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Abstract

Here, we present a green coprecipitation synthesis route for silver-functionalized copper and iron oxide
nanocomposites (Cu,0/CuO/Fe,O,@Ag) using guava (Psidium guajava) fruit extract as reducing
and stabilizing agent. The novelty of this approach lies in the unexplored use of guava, a widely
available biomass rich in phytochemicals, to produce multifunctional nanocomposites with enhanced
properties. The structural and morphological analyses (XRD, FTIR, SEM, TEM) confirmed the
presence of crystalline phases of Fe,0,, Cu,0, CuO, and Ag, along with nanoflake-like and spheric-
like morphologies and nanometric particle sizes. Magnetic characterization (VSM) revealed a change
from paramagnetic behavior in non-functionalized samples to weak ferromagnetism with reduced
coercivity and magnetization upon silver incorporation. The antibacterial assays demonstrated that
the functionalized nanocomposites exhibited strong inhibitory effects against the multidrug-resistant
pathogen Klebsiella pneumoniae, achieving substantial growth inhibition at 500 ppm. Our findings
highlight the potential of guava fruit extract as a sustainable precursor for the biogenic synthesis of
silver-functionalized Fe—Cu oxide nanocomposites, offering a promising route for environmentally
friendly nanomaterials with applications in biomedical and environmental fields.

Keywords: Green chemistry; Nanomaterials; Copper oxide; Iron oxide; Guava fruit extract;
Antibacterial.

Resumen

Presentamos aqui una ruta verde de sintesis por coprecipitacion de nanocompuestos de oxidos de
cobre y de hierro funcionalizados con plata (Cu,0/CuO/Fe,0,@Ag) utilizando extracto de guayaba
(Psidium guajava) como agente reductor y estabilizador. La novedad de este enfoque radica en el
uso inexplorado de la guayaba, una biomasa rica en fitoquimicos ampliamente disponible, para
producir nanocompuestos multifuncionales con propiedades mejoradas. Los analisis estructurales y
morfologicos (XRD, FTIR, SEM, TEM) confirmaron la presencia de fases cristalinas de Fe,O,, Cu,0,
CuO y Ag, ademas de morfologias similares a nanoescamas y tamafios de particula nanométricos. La
caracterizacion magnética (VSM) revel6 el cambio del comportamiento paramagnético en muestras
no funcionalizadas a un ferromagnetismo débil con coercitividad y magnetizacion reducidas tras
la incorporacion de plata. Los ensayos antibacterianos demostraron que los nanocompuestos
funcionalizados exhibian fuertes efectos inhibidores contra el patdgeno resistente a multiples
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farmacos Klebsiella pneumoniae, logrando una inhibicion sustancial del crecimiento a 500 ppm.
Estos hallazgos destacan el potencial del extracto de la guayaba como precursor sostenible para la
sintesis biogénica de nanocompuestos de los 6xidos de Fe y Cu funcionalizados con plata, lo que
ofrece una ruta prometedora para la obtencion de nanomateriales respetuosos del medio ambiente
con aplicaciones en campos biomédicos y ambientales.

Palabras clave: Quimica verde; Nanomateriales: 6xido de cobre; Oxido de hierro; Extracto de
guayaba; Antibacteriano.

Introduction

Nanomaterials (NM) have gained significant attention in recent decades due to their
wide range of applications, including environmental remediation (Kumar et al., 2022),
renewable energies (Akin et al., 2019), biomedicine (Naik et al., 2023), and industries
(Paidari & Ibrahim, 2021), among others. The vast spectrum of NM uses arises from the
unique properties they exhibit; some of their most notable characteristics include a high
surface area-volume ratio (Altammar, 2023), ferrimagnetism (Zahn et al., 2022), and
ferromagnetic and superparamagnetic behaviors (Rashid ez al., 2022). This type of material
has also shown promising properties in diagnosing and treating diseases such as cancer
(Jose et al., 2020), serving as contrast agents in magnetic resonance imaging, drug delivery
(El-Boubbou et al., 2016), and bactericidal applications (Yang et al., 2021). In this context,
researchers have studied the biological and bactericidal properties of copper oxide and iron
oxide nanostructures (Bhavyasree & Xavier, 2020; Jamzad & Bidkorpeh, 2020; Sharma
et al., 2020), finding that specific iron oxide nanostructures like hematite (Fe,0,) exhibit
high antimicrobial activity against bacteria such as Pseudomonas aeruginosa (Yoonus
et al., 2021). Copper oxide nanoparticles, such as Cu,O and delafossite (CuFeO,), have
also demonstrated notable antibacterial properties against various Gram-positive bacteria
strains (Bacillus subtilis, B. cereus, and Staphylococcus aureus) and Gram-negative strains
(Escherichia coli and Xanthomonas campestris) (Antonoglou et al., 2019).

Although copper and iron nano-oxides have shown bactericidal properties, they
can be optimized by functionalizing their surfaces (Yoonus et al., 2021) using elements
with appreciable antimicrobial qualities. Several metallic nanoparticles (NPs) exhibit
these properties. Silver nanoparticles (Ag-NPs), for example, show high toxicity against
a variety of microorganisms (Parvekar et al., 2020; Salem et al., 2020). These results
suggest that the potential synthesis of a nanocomposite system integrating copper and iron
oxides, functionalized with silver, may enhance bacteriostatic and bactericidal properties
compared to their non-functionalized counterparts (Antonoglou et al., 2019).

On the other hand, the biogenic approach in NM synthesis has gained great relevance. In
this regard, plants have been an ideal and abundant source of biomass useful in the synthesis,
since the phytochemicals present in plant extracts can act as reducing and stabilizing agents
of inorganic metal ions in NPs synthesis (Chokkareddy & Redhi, 2018). Several studies
account for the use of plants’ essential oils, fruits, roots, flowers, leaves, and stems to obtain
NM (Fakhari et al., 2019; Jadoun et al., 2021; Marslin et al., 2018; Charbgoo et al., 2017,
Arsiya et al., 2017; Narayanan et al., 2021; Reddy, 2017; Ismail, 2020; Ramola et al.,
2019; Tamoradi & Mousavi, 2020; Cahyana et al., 2021; Aksu Demirezen et al., 2019;
Jacob et al., 2017; Veisi et al., 2021; Buarki ef al., 2022). In this context, Boyaca is one of
the Colombian departments with the highest agrobiodiversity and agricultural production,
producing 26,000 tons of vegetables and 98,000 tons of fruits in 2009 (Ayala, 2017), which
shows tremendous possibilities given the availability of biological substances that may be
used in this synthesis route. The antioxidant properties of guava have been widely evidenced
in various studies using DPPH free radical scavenging tests (Manikandan & Anand,
2015). Its extracts have also shown inhibitory properties against several bacteria, among
them, Listeria monocytogenes and S. aureus (Mahfuzul Hoque et al., 2007). Ripe guava
fruits are rich in tannins, polyphenols with antioxidant properties, triterpenes, flavonoids,
essential oils, saponins, carotenoids, lectins, fatty acids, fiber, and vitamins. Besides its high
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concentrations of vitamin C, higher than those of citrus fruits such as oranges or lemons,
it contains appreciable amounts of vitamins A, B1, B2, niacin (B3), and pantothenic acid
(BS), as well as appreciable amounts of phosphorus, calcium, iron, potassium, and sodium
(Rodriguez Medina & Valdés-Infante Herrero, 2016).

Various studies have also described the green synthesis of metallic nanoparticles and
simple oxide systems using plant extracts, but few have focused on Ag and Au NP or
metal oxide nanocomposites obtained through phytogenic routes with guava leaf extracts
(Johurul Islam et al., 2023; Nguyen et al., 2023; Patil & Rane, 2020; Santhoshkumar
et al., 2014; Sougandhi & Ramanaiah, 2020). To the best of our knowledge, P. guajava
fruit extract has not been explored as a reducing and stabilizing agent in this specific
nanocomposite. The high bioavailability of this biomass, coupled with its great diversity
of phytochemicals with reducing properties, makes the guava fruit an ideal candidate for
the biogenic synthesis of NPs. Here, we report a silver-functionalized copper oxide and
iron oxide nanocomposites biogenic route synthesis using P. guajava aqueous fruit extract
as a reducing and stabilizing agent. We used X-ray diffraction (XRD), vibrating sample
magnetometry (VSM), scanning electron microscopy (SEM), transmission electron
microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques for
the structural, magnetic, and morphological characterization of the materials. Finally, we
evaluated the bactericidal properties of the materials against strains of K. pneumoniae,
a Gram-negative microorganism implicated in nosocomial diseases highly resistant
to various antimicrobials and antibiotics (Effah et al., 2020). The integration of green
synthesis with comprehensive structural and magnetic characterization, together with
antibacterial assessment against K. pneumoniae, highlights the novelty and application
potential of our study, particularly in Colombia, where guava is widely available.

Experimental details
Materials

Ripe guava fruit (variety Palmira-ICA1 reported by Otalora et al., 2022) was sourced
from the primary wholesale market in Tunja, Boyaca, Colombia; 98% purity iron sulfate
heptahydrate FeSO,*7H,0 (CAS No. 7782-63-0) was purchased from Supelco-Ensure;
98% purity copper sulfate pentahydrate CuSO,*5H,O (CAS No. 7758-99-8) was purchased
from Merck; 99.9% purity silver nitrate AgNO, (CAS No. 7761-88-8) was purchased
from Loba Chemie, and sodium hydroxide NaOH (CAS No. 1310-73-2) from PanReac
AppliChem. All reagents were analytical grade.

Guava fruit extract preparation

Guava fruit extract was prepared using the modified method reported by Kumar ef al.
(2017). The fruit was thoroughly washed, ground, and filtered on a wide pore mesh; 10 g
of the pulp obtained was taken and heated at 50°C in 50 mL of distilled water for 60 min
under constant stirring at 1000 rpm and cooled at room temperature. The translucent, pink-
colored extract was filtered with Whatman No. 1 filter paper, and then an extract/NaOH
solution was prepared by dissolving 25.5 g of guava pulp in 60 mL of distilled water. Once
the extract was obtained, 0.5 g of NaOH was added and completely dissolved.

Preparation of nanocomposites

The samples were obtained using the modified method reported by Bhushan ef al. (2019).
A stoichiometric amount of CuSO,*5H,0 was dissolved in 50 mL of distilled water at
50 °C. Then, 50 mL of a FeSO,*7H,0 solution was added to reach a Cu?":Fe** 1:1 molar
ratio and, subsequently, 10 mL of the guava extract was added under constant stirring
(1000 rpm) for 1 h. The pH was adjusted to 12, drop by drop, through the addition of a
0.2 M NaOH solution. Finally, the sample was aged at 50°C for 24 h to allow the NPS
precipitation. The mixture was centrifuged and washed thrice at 2500 rpm for 20 min,
then dried at 80 °C for 12 h. This procedure was repeated without the extract to obtain two
systems: with extract (FeCu-G) and without it (FeCu).



Castaiieda-Mendoza M., et al.

Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. 2025
doi: https://doi.org/10.18257/raccefyn.3187

Silver functionalization

Nanocomposite functionalization was done using the modified method reported by Kooti
et al. (2013). Initially, 0.7 g of the material was dispersed in 50 mL of 0.05/0.202 (M)
AgNO,/Urea solution at room temperature and constant stirring (500 rpm) for 30 min to
ensure the adsorption of Ag on the NPs, then, 10 mL of extract/NaOH solution was added
to act as a stabilizing agent. After 5 minutes of reaction, 4 mL of guava extract was added
as a reducing agent. The mixture obtained was heated to 70°C for 1 h to accelerate the
reduction reaction. The functionalized nanocomposite was washed and centrifuged with
distilled water at 3500 rpm for 20 min to remove any excess protective agents and alkaline
materials, resulting in two samples: FeCuAg5 (without extract) and FeCuAg5-G (with
extract). The AgNO,/Urea ratio changed to 0.10/0.404 (M), obtaining the FeCuAg10 and
FeCuAg10-G samples.

Characterization

The analysis was done in a Nicolet iS50 FTIR equipment using the attenuated total
reflectance or ATR technique, recorded with a ZnSe crystal. The infrared spectra were
collected in the wavenumber range from 2000 cm™ to 500 cm™. For the crystalline
structure analysis by XRD, we used an Empyrean diffractometer, with Cu-Ko radiation
(A=1.5406 A) between 10° and 90°, a step width of 0.053°, a scanning speed of 20
equals 2° per minute, and a measurement temperature of 293 K. For the TEM study, we
used a LEO 440i scanning electron microscope, coating the samples with a thin Au-Pd
layer, for the SEM analysis, a CARL ZEISS EVO MA 1 microscope, and to measure
the fundamental magnetic properties of the synthesized materials, a Quantum Design
Versalab magnetometer. Field-dependent magnetization measurements were taken from
-30 to 30 kOe at room temperature (300 K). For temperature-dependent magnetization
measurements, we used the Zero Field Cooled-Field Cooled (ZFC-FC) model varying the
temperature in the 50 K- 400 K range at an applied field of 50 Oe. We evaluated the
inhibition of bacterial growth by the nanocomposites using the microdilution technique in
broth. We prepared and diluted 1 mg/mL (1000 ppm) solutions of each synthesized sample
in microplates with the bacterial K. pneumoniae strain culture broths, starting from 30
ppm. Sodium hypochlorite (NaClO) at 7% was used as a control. The microplates were
analyzed at 620 nm using an FC Multiskan TM plate reader.

Results and discussion
Structural characterization

Figure 1A shows the infrared spectra corresponding to the FeCu and FeCu-G samples. The
characteristic CuO bands were observed at shorter wavenumber, around 580 cm', indicating
the vibrational modes of the bond between Cu-O atoms. Additionally, we observed the
Cu-O stretching vibration bands around 1360 cm™ (Buledi et al., 2021; Sharmila et al.,
2018). This broadband from 500 to 900 cm™! and the individual sharp peaks at 830 cm™! were
generally attributed to the metal-oxygen bond, indicating the Fe-O and Cu-O stretching
vibration mode (Jansanthea et al., 2024; Khalil ef al., 2017; Nope et al., 2025). The peak
around 670 cm! responds to the Cu(I)-O bond (Al-Senani et al., 2022; Castaiieda-Mendoza
et al., 2025), their drastic decrease indicating a compositional change involving Cu,0. A
subsequent XRD analysis confirmed this transformation. The band around 1630 cm™ was
associated with the vibrational modes of the O—H bond bending due to the superficial water
adsorption (Amin ef al., 2016; Apte et al., 2007). In Figure 1B, the new band around
1550 cm™ is usually attributed to the N-H bond vibrational modes and is common in these
biogenic routes (Sivaraj ef al., 2014). Furthermore, the use of urea in the functionalization
process can explain the presence of this functional group. In general terms, the detection of
fine spectral peaks between 577 cm™ and 1030 cm, with differentiated absorption bands
for copper and iron oxides, corroborated the presence of these oxides in the samples, where
the differences between the IR spectra of the functionalized and non-functionalized samples
were attributed to the nanocomposites coating by Ag NPs.
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Figure 1. FTIR spectra of FeCu and FeCu-G (A) and FeCuAg10 and FeCuAg10-G samples (B)

Other authors have documented the variations between coated materials’ IR spectra
and those of uncoated or non-functionalized materials (Chitradevi et al., 2019; Kumar
et al., 2019; Singh et al., 2022), which can be attributed to the surface interaction of
phytochemicals present in the extract. Literature reports demonstrate that polyphenols,
flavonoids, proteins, and organic acids, including O-H, N-H, and C=O groups, adsorb
onto metallic or oxide surfaces during biogenic synthesis, leading to shifts or intensity
changes in FTIR peaks (Kumar et al., 2016). Furthermore, any variation in particle size
or morphology induced by the extract may enhance surface area effects, amplifying the
superficial functional groups as observed in O—H bound spectral changes.

On the other hand, the XRD pattern of the non-functionalized NPs (Figure 2) shows
six peaks in the whole spectrum, with 26 values of 35.62°, 36.42°, 38.80°, 42.30°, 61.44°,
and 73.52° for the FeCu and FeCu-G samples. Using the X’pert high score Plus software
and the Crystallography Open Database (COD), these signals were assigned to three
crystalline phases: a first phase of iron (III) oxide (Fe,O,) (ICDD 01-073-2234), presenting
a thombohedral structure with space group R3-C (167), lattice parameters a =b = 5.0342
A and ¢ = 13.7483 A, with angles a = B = 90° and y = 120°, a relative abundance of 95%
in FeCu and 93% in FeCu-G; a second phase of copper(I) oxide or (Cu,0) (ICDD 01-078-
2076) with cubic structure and space group Pn-3m (224), lattice parameters a = b = ¢ =
4.2670 A with angles a.= B =y = 90°, and a relative abundance of 3% in FeCu and 6% in
FeCu-G, with the use of guava fruit extract increasing the formation of Cu,0, and a last
phase of copper(Il) oxide (CuO) (ICDD 01-089-2529) with a monoclinic structure and
space group C2/c (15), lattice parameters a = 4.6853 A, b = 3.4257 A, ¢ = 5.1303 A of
angles o =y =90°, B =99.549°, relative abundance of 2% in FeCu and 1% in FeCu-G, a
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reduction due to the reactions generated by the multicomponent matrix of guava extract,
transforming and stabilizing the Cu?" ions into Cu!*. These results agree with other reports
(Mohamed et al., 2021; Parvathiraja & Shailajha, 2021).

The XRD spectra of silver functionalized nanocomposites (Figure 3) revealed peaks of
both the nanocomposite support and the immobilized Ag NPs; the signals corresponded to
an Ag phase with 20 values of 38.18°,44.38°, 64.52°, and 77.50° matching crystallographic
planes (111), (200), (220), and (311), respectively, and exhibiting a cubic structure with
space group Fm-3m (225), lattice parameters a = b = ¢ = 4.0773 A, and angles a. = p =
vy = 90°. The peaks assigned to the NPs showed lower intensity compared to their non-
functionalized counterparts, which has been attributed to the presence of Ag-NPs on the
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Figure 2. XRD patterns of the unfunctionalized FeCu and FeCu-G samples. The peaks assigned to
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surface of the nanocomposites (Kanwal et al., 2019), where the absence of specific peaks
in the diffractograms of the functionalized samples may respond to the higher concentration
of Ag-NPs.

The reducing and stabilizing capacity of the guava extract can be attributed directly
to its phytochemical composition. Previous studies have demonstrated that P. guajava is
rich in bioactive metabolites such as flavonoids, polyphenols, tannins, carotenoids, and
ascorbic acid, all of which exhibit well-documented redox activity and surface-capping
ability in green synthesis routes (Nguyen ef al., 2023; Otalora et al., 2022, 2024). These
compounds may actively contribute to nanoparticle nucleation, growth regulation, and
surface stabilization, while also enhancing the antibacterial functionality of the resulting
nanocomposites. Although we did not evaluate here the influence of the guava variety,
ripening stage, or agroecological conditions on the composition of the extract, these factors
are known to affect the concentration and stability of bioactive molecules (Ibrahim et al.,
2019; Nguyen ef al., 2023).

These structural modifications are not only indicative of the successful silver function-
alization and the interaction of phytochemicals with the oxide-based composite surface,
but they also have direct implications for the antibacterial behavior of the nanocomposites.
Previous studies have shown that silver-functionalized copper and iron oxides exhibit
enhanced antibacterial performance due to a synergistic mechanism where structural defects,
exposed surface functional groups (-OH, —-NH), and Ag-related surface reactivity facilitate
reactive oxygen species (ROS) generation and membrane disruption in Gram-negative
bacteria (Antonoglou ef al., 2019; Pareek et al., 2021; Parvathiraja & Shailajha, 2021).

Structural morphological analyses

The TEM and HR-TEM images of the FeCuAg5-G nanocomposite are shown in Figure
4A-D. Agglomerated nanosized crystals can be observed in these images (A, C), acommon
characteristic of polycrystalline materials (Abd El-Sadek et al., 2019). The morphology of
the compounds analyzed is circular and heterogeneous, and the contrasts observed in the
images arise due to the different orientations of the crystals in relation to the electron beam
(Yalcin et al., 2014). The particles observed have diameters ranging between 7.10 nm and
19.40 nm, with an average diameter of 7.69 + 0.57 nm. The lattice lines correspond to the
interplanar distances in Figure 4B, which were calculated using HR-TEM and measured
on a 10 nm scale. The highly crystalline structure with an interplanar distance of d = 0.25
nm on the plane (002), consistent with the monoclinic phase of CuO, matched the XRD
data and reports (Pallavolu et al., 2023). On the other hand, it was possible to observe the
silver nanoparticles with a defined spherical shape (Figure 4D).

Sample FeCuAgl0 SEM image (Figure 5 A-B) shows aggregates without a specific
shape, with an average particle size of 103.7 £ 7.3 nm. In contrast, sample FeCuAgl10-G
(Figure 5 C-D) had nanoflakes structures with defined edges and smooth surfaces (79.54
+ 4.41 nm). This flake morphology is attributed to the presence of copper oxide CuO
(Siddiqui ez al., 2016), so the elongated CuO distribution corresponds to the preferential
orientation of this oxide along the crystallographic plane (010) (Hwa et al.,2019; Pallavolu
et al., 2023). The spherical particles in both samples are due to Ag NPs, while the other
heterogeneous phase is attributed to the Fe,O, phase.

Magnetic characterization

Figure 6 shows the magnetization vs field isotherm at 300 K for FeCuAg10 and FeCuAg10-G
samples. The coercivity field (H,) and remanent magnetization (M,) (Gaona et al., 2023;
Saavedra-Gaona et al., 2024) were determined for FeCuAg10, with M =0.0011 emu/g and
H, = 11 Oe, and for FeCuAg10-G, with M, = 0.00034 emu/g and Hc = 5 Oe. The hysteresis
loops depict weak ferromagnetic behavior with a predominant paramagnetic contribution.
This behavior is attributed to particle size reductions, oxygen vacancies, and spin ordering
(Atchaya & Meena Devi, 2024). Additionally, nanostructure anisotropy, oxygen vacancies,
structural disorder, defects, surface spins, and magnetic exchange coupling contribute to these
properties (Al-Saeedi et al., 2021; Atchaya & Meena Devi, 2024; Batsaikhan et al., 2020).
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Figure 4. TEM and HR-TEM images of the FeCuAg5-G sample. The TEM images display
polycrystalline agglomerates with spherical shape, whereas the HR-TEM analysis reveals a
d-distance value of ~ 0.25 nm

Figure 5. SEM images for the FeCuAg10 (A-B) and FeCuAg10-G (C-D) samples
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Bactericidal activity

The microdilution tests evaluated the bactericidal activity of the synthesized nano-
composites against the Gram-negative K. pneumoniae strain. Bacterial growth inhibition
percentages for different nanocomposite concentrations are presented in Figure 7; the
maximum bacterial growth inhibitory capacity of functionalized and non-functionalized
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nanocomposites occurred at 500 ppm, in contrast with the NaClO positive target
7% concentration (70,000 ppm). The bactericidal potential of the nanocomposites
against the target was evident, which is even more relevant when considering the high
resistance prevalence rates of this bacterium against most commonly used antimicrobial
drugs, including cefepime, aztreonam, and cefotaxime, with 72.6%, 73.3%, and 79.2%,
respectively (Effah et al., 2020).

Although the microdilution tests showed an inhibitory effect on bacterial growth for
all nanocomposites, it was higher in the functionalized samples, probably explained by the
fact that Fe,O, NPs, for example, tend to exhibit greater bactericidal activity against Gram-
positive bacteria than against Gram-negative bacteria, which is attributed to the fact that
these NPs are highly stable under normal environmental conditions, thus generating fewer
metal ions releases that exert bactericidal activity (Pallela et al., 2019). On the other hand,
Parek et al. (2021) explained how bactericidal response improvement in functionalized
solids is due to Ag NPs generating intra- and extracellular ROS in K. pneumoniae, which,
consequently, produces oxidative stress leading to cellular demise. Also, Ag NPs can
damage bacterial DNA and inhibit microbial growth by releasing Ag* ions, which interact
with sulfur compounds, leading to cell death. (Shahriary et al., 2018).

Conclusions

The structural characterization confirmed the synthesis of copper oxide and iron oxide
functionalized with silver NPs. The use of guava fruit extract not only modified the
phase composition, increasing the presence of Cu,O, but also promoted the formation of
nanoflake-like morphologies, highlighting its role as a sustainable capping and reducing
agent. Magnetic evaluation revealed predominantly paramagnetic behavior with weak
ferromagnetic contributions. Notably, the incorporation of the extract led to reduced
saturation magnetization and coercivity, evidencing the influence of phytochemicals on
the magnetic response. Besides, the biogenic route enhanced the antibacterial activity
of the nanocomposites, as functionalized samples synthesized with guava extract
exhibited stronger inhibition against K. pneumoniae. These findings demonstrate that
green synthesis using guava extract provides a viable pathway for tailoring structural,
magnetic, and antibacterial properties, underscoring its potential for biomedical and
environmental applications.
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