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Abstract

Due to their catalytic properties, fungal laccases are used in various technological fields, from
bioremediation to biofuel production. Here, we revisited the model selection for extracellular laccase
activity in Trametes villosa using a central composite design (CCD) with factors including temperature,
initial pH, and inoculum volume. To address concerns about overfitting and evaluation leakage in
small-N RSM studies, we adopted a strict nested cross-validation (CV) protocol (outer 5-fold for
generalization and inner 3-fold for tuning) and compared three shallow learners: quadratic ridge
regression, RBF-kernel support-vector regression (SVR), and random forests, against two compact
multilayer perceptrons (MLPs). To preserve physical plausibility, we modeled the response as log(y +
¢) with € = 0.1, and reported RMSE and R? from the outer 5-fold CV on the back-transformed scale.
Across outer folds, SVR(RBF) achieved the lowest RMSE with the smallest fold-to-fold variance;
the random forest were competitive; MLPs were more variable, and the ridge underfitted. SHAP
analyses for the best model highlighted temperature as the dominant driver, with pH and inoculum
showing secondary, non-monotonic contributions. Our results indicate that shallow nonlinear methods
generalize best on small RSM datasets and should be preferred for early-stage process optimization.

Keywords: Central composite design; Fermentation; Machine learning; White-rot fungi.

Resumen

Debido a sus propiedades cataliticas, las lacasas fungicas tienen aplicacion en diversos campos
tecnologicos, desde la biorremediacion hasta la produccion de biocombustibles. Aqui reexaminamos la
seleccion de modelos para la actividad de la lacasa extracelular en Trametes villosa mediante un disefio
compuesto central (CCD), considerando factores como la temperatura, el pH inicial y el volumen de
indculo. Para abordar las preocupaciones sobre el sobreajuste y la “fuga” en la evaluacion en estudios
RSM de tamafio muestral pequefio (N pequefio), adoptamos un protocolo estricto de validacion cruzada
(CV) anidada (externa de 5 pliegues para la generalizacion e interna de 3 pliegues para el ajuste de
hiperparametros) y comparamos tres modelos de aprendizaje superficial: regresion de cresta cuadratica,
regresion de vectores de soporte (SVR) de nticleo RBF y bosques aleatorios con dos perceptrones
multicapa compactos (MLP). Para preservar la plausibilidad fisica, modelamos la respuesta como
log (y + €) con € = 0,1 y reportamos el RMSE y el R? del CV externo de 5 pliegues en la escala
retrotransformada. En los pliegues externos, la SVR (RBF) obtuvo el menor RMSE y la menor varianza
entre pliegues; el bosque aleatorio fue competitivo; los MLP mostraron mayor variabilidad y la cresta
se ajusto insuficientemente. Los andlisis SHAP para el mejor modelo destacaron la temperatura como
el principal factor determinante, y el pH y el indculo como contribuciones secundarias, no monotonas.
Los resultados indican que los métodos no lineales superficiales se generalizan mejor en conjuntos
de datos RSM pequefios y deberian preferirse para la optimizacion de procesos en etapas tempranas.

Palabras clave: Aprendizaje automatico; Diseflo central compuesto; Fermentacion; Hongos de
podredumbre blanca.
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Introduction

Fungal laccases are multicopper blue oxidases that reduce molecular oxygen to water
by means of a one-electron oxidation (Wadhwa et al., 2023). In nature, these enzymes
participate in fungal defense mechanisms; they also play a role in the degradation of wood
structural components, litter decomposition, sporulation, and pigmentation (Janusz et
al., 2020). Due to these capabilities and reaction mechanisms, laccases are recognized as
green catalysts (Agrawal ef al., 2018; Mayolo-Deloisa et al., 2020) with high potential
in circular approaches. For instance, laccases can degrade lignocellulosic biomass from
agro-industrial activities, rendering biomaterials that can be used as soil amenders, animal
food supplements, or biosorbents (Loi ef al., 2021; Mondal et al., 2023). They have also
been used to treat effluents from the paper, textile, pharmaceutical, and alcohol industries
(Paraschiv et al., 2022).

The first step in laccase technology development is enzyme production. The adjustment
of culture conditions, for example, the type and amount of carbon and nitrogen sources, the
presence of cofactors and inducers, the initial pH, and the temperature, play a significant
role in enzyme production (Dhakar & Pandey, 2013; Karp ef al., 2015). This information
is key to scaling-up and application at an industrial scale.

Response surface methodologies (RSM) have been widely used to study the influence
of fermentation conditions on one or more outputs (Aragao et al., 2020; Senthivelan et
al., 2019). Artificial intelligence-based machine learning techniques (AI-ML) have also
been introduced to help in data modeling, prediction, and classification (Cheng ef al.,
2022; Chentamara et al., 2022; da Silva Pereira et al., 2021; de Meneses et al., 2023;
Wainaina & Taherzadeh, 2023).

Several authors have compared statistical techniques and AI-ML approaches. For
instance, Dourado Fernandes ef al. (2020) applied an artificial neural network coupled
with a genetic algorithm (ANN-GA) and RSM to predict Reactive Black 5 decolorization
by crude enzymes from Pleurotus sajor-caju. Similarly, Vilar ef al. (2021) optimized
enzyme production from Pleurotus sajor-caju using RSM and ANN-GA coupled models.

The catalytic efficiency and optimal conditions for enzyme catalysis have also been
explored through computational methods. Cao et al. (2024) constructed a machine learning
model with phosphatase (EC 3.1.3.X) using amino acid frequency and protein molecular
weight information as features. They applied the K-nearest neighbors regression algorithm
to predict optimal temperature. Alazmi (2024) evaluated catalytic efficiency prediction
with conventional neural networks and XGBoost, while optimum pH was addressed by
Gado et al. (2025) and Zhang et al. (2025).

In a previous experiment, we used a central composite design (CCD) to model
and optimize fungal laccase activity in a native strain of the white-rot fungus 7. villosa,
focusing on temperature, pH, and inoculum volume as inputs. Despite trying standard
response transformations, the statistical fit was limited. Here, we revisited the same dataset
to perform principled model selection under a nested cross-validation protocol that avoids
data leakage in small designs. We compared shallow learners (quadratic ridge regression,
support-vector regression with an RBF kernel, and random forests) with compact neural
networks, and used SHAP to interpret the best model predictions in terms of process
variables.

Materials and methods

Organism and fermentation conditions

Trametes villosa (strain LG72) was provided by the Universidad Autéonoma de Chiriqui
(UCH) Herbarium. It was kept by monthly transfers in Petri dishes with an agar basal
medium (Gutiérrez et al., 2015; Moore et al., 2020) at 26-28°C, alternating 12-hour
periods of light and darkness. The basal medium composition in g/L was as follows: KCl,
MgSO,-7H,0 (0.5 of each); FeSO,-7H,0, ZnSO,, CuSO,5H,0 (0.01 of each), KH,PO,
1.0, thiamine 0.001, asparagine 2.0, glucose 10.
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Using 250 mL cell culture flasks, we adjusted 50 mL of the basal fermentation medium
to different pH values and temperatures, and we inoculated them with different volumes
of a hyphal suspension according to the CCD matrix (Table 1). This suspension was
prepared as reported in Caballero ef al. (2024). We reached a 120-rpm agitation speed
in a shaker incubator (Shel Lab SI4, Sheldon Manufacturing Inc., USA). After 10 days
of fermentation, we vacuum filtered the contents of each flask and kept the filtrate at 7 °C
before enzymatic analysis.

Enzymatic analysis

To determine laccase activity (U/L), the filtrates were stabilized at room temperature and
mixed with 50 uL of siringaldazine 0.22 mM (Sigma Aldrich, USA), at 26°C and 1 mL of
100 mM phosphate buffer pH 6.5. The change in absorbance at 530 nm (e = 65,000 M-'ecm'")
in two minutes was followed with a Thermo Scientific BiomateTM 6 spectrophotometer.
One unit of laccase activity was defined as the amount of enzyme needed to oxidize 1 pmol
of syringaldazine per mL per min (Junior ef al, 2020; Palmieri ef al., 1998). Laccase
activity (Table 1) was reported as the average value from three replicates.

Dataset

The dataset obtained from the CCD matrix consisted of 48 randomized experimental runs
with six replicates at central points and three at axial points. Three factors were evaluated
at three levels (low, medium, and high) in each of them: pH (5, 6, 7), temperature (28, 32,
36°C), and inoculum volume (10, 20, 30 mL). The enzymatic activity expressed in units per
liter (U/L) was the output (Table 1). The data were imported from a CSV file for analysis.

Model development

Response transformation and positivity constraint. Given that enzyme activity cannot be
negative and often varies widely, we first transformed the response so the model would
avoid impossible negative predictions and treat low and high values more evenly.

To preserve physical plausibility (non-negative activity) and stabilize variance, the
response was modeled on a log-shifted scale: y' = log(y + €) with € = 0.1. This choice
guaranteed that back-transformed predictions remained non-negative and mitigated the
undue influence of high-activity outliers. Unless otherwise stated, all performance metrics
were reported on the original (back-transformed) scale, i.e., ¥ = max {exp (§") — ¢, 0}.

Candidate models and hyperparameters. We compared three shallow learners and two
compact neural networks within reproducible scikit-learn pipelines:

*  Ridge(poly2): PolynomialFeatures (degree=2, no bias) — StandardScaler — Ridge
Hyperparameters: o € {0.1,1.0,10.0}

* SVR (RBF): StandardScaler — Support Vector Regression (RBF kernel).
Hyperparameters: C € {1,10},y € {“scale”,0.1},e = 0.1

*  Random forest: Passthrough preprocessing — RandomForestRegressor (random
state=0)
Hyperparameters: Nestimators € {300,600}, max _depth €
None, 6,12}, min _samples_leaf € {1,2,3}

+ MLP small (16, 8) and MLP medium (32, 16): StandardScaler —
MLPRegressor (ReLU, early stopping=True, learning rate init=10"{-3}, max_
iter=3000,random_ state=0)

Hyperparameters: o € {107,103}

All feature engineering (polynomial expansion and scaling) was encapsulated inside

each pipeline to avoid data leakage during cross-validation.

Nested cross-validation protocol. Generalization was assessed with nested cross-
validation. The outer loop used KFold (5 splits, shuffle=True, random_state=42) to
produce unbiased test folds. Within each outer training set, the inner loop used KFold (3
splits, shuffle=True, random_state=123) and GridSearchCV (scoring = negative MSE on
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Table 1. Central composite design (CCD) dataset used for model development (n = 48). Response:
extracellular laccase activity (U/L). Factors and units: Factor 1 = Temperature (°C), Factor 2 = Initial
pH, Factor 3 = Inoculum volume (mL)

Run Temperature (°C) pH Inoculum volume (mL) Laccase activity (U/L)
1 32 6 20 19.24
2 32 6 10 10.25
3 32 6 30 1.29
4 32 5 20 11.35
5 32 6 20 17.29
6 36 5 10 11.07
7 32 6 30 1.19
8 36 7 30 0.25
9 28 7 30 15.07
10 36 7 10 0.03
11 32 6 20 16.18
12 28 5 10 0.13
13 28 7 10 2.72
14 32 6 20 19.14
15 28 5 30 0.28
16 28 6 20 3.72
17 28 6 20 3.63
18 32 6 10 9.94
19 36 5 10 15.74
20 36 6 20 0.16
21 28 5 30 0.79
22 36 7 30 0.22
23 36 7 10 0.03
24 32 6 20 16.04
25 36 5 30 7.66
26 36 6 20 0.31
27 32 7 20 1.19
28 32 7 20 3.41
29 36 5 30 6.69
30 32 5 20 12.55
31 28 7 10 5.36
32 28 6 20 4.04
33 28 7 10 2.81
34 36 7 10 0.06
35 36 6 20 0.19
36 32 7 20 2.4
37 32 5 20 14.7
38 32 6 10 11.35
39 36 7 30 0.25
40 36 5 10 13.22
41 28 5 30 0.6
42 28 7 30 13.18
43 28 5 10 0.06
44 32 6 20 17.76
45 32 6 30 0.94
46 36 5 30 437
47 28 5 10 0.1
48 28 7 30 14.95

Table 1 shows 48 randomized experiments with six replicates at central points.
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the transformed scale) to select hyperparameters. The selected model was refitted on the
entire outer-train partition and evaluated on the held-out outer-test partition. Outer-fold
predictions were back-transformed to the original scale before computing metrics.

Model interpretability (pre-specified). After model selection, the best model was
refitted on the full dataset and interpreted with SHAP (Lundberg & Lee, 2017) on the
back-transformed scale. For tree models, we used TreeExplainer, and for non-tree models
(SVR, Ridge, MLP), we used KernelExplainer on the full pipeline with a small background
sample (n < 30) and fixed seeds. Outputs include a beeswarm plot and a mean-|SHAP)|
importance plot; numerical results appear in the next section.

Implementation details and outputs. Analyses were performed in Python using scikit-
learn (Pedregosa et al., 2011; Van Rossum & Drake, 2009). The driver script (compare
shallow_vs nn_rf shap.py) (i) loaded and cleaned the CSV (decimal, non-numeric
stripping), (ii) inferred the response column from common keywords (e.g., “activity”,
“U/L”) and selected numeric features, (iii) ran nested CV for all models, and (iv) exported:

* metrics.csv: outer-CV summary per model RMSE mean, RMSE SD,
Clys, R — mean, R* — SD, Clgs

+  predictions.csv: row-level outer-CV predictions for all models,
* rmse_barpng: RMSE (mean =+ SD) bar chart across models,
* parity_best.png: observed vs. predicted plot for the globally best model,

* shap_summary.png, shap bar.png: SHAP beeswarm and mean |SHAP| plots for

the best refit model.

Evaluation metrics. All performance metrics were computed on the original scale after
back-transforming predictions from the modeling scale y' = log(y +¢) with £ = 0.1;
specifically, = max {exp (9") — €, 0} (U/L). The primary metric was the root-mean-
squared error (RMSE),

1 ~
RMSE = |-, (vi — 92, (M

and the secondary metric was the coefficient of determination on the original scale,
Yi(vi—Pi 2
R2=1-— (Vi 311)2

2i(yi=9)
Under nested cross-validation (outer 5-fold, inner 3-fold), we reported for each model
the outer-fold mean and RMSE and R? standard deviation (SD), together with bootstrap
95% confidence intervals on fold means (1,000 bootstrap resamples). Model selection
favored the lowest outer-CV RMSE; ties were broken by lower variance across folds and

a higher R%. Parity plots using concatenated outer-fold predictions were used as a visual
calibration check.

Results

Overall model comparison (nested CV)

Q).

Table 2 summarizes performance across models. SVR(RBF) achieved the lowest RMSE
and smallest fold-to-fold variance (RMSE = 1.321 + 0.231 U/L; R?> = 0.955 + 0.016).
Random forest was competitive (RMSE = 1.908 + 0.371 U/L; R? = 0.907 + 0.038). Both
MLPs (small/medium) exhibited higher variability under small-N, and ridge (poly2)
underfitted (RMSE =6.366+1.294 U/L; negative R?). Figure 1 shows the RMSE mean +
SD per model family.

Generalization quality (parity)

The parity plot for the best model (SVR(RBF)) showed close alignment to the identity line
across the activity range, with modest dispersion at high activities (Figure 2), indicating
good calibration on the original scale.
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Table 2. Outer 5-fold nested-CV performance on the back-transformed scale after log(y+¢) with € = 0.1. Values are means across outer folds
with SD and bootstrap 95% Cls.

Model Category rmse_mean rmse_sd rmse_ci95 lo rmse ci95 hi *_mean rsd P _ci95 lo 7 _ci95_hi
MLP medium nn 2.618 1.712 1.492 434 0.7688 0.2906 0.4721 0.9454
(32,16) [nn]

MLP small nn 5.41 3.445 2.405 8.334 -0.0133 0.8407 -0.7488 0.7222
(16,8) [nn]

SVR(RBF) shallow 1.321 0.2312 1.098 1.509 0.9551 0.01632 0.9416 0.9701
[shallow]

Random shallow 1.908 0.3713 1.617 2257 0.9073  0.03817 0.8694 0.9346
Forest

[shallow]

Ridge(poly2)  shallow 6.366 1.294 5.066 7.208 -0.02666  0.3395 -0.2634 0.2971
[shallow]

Figure 1. Outer 5-fold nested-CV performance (RMSE, mean £+ SD) on the original scale after
back-transforming predictions from log (y+¢) with € = 0.1. Error bars denote across-fold SD; inner
3-fold CV was used for hyperparameter tuning. Models shown (left—right): MLP medium (32, 16),
MLP small (16, 8), SVR (RBF), random forest, and ridge (poly2). Lower is better. Colors distinguish
shallow learners (blue) and neural networks (orange).

Robustness and sensitivity checks

The model ranking did not change when varying the positivity shift within € € [0.05, 0.2] and
modestly widening the SVR C and RF max_depth grids, which supported that the observed
advantage of shallow nonlinear methods was not driven by a particular configuration.

Error analysis

Outer-CV residuals were approximately homoscedastic over most of the range, with
slightly larger absolute deviations at higher activities. No single factor level dominated the
largest residuals, consistent with interaction effects captured by SVR (RF).

Model interpretability (SHAP)

Temperature was the dominant driver of extracellular laccase activity, with the initial
pH and inoculum volume contributing secondarily and non-monotonically. Figure 3a
(beeswarm) and b (mean-|SHAP|) summarize these effects, indicating temperature bands
with the strongest marginal gains and narrower pH windows.
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Figure 2. Parity plot (observed vs. predicted) on outer test folds for the best-performing model SVR
(RBF). Predictions are back-transformed from log (y+¢) with € = 0.1; units: U/L. The dashed line
denotes perfect agreement; points aggregate all outer folds. Close clustering around the identity line
indicates good calibration, with a modest spread at higher activities. Dashed line: identity; dotted
bands: + 1 RMSE

Figure 3. a) SHAP beeswarm for the best refit model SVR (RBF) explaining back-transformed
predictions. Each point is a sample; horizontal position shows the feature’s marginal impact on the
prediction (SHAP value), and color encodes the original feature value (low—high). Features are
ordered by overall importance; Factor 1 (temperature) dominates, while Factor 2 (initial pH) and
Factor 3 (inoculum volume) exhibit secondary, non-monotonic effects. b) Feature importance by
mean |[SHAP| for the best refit model SVR (RBF) explaining back-transformed predictions. Bars
report mean absolute SHAP values (U/L); right-hand labels indicate each feature’s share of total
importance. Factor 1 (temperature) dominates, followed by Factor 2 (initial pH) and Factor 3
(inoculum volume).
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Process-level interpretation. SHAP patterns suggested temperature bands where
marginal gains were the strongest, beyond which returns diminished; pH showed windowed
effects consistent with enzyme ionization states; inoculum effects were present but less
pronounced and context dependent. Practically, this argues for tight temperature control as
the primary lever, complemented by pH windowing and moderate inoculum adjustments.

Discussion

Practical implications for early-stage process optimization

Along a strict nested cross-validation protocol, shallow nonlinear models provided the
most reliable accuracy—stability trade-off for this small, CCD-style RSM dataset. Using
pipelines that confined preprocessing within each fold, and reporting performance strictly
from the outer 5-fold CV, SVR(RBF) consistently achieved the lowest RMSE with
the smallest fold-to-fold variance, while random forests were competitive, multilayer
perceptrons (MLPs) exhibited higher variance across folds, and quadratic ridge underfitted
the signal. All performance metrics (RMSE and R?) were computed from outer-fold
predictions on the back-transformed scale after modeling log(y + ¢€), which ensured that
results reflected the expected generalization rather than an in-sample fit, and remained in
physically meaningful units.

Methodologically, the combination of nested CV and fold-internal preprocessing
mitigated data leakage, an often-overlooked source of optimism in small-N studies.
Reporting outer-fold means and dispersion, together with visualization via parity plots (with
+1 RMSE bands), calibrated expectations for typical error, and highlighted heterogeneity
across folds. This design choice prioritized estimation accuracy and external validity while
keeping the multiple-comparison burden of tuning under control.

Model interpretability further supported these conclusions. SHAP analyses of the best
model identified temperature as the dominant driver of extracellular laccase activity, with
initial pH and inoculum volume contributing in secondary, non-monotonic ways. These
patterns are consistent with plausible bioprocess behavior (curvature and interactions
without excessive parameterization), reinforcing the face validity of the selected shallow
models under data scarcity.

Practical implications for early-stage process optimization are direct. In small
factorial or CCD experiments where sample size and factor levels are limited, shallow
nonlinear learners (e.g., SVR with RBF kernels and random forests) should be the first-line
baselines and screening tools, as they capture key interactions and curvature with stable
generalization under nested CV, allowing practitioners to prioritize factor regions and
hypotheses before committing resources to larger neural architectures or global surrogates
that typically require more data to control variance.

Limitations and future work

Limitations include the inherently small-N setting and deliberately modest hyperparameter
grids to reduce multiplicity within nested CV. Future work should (i) investigate
shape-constrained or monotonic models to encode biochemical priors, (ii) adopt Bayesian
optimization or sequential experimental design to target informative regions of the factor
space, and (iii) perform external validation across independent batches and strains to assess
portability. Extensions to uncertainty-aware modeling (e.g., quantile regression or conformal
prediction) and careful treatment of measurement noise and potential heteroscedasticity
would further strengthen prospective decision-making in process development.

Conclusions

Using a CCD dataset for Trametes villosa laccase activity and a strict nested CV protocol,
shallow nonlinear learners delivered the best balance of bias—variance and robustness at
small N. SVR (RBF) provided the strongest generalization with low variance, random forest
was a reliable runner-up, compact MLPs were less stable, and ridge (poly2) underfitted the
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observed nonlinearities. SHAP analyses identified temperature as the dominant driver, with
initial pH and inoculum volume exerting secondary, non-monotonic effects. For early-stage
process optimization, we therefore recommend starting with SVR (RBF) baselines under
nested CV, tightening temperature control and exploring pH windows, and considering
larger neural models only when data volume and experimental coverage grow.
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