1 µmol 
of syringaldazine per mL per min (Junior et al., 2020; Palmieri et al., 1998). Laccase 
activity (Table 1) was reported as the average value from three replicates.

Dataset
The dataset obtained from the CCD matrix consisted of 48 randomized experimental runs 
with six replicates at central points and three at axial points. Three factors were evaluated 
at three levels (low, medium, and high) in each of them: pH (5, 6, 7), temperature (28, 32, 
36°C), and inoculum volume (10, 20, 30 mL). The enzymatic activity expressed in units per 
liter (U/L) was the output (Table 1). The data were imported from a CSV file for analysis.

Model development
Response transformation and positivity constraint. Given that enzyme activity cannot be 
negative and often varies widely, we first transformed the response so the model would 
avoid impossible negative predictions and treat low and high values more evenly. 

To preserve physical plausibility (non-negative activity) and stabilize variance, the 
response was modeled on a log-shifted scale:  with . This choice 
guaranteed that back-transformed predictions remained non-negative and mitigated the 
undue influence of high-activity outliers. Unless otherwise stated, all performance metrics 
were reported on the original (back-transformed) scale, i.e., .

Candidate models and hyperparameters. We compared three shallow learners and two 
compact neural networks within reproducible scikit-learn pipelines:

•	 Ridge (poly2): PolynomialFeatures (degree=2, no bias) → StandardScaler → Ridge 
Hyperparameters: 

•	 SVR (RBF): StandardScaler → Support Vector Regression (RBF kernel). 
Hyperparameters: 

•	 Random forest: Passthrough preprocessing → RandomForestRegressor (random_
state=0)

       Hyperparameters:	
       
•	 MLP small (16, 8) and MLP medium (32, 16): StandardScaler → 

MLPRegressor (ReLU, early_stopping=True, learning_rate_init=10^{-3}, max_
iter=3000,random_state=0) 

       Hyperparameters: 
All feature engineering (polynomial expansion and scaling) was encapsulated inside 

each pipeline to avoid data leakage during cross-validation.
Nested cross-validation protocol. Generalization was assessed with nested cross-

validation. The outer loop used KFold (5 splits, shuffle=True, random_state=42) to 
produce unbiased test folds. Within each outer training set, the inner loop used KFold (3 
splits, shuffle=True, random_state=123) and GridSearchCV (scoring = negative MSE on 
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Table 1. Central composite design (CCD) dataset used for model development (n = 48). Response: 
extracellular laccase activity (U/L). Factors and units: Factor 1 = Temperature (°C), Factor 2 = Initial 
pH, Factor 3 = Inoculum volume (mL)

Run Temperature (°C) pH Inoculum volume (mL) Laccase activity (U/L)

1 32 6 20 19.24
2 32 6 10 10.25
3 32 6 30 1.29
4 32 5 20 11.35
5 32 6 20 17.29
6 36 5 10 11.07
7 32 6 30 1.19
8 36 7 30 0.25
9 28 7 30 15.07

10 36 7 10 0.03
11 32 6 20 16.18
12 28 5 10 0.13
13 28 7 10 2.72
14 32 6 20 19.14
15 28 5 30 0.28
16 28 6 20 3.72
17 28 6 20 3.63
18 32 6 10 9.94
19 36 5 10 15.74
20 36 6 20 0.16
21 28 5 30 0.79
22 36 7 30 0.22
23 36 7 10 0.03
24 32 6 20 16.04
25 36 5 30 7.66
26 36 6 20 0.31
27 32 7 20 1.19
28 32 7 20 3.41
29 36 5 30 6.69
30 32 5 20 12.55
31 28 7 10 5.36
32 28 6 20 4.04
33 28 7 10 2.81
34 36 7 10 0.06
35 36 6 20 0.19
36 32 7 20 2.4
37 32 5 20 14.7
38 32 6 10 11.35
39 36 7 30 0.25
40 36 5 10 13.22
41 28 5 30 0.6
42 28 7 30 13.18
43 28 5 10 0.06
44 32 6 20 17.76
45 32 6 30 0.94
46 36 5 30 4.37
47 28 5 10 0.1
48 28 7 30 14.95

Table 1 shows 48 randomized experiments with six replicates at central points.
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the transformed scale) to select hyperparameters. The selected model was refitted on the 
entire outer-train partition and evaluated on the held-out outer-test partition. Outer-fold 
predictions were back-transformed to the original scale before computing metrics.

Model interpretability (pre-specified). After model selection, the best model was 
refitted on the full dataset and interpreted with SHAP (Lundberg & Lee, 2017) on the 
back-transformed scale. For tree models, we used TreeExplainer, and for non-tree models 
(SVR, Ridge, MLP), we used KernelExplainer on the full pipeline with a small background 
sample (n ≤ 30) and fixed seeds. Outputs include a beeswarm plot and a mean-|SHAP| 
importance plot; numerical results appear in the next section.

Implementation details and outputs. Analyses were performed in Python using scikit-
learn (Pedregosa et al., 2011; Van Rossum & Drake, 2009). The driver script (compare_
shallow_vs_nn_rf_shap.py) (i) loaded and cleaned the CSV (decimal, non-numeric 
stripping), (ii) inferred the response column from common keywords (e.g., “activity”, 
“U/L”) and selected numeric features, (iii) ran nested CV for all models, and (iv) exported:

•	 metrics.csv: outer-CV summary per model RMSE_mean, RMSE_SD, 

•	 predictions.csv: row-level outer-CV predictions for all models,
•	 rmse_bar.png: RMSE (mean ± SD) bar chart across models,
•	 parity_best.png: observed vs. predicted plot for the globally best model,
•	 shap_summary.png, shap_bar.png: SHAP beeswarm and mean |SHAP| plots for 

the best refit model.
Evaluation metrics. All performance metrics were computed on the original scale after 

back-transforming predictions from the modeling scale  with ; 
specifically, . The primary metric was the root-mean-
squared error (RMSE),

      ,              (1)

and the secondary metric was the coefficient of determination on the original scale,

                          (2).

Under nested cross-validation (outer 5-fold, inner 3-fold), we reported for each model 
the outer-fold mean and RMSE and R2 standard deviation (SD), together with bootstrap 
95% confidence intervals on fold means (1,000 bootstrap resamples). Model selection 
favored the lowest outer-CV RMSE; ties were broken by lower variance across folds and 
a higher R2. Parity plots using concatenated outer-fold predictions were used as a visual 
calibration check.

Results
Overall model comparison (nested CV)
Table 2 summarizes performance across models. SVR(RBF) achieved the lowest RMSE 
and smallest fold-to-fold variance (RMSE = 1.321 ± 0.231 U/L; R2 = 0.955 ± 0.016). 
Random forest was competitive (RMSE = 1.908 ± 0.371 U/L; R2 = 0.907 ± 0.038). Both 
MLPs (small/medium) exhibited higher variability under small-N, and ridge (poly2) 
underfitted (RMSE =6.366±1.294 U/L; negative R2). Figure 1 shows the RMSE mean ± 
SD per model family.

Generalization quality (parity)
The parity plot for the best model (SVR(RBF)) showed close alignment to the identity line 
across the activity range, with modest dispersion at high activities (Figure 2), indicating 
good calibration on the original scale.
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Robustness and sensitivity checks
The model ranking did not change when varying the positivity shift within ε ∈ [0.05, 0.2] and 
modestly widening the SVR C and RF max_depth grids, which supported that the observed 
advantage of shallow nonlinear methods was not driven by a particular configuration.

Error analysis
Outer-CV residuals were approximately homoscedastic over most of the range, with 
slightly larger absolute deviations at higher activities. No single factor level dominated the 
largest residuals, consistent with interaction effects captured by SVR (RF).

Model interpretability (SHAP)
Temperature was the dominant driver of extracellular laccase activity, with the initial 
pH and inoculum volume contributing secondarily and non-monotonically. Figure 3a 
(beeswarm) and b (mean-|SHAP|) summarize these effects, indicating temperature bands 
with the strongest marginal gains and narrower pH windows.

Table 2. Outer 5-fold nested-CV performance on the back-transformed scale after log(y+ε) with ε = 0.1. Values are means across outer folds 
with SD and bootstrap 95% CIs.

Model Category rmse_mean rmse_sd rmse_ci95_lo rmse_ci95_hi r2_mean r2_sd r2_ci95_lo r2_ci95_hi

MLP medium 
(32,16) [nn]

nn 2.618 1.712 1.492 4.34 0.7688 0.2906 0.4721 0.9454

MLP small 
(16,8) [nn]

nn 5.41 3.445 2.405 8.334 -0.0133 0.8407 -0.7488 0.7222

SVR(RBF) 
[shallow]

shallow 1.321 0.2312 1.098 1.509 0.9551 0.01632 0.9416 0.9701

Random 
Forest 
[shallow]

shallow 1.908 0.3713 1.617 2.257 0.9073 0.03817 0.8694 0.9346

Ridge(poly2) 
[shallow]

shallow 6.366 1.294 5.066 7.208 -0.02666 0.3395 -0.2634 0.2971

Figure 1. Outer 5-fold nested-CV performance (RMSE, mean ± SD) on the original scale after 
back-transforming predictions from log (y+ε) with ε = 0.1. Error bars denote across-fold SD; inner 
3-fold CV was used for hyperparameter tuning. Models shown (left→right): MLP medium (32, 16), 
MLP small (16, 8), SVR (RBF), random forest, and ridge (poly2). Lower is better. Colors distinguish 
shallow learners (blue) and neural networks (orange).
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Figure 3. a) SHAP beeswarm for the best refit model SVR (RBF) explaining back-transformed 
predictions. Each point is a sample; horizontal position shows the feature’s marginal impact on the 
prediction (SHAP value), and color encodes the original feature value (low→high). Features are 
ordered by overall importance; Factor 1 (temperature) dominates, while Factor 2 (initial pH) and 
Factor 3 (inoculum volume) exhibit secondary, non-monotonic effects. b) Feature importance by 
mean |SHAP| for the best refit model SVR (RBF) explaining back-transformed predictions. Bars 
report mean absolute SHAP values (U/L); right-hand labels indicate each feature’s share of total 
importance. Factor 1 (temperature) dominates, followed by Factor 2 (initial pH) and Factor 3 
(inoculum volume).

Figure 2. Parity plot (observed vs. predicted) on outer test folds for the best-performing model SVR 
(RBF). Predictions are back-transformed from log (y+ε) with ε = 0.1; units: U/L. The dashed line 
denotes perfect agreement; points aggregate all outer folds. Close clustering around the identity line 
indicates good calibration, with a modest spread at higher activities. Dashed line: identity; dotted 
bands: ± 1 RMSE 
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Process-level interpretation. SHAP patterns suggested temperature bands where 
marginal gains were the strongest, beyond which returns diminished; pH showed windowed 
effects consistent with enzyme ionization states; inoculum effects were present but less 
pronounced and context dependent. Practically, this argues for tight temperature control as 
the primary lever, complemented by pH windowing and moderate inoculum adjustments.

Discussion
Practical implications for early-stage process optimization
Along a strict nested cross‑validation protocol, shallow nonlinear models provided the 
most reliable accuracy–stability trade‑off for this small, CCD‑style RSM dataset. Using 
pipelines that confined preprocessing within each fold, and reporting performance strictly 
from the outer 5‑fold CV, SVR(RBF) consistently achieved the lowest RMSE with 
the smallest fold‑to‑fold variance, while random forests were competitive, multilayer 
perceptrons (MLPs) exhibited higher variance across folds, and quadratic ridge underfitted 
the signal. All performance metrics (RMSE and R²) were computed from outer‑fold 
predictions on the back‑transformed scale after modeling log(y + ε), which ensured that 
results reflected the expected generalization rather than an in‑sample fit, and remained in 
physically meaningful units.

Methodologically, the combination of nested CV and fold‑internal preprocessing 
mitigated data leakage, an often-overlooked source of optimism in small‑N studies. 
Reporting outer‑fold means and dispersion, together with visualization via parity plots (with 
±1 RMSE bands), calibrated expectations for typical error, and highlighted heterogeneity 
across folds. This design choice prioritized estimation accuracy and external validity while 
keeping the multiple‑comparison burden of tuning under control.

Model interpretability further supported these conclusions. SHAP analyses of the best 
model identified temperature as the dominant driver of extracellular laccase activity, with 
initial pH and inoculum volume contributing in secondary, non‑monotonic ways. These 
patterns are consistent with plausible bioprocess behavior (curvature and interactions 
without excessive parameterization), reinforcing the face validity of the selected shallow 
models under data scarcity.

Practical implications for early‑stage process optimization are direct. In small 
factorial or CCD experiments where sample size and factor levels are limited, shallow 
nonlinear learners (e.g., SVR with RBF kernels and random forests) should be the first‑line 
baselines and screening tools, as they capture key interactions and curvature with stable 
generalization under nested CV, allowing practitioners to prioritize factor regions and 
hypotheses before committing resources to larger neural architectures or global surrogates 
that typically require more data to control variance.

Limitations and future work
Limitations include the inherently small‑N setting and deliberately modest hyperparameter 
grids to reduce multiplicity within nested CV. Future work should (i) investigate 
shape‑constrained or monotonic models to encode biochemical priors, (ii) adopt Bayesian 
optimization or sequential experimental design to target informative regions of the factor 
space, and (iii) perform external validation across independent batches and strains to assess 
portability. Extensions to uncertainty‑aware modeling (e.g., quantile regression or conformal 
prediction) and careful treatment of measurement noise and potential heteroscedasticity 
would further strengthen prospective decision‑making in process development.

Conclusions
Using a CCD dataset for Trametes villosa laccase activity and a strict nested CV protocol, 
shallow nonlinear learners delivered the best balance of bias–variance and robustness at 
small N. SVR (RBF) provided the strongest generalization with low variance, random forest 
was a reliable runner-up, compact MLPs were less stable, and ridge (poly2) underfitted the 
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observed nonlinearities. SHAP analyses identified temperature as the dominant driver, with 
initial pH and inoculum volume exerting secondary, non-monotonic effects. For early-stage 
process optimization, we therefore recommend starting with SVR (RBF) baselines under 
nested CV, tightening temperature control and exploring pH windows, and considering 
larger neural models only when data volume and experimental coverage grow.
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