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Abstract
We introduce the magnetic equivariant K-theory groups as the K-theory groups associated to the 
magnetic groups and their respective magnetic equivariant complex bundles. We restrict the magnetic 
group to its subgroup of elements that act complex linearly, and we show that this restriction induces 
a rational isomorphism with the conjugation invariant part of the complex equivariant K-theory of 
the restricted group. This isomorphism allows us to calculate the torsion free part of the magnetic 
equivariant K-theory groups reducing it to known calculations in complex equivariant K-theory.
Keywords: Magnetic group; Equivariant K-theory; Real K-theory; Quaternionic K-theory.

Resumen
Definimos los grupos de K-teoría magnética equivariante como los grupos de K-teoría asociadas a 
grupos magnéticos y sus respectivos fibrados complejos magnéticos equivariantes. Restringimos el 
grupo magnético al subgrupo de elementos que actuan complejo linealmente, y mostramos que esta 
restricción induce un isomorfismo racional con la parte invariante bajo conjugación de la K-teoría 
compleja equivariante del subgrupo restringido. Este isomorfismo permite calcular la parte libre 
de torsion de la K-teoría magnética equivariante reduciéndola a cálculos conocidos en K-teoría 
equivariante compleja.
Palabras clave: Grupos magnéticos; K-teoría equivariante; K-teoría real, K-teoría cuaterniónica.

Introduction
The discovery (Thouless et al., 1982), prediction (Haldane, 1988) and later experimental 
observation (Chang et al., 2013) of the Quantum Anomalous Hall effect in magnetic 
topological insulators has been a recent and very exciting development in the realm of 
condensed matter physics. One of the key features of this phenomenon is the fact that it 
is quantized; namely the Hall conductivity can only acquire values proportional to integer 
multiples of the von Klitzing constant (
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Introduction
The discovery (Thouless et al., 1982), prediction (Haldane, 1988) and later experimental
observation (Chang et al., 2013) of the Quantum Anomalous Hall effect in magnetic topo-
logical insulators has been a recent and very exciting development in the realm of condensed
matter physics. One of the key features of this phenomenon is the fact that it is quantized;
namely the Hall conductivity can only acquire values proportional to integer multiples of
the von Klitzing constant (e2/h̄). The integer here is the Chern number of the vector bundle
of valence states, or Bloch bundle, of the material. More remarkably, this Chern number
was also shown to determine a quantized Hall conductivity on materials that need to be
modeled with tools of noncommutative geometry (Bellissard, van Elst, & Schulz- Baldes,
1994; Bellissard, 1986).

Later, the proposal for the existence of a Quantum spin Hall Effect, namely a quantized
spin-Hall conductance with vanishing charge-Hall conductance, was put forward (Kane &
Mele, 2005b) (Bernevig & Zhang, 2006) and was experimentally observed (König et al.,
2007). Here the invariant which characterizes a state as trivial or non-trivial band insulator
is a number in the group Z2 (regardless if the state exhibits or does not exhibit a quantum
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spin Hall effect). This number is not zero whenever the valence bands generate the Z2-
invariant which was shown to live in Atiyah’s real K-theory of the 2D torus (Kane & Mele,
2005a). This invariant is known as the Kane-Mele invariant.

Both phenomena are shown to be related to the topological properties of the Bloch bun-
dle of valence states of the material. The first Chern number being the integer invariant in
magnetic 2D materials, and the Kane-Mele invariant being the torsion invariant in materials
that preserve time reversal symmetry. Among the many interesting properties these quan-
tized quantities infer in the electronic properties of a material is that they are robust under
adiabatic perturbations of the Hamiltonian; in other words, the effects are robust under the
presence of small impurities in the materials (Kou et al., 2014).

These new electronic phases in materials are nowadays the subject of intense research and
have opened several new roads for the discovery and classification of new compounds. The
importance and relevance of these new “Topological Phases of Matter” was recognized in
the Nobel Prize in Physics of 2016 which was awarded to David J. Thouless, F. Duncan
M. Haldane and J. Michael Kosterlitz “for their theoretical discoveries of topological phase
transitions and topological phases of matter” (Gibney & Castelvecchi, 2016).

The understanding of the topological invariants of crystals, magnetic or not, depends on
the explicit knowledge of the group of symmetries of the crystal, as well as the equivariant
K-theory groups of the 2D and 3D torus. The group of symmetries that are of interest in-
corporate the group of spatial symmetries of the crystal, as well as the symmetries which
composed with the time reversal operator preserves the Hamiltonian. These groups have
been known in the physics literature as magnetic groups or Šubnikov groups (Šubnikov,
1951), while in the mathematics community they have been simply known as Z2-groups.
In this paper we take the physical name of magnetic groups and we define their associated
equivariant K-theory groups. To differentiate them from the well-known complex equivari-
ant K-theory groups (Atiyah & Segal, 1969) we have coined them Magnetic Equivariant
K-theory groups.

The magnetic equivariant K-theory groups have been studied as early as the year 1970
(Karoubi, 1970), have been recently articulated to the to the study of topological phases of
matter (Freed & Moore, 2013), (Gomi, 2023), and have been further developed to provide
tools for their explicit calculation (Shiozaki, Sato, & Gomi, 2022), (Shiozaki, Sato, &
Gomi, 2017), (Serrano, 2025).

The magnetic equivariant K-theory groups are in general not easy to calculate. Each case
needs to be treated separately, and an appropriate cell subdivision of the underlying space is
necessary for applying the cohomological tools that help determine the desired groups. The
K-theory groups may be torsion and non-torsion, but sometimes the relevant feature appears
as a non-torsion invariant. In those particular cases the rational magnetic equivariant K-
theory is enough to understand the non-torsion invariants. This is the subject of this work.

We first take the restriction map from the magnetic equivariant K-theory to the complex
equivariant K-theory of the underlying subgroup that acts complex linearly. We show that
its image lies in the conjugation invariant subgroup of this equivariant complex K-theory,
and moreover, that this restriction map induces a rational isomorphism. This is our key
result and it is the main theorem of the paper.

We further show that the rational isomorphism also applies to the twisted version of the
magnetic equivariant K-theory, and we finish with an application to 2D materials which
preserve the combination of a four-fold symmetry and time reversal, as well as the spin
in the z direction. Here we show that the Chern number of the spin up valence bands
is indeed an integer invariant, and using results from (González-Hernández, Serrano, &
Uribe, 2025), we show that the parity of this Chern number provides the Z2-invariant in 2D
topological insulator altermagnets.
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Magnetic equivariant K-theory
Magnetic equivariant K-theory is the K-theory of complex vector bundles with actions of
magnetic groups (Karoubi, 1970),(Freed & Moore, 2013), (Serrano, 2025). Let us be
more precise.

A magnetic group consist of a group G together with a surjective homomorphism to Z2.
Denote this map φ : G → Z2 and call G0 the kernel of φ , thus obtaining the following short
exact sequence:

1 → G0 → G
φ→ Z2 → 1. (1)

A homomorphism of magnetic groups f : G → L is a homomorphism of groups which is
compatible with the surjective maps to Z2. A subgroup H ⊂ G of a magnetic group is also
a magnetic group if H ∩G0 � H; otherwise H ⊂ G0 and the subgroup is not magnetic (just
a group).

Examples of magnetic groups are among others, magnetic space groups in crystallography
(Heesch, 1930) and Šubnikov groups (Šubnikov, 1951).

Here we will restrict to the case on which the magnetic group G is also a compact Lie group.
For the applications to crystallography G will be a magnetic point group.

Let X be a compact G space and define a magnetic equivariant vector bundle as a complex
vector bundle E

p→ X endowed with an action of G compatible with the map p such that G0
acts complex linearly on the fibers and G\G0 acts complex anti-linearly.

A homomorphism of magnetic equivariant vector bundles is simply a G-equivariant homo-
morphism of the underlying complex vector bundles. We may take the isomorphism classes
of magnetic equivariant vector bundles and we may define the magnetic G-equivariant K-
theory of X as the Grothendieck group of the isomorphism classes. We will denote this
K-theory with a calligraphic letter KG(X), consisting of formal differences E0−E1 of mag-
netic equivariant bundles subject to the equivalence relation

E0 −E1 ∼ E ′
0 −E ′

1 ⇐⇒ E0 ⊕E ′
1 ⊕F � E ′

0 ⊕E1 ⊕F (2)

for some magnetic G-equivariant vector bundle F . For non-magnetic groups, such as G0,
we will denote KG0(X) the complex G0-equivariant K-theory groups of X (Segal, 1968).

A G-equivariant map ψ : X →Y induces a homomorphism of abelian groups ψ∗ : KG(Y )→
KG(X), E → ψ∗E, making KG a contravariant functor from compact G-spaces to abelian
groups. A homomorphism of magnetic groups α : H →G induces a homomorphism KG(X)→
KH(X), and when H is non-magnetic and α factors through H → G0 ⊂ G the homomor-
phism is KG(X)→ KH(X).

For G-spaces X with a choice of base point x0, the reduced K-theory groups are defined as
the kernel of the pullback under the restriction map:

K̃G(X) := ker(KG(X)→ KG({x0}) . (3)

For a pair (X ,Y ) of compact G-spaces we define KG(X ,Y ) := K̃G(X/Y ) and whenever
Y = /0 we set X/Y := X+, thus having the isomorphism KG(X , /0) �KG(X).

The higher K-theory groups for q ∈ N are defined as follows:

K −q
G (X ,Y ) := KG(X ×Bq,X ×Sq−1 ∪Y ×Bq), (4)

thus having the usual suspension equality K̃ −q
G (X) = K̃G(ΣqX).
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The magnetic G-equivariant K-theory groups are one example of a G-equivariant cohomol-
ogy (May, 1996). It was firstly defined in (Karoubi, 1970), and further elaborated in Freed
and Moore, 2013 and (Gomi, 2023). The present description has been developed by the first
author in (Serrano, 2025) and its structural properties and applications will be presented in
a forthcoming publication.

Properties
Among the many properties that the magnetic G-equivariant K-theory groups have, we want
to highlight the following:

• The magnetic G-equivariant K-theory over a point x0 is the group of isomorphism
classes of magnetic representations of G. These representations were called corep-
resentations by Wigner (1959) and many of their properties were described on his
book (Wigner, 1959). A magnetic representation of G is a complex vector space V
with a G action that is complex linear on G0 and complex anti linear on G\G0. The
abelian group of isomorphism classes of magnetic representation is a free Z-module
generated by the irreducible ones. Denote this group with calligraphic letter R(G)
and we have

KG({x0}) �R(G). (5)

The restriction of the magnetic representations to G0 defines a homomorphism

R(G)→ R(G0), V →V |G0 (6)

to the abelian group R(G0) of isomorphism classes of complex G0-representations.
Any irreducible magnetic representation V of G decomposes into irreducible repre-
sentations of G0 in R(G0) fitting only one of the following three cases:

– Real type: V |G0 �U with U irreducible G0-representation.

– Complex type: V |G0 �W ⊕Ŵ with W irreducible, Ŵ the conjugate representa-
tion defined in eqn. (19), and W ≇ Ŵ as G0-representations.

– Quaternionic type: V |G0 � Z⊕Z with Z irreducible G0-representation. Here we
have that Z � Ẑ.

Hence, the abelian group R(G) may be split as

R(G) �R(G)R⊕R(G)C⊕R(G)H (7)

where R(G)F corresponds to the magnetic representations of type F with F one of
the commuting fields R,C, or the division ring H, respectively.

• Whenever X is a trivial G-space, there is a canonical decomposition

KG(X) � (R(G)R⊗KO(X))⊕ (R(G)C⊗K(X))⊕ (R(G)H⊗KSp(X)) (8)

where KO(X), K(X) and KSp(X) denote the Grothendieck groups of real, complex
and quaternionic vector bundles over X . If V is an irreducible magnetic representa-
tion of F-type and E is a magnetic G-equivariant vector bundle, the bundle Hom(V,E)
defines an element in K-theory of F-type. Carrying out this assignment for all irre-
ducible magnetic representations the isomorphism of above follows.
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• The coefficients of the magnetic G-equivariant cohomology theory split as follows. If
* denotes the one-point trivial G-space, there is a canonical decomposition:

K −q
G (∗) �

(
R(G)R⊗KO−q(∗)

)
⊕
(
R(G)C⊗K−q(∗)

)
⊕
(
R(G)H⊗KSp−q(∗)

)
,

(9)

where KO∗, K∗ and KSp∗ denote the K-theory of real, complex and quaternionic
vector bundles. This result is proven by the first author in (Serrano, 2025) and gener-
alizes the statement once restricted to real G-equivariant K-theory (Atiyah & Segal,
1969).

• The magnetic G-equivariant K-theory is 8 periodic (Gomi, 2023; Serrano, 2025):

K −q−8
G (X) �K −q

G (X). (10)

One can therefore define the positively graded magnetic equivariant K-theory groups
using this periodicity.

• The restriction to orbit types gives the following isomorphisms. For H ⊂ G we have:

K ∗
G (G/H) �

{
K ∗

H (∗) if H � G0
K∗

H(∗) if H ⊂ G0.
(11)

Moreover, if N ⊂ G0 is a normal subgroup N ≤ G, and N acts freely on X , then the
projection π : X → X/N induces an isomorphism

π∗ : K ∗
G/N(X/N)

�→ K ∗
G (X). (12)

Calculation
Given a magnetic group G and a G-space, the calculation of the magnetic G-equivariant
K-theory groups is not straightforward. Perhaps the most common form to calculate these
K-theory groups is using a G-CW decomposition and the spectral sequence that the de-
composition induces. The first two pages of this spectral sequence are manageable, but the
extension problems that the higher differentials encode makes this procedure difficult and
hard to use for non experts.

The magnetic G-equivariant K-theory groups possess both torsion and non-torsion infor-
mation. Sometimes most of the non-trivial information is torsion, but in some others, the
non-torsion part is already good enough.

In what follows we will outline a procedure for extracting the non-torsion information of
the magnetic G-equivariant K-theory groups. The idea is to study the restriction map to the
complex G0-equivariant K-theory and to determine its image.

Rational magnetic equivariant K-theory
Denote by ι : G0 → G the inclusion homomorphism of G0 = Ker(φ) into G. The restriction
homomorphism

ι∗ : KG(X)→ KG0(X) (13)

maps magnetic G-equivariant vector bundles to complex G0-equivariant ones (Segal, 1968).

We claim that there is an action of Z2 on KG0(X) such that the image of ι∗ lands in the Z2
invariant part. Let us see how this action is defined.

5
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Take F
p→ X a complex G0-equivariant bundle over X . Choose any element a0 ∈ G\G0 and

define the pullback bundle

a∗0F = {(s,x) ∈ F ×X |p(s) = a0x} (14)

where F denotes the complex conjugate bundle of F . Endow a∗0F with the C-module struc-
ture as follows: for λ ∈ C let λ · (s,x) := (λ s,x), and endow a∗0F with the following G0-
equivariant structure: for g ∈ G0, g · (s,x) = (a0ga−1

0 s,gx). Note that (a0ga−1
0 s,gx) belongs

to a∗0F since p(a0ga−1
0 s) = a0ga−1

0 p(s) = a0gx.

We have now that a∗0F is a complex G0-equivariant bundle over X . Applying the construc-
tion again, we get

a∗0(a∗0F) = (a2
0)

∗F. (15)

Since a2
0 belongs to G0, we have that F and (a2

0)
∗F become isomorphic G0-equivariant

bundles with the following homomorphism:

F �→ (a2
0)

∗F, s → (a2
0s, p(s)). (16)

We have therefore defined an involution

KG0(X)→ KG0(X), F → a∗0F (17)

which makes KG0(X) a Z2-module. Note that this involution is independent of the choice
of element in G\G0 since a∗0F and (ga0)

∗F are isomorphic for any g ∈ G0. The homomor-
phism

a∗0F �→ (ga0)
∗F , (s,x) → (ga0s,x) (18)

gives the desired G0-equivariant isomorphism (here s ∈ F and p(s) = a0x).

In the case that X is a point, the Z2 action on R(G0) provides the conjugate representation
that was mentioned above. The involution is then:

R(G0)→ R(G0), W → Ŵ := a∗0W . (19)

Now we are ready to state the main result of this work.

Theorem. Let X be a compact G-space, G
φ→ Z2 a magnetic group and ι : G0 → G the

inclusion of the kernel of φ . Then the pullback of the restriction ι∗ : K ∗
G (X) → K∗

G0
(X)

lands in the Z2-invariant subgroup

ι∗ : K ∗
G (X)→ K∗

G0
(X)Z2 (20)

and it becomes an isomorphism rationally

ι∗ ⊗Q : K ∗
G (X)⊗Q �→ K∗

G0
(X)Z2 ⊗Q. (21)

Proof. First let us show that the image of ι∗ lands in the Z2 invariant part. Take a magnetic
G-equivariant vector bundle E

p→ X and denote its restriction ι∗E to G0 with the same letter
E. The Z2 action takes E to its conjugate a∗0E where a0 ∈ G\G0. The homomorphism

E → a∗0E, s → (a0s, p(s)) (22)
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is the desired G0-equivariant isomorphism. Hence ι∗E ∈ K∗
G0
(X)Z2 .

Now, since the homomorphism ι∗ is a natural transformation of functors, it is enough to
show that it induces an isomorphism at the level of orbit types. Let us show this.

Take H
ϕ→ Z2 any magnetic group with H0 = ker(ϕ) and note that the magnetic irreducible

representations of H, as well as the complex irreducible representations of H0, may be bro-
ken into real, complex and quaternionic representations (Wigner, 1959); the former one
depending on the automorphism that H/H0 induces on H0. Split the magnetic representa-
tions of H and the complex representations of H0 accordingly:

R(H) =R(H)R⊕R(H)C⊕R(H)H (23)
R(H0) =R(H0)R⊕R(H0)C⊕R(H0)H (24)

A complex irreducible representation V of H0 is of complex type with respect to H if the
conjugate representation V̂ := a∗0V is not isomorphic to V (here a0 is any element in H\H0).
Notice that in this case V̂ is simply V , and therefore we will use this identification V̂ := V
hereafter. Whenever V � V , let T ∈ HomRep(H0)(V ,V ) be the isomorphism and denote

ρ : H0 → GL(V ) and ρ ′ : H0 → GL(V ) (here ρ ′(h) = ρ(a0ha−1
0 )) the homomorphisms

corresponding to the complex representations V and V . We have then

ρ ′ = T−1ρT and ρ(a−2
0 ) =±T T . (25)

The complex representation V is called of real type if ρ(a−2
0 ) = +T T and of quaternionic

type if ρ(a−2
0 ) =−T T .

The restriction homomorphism R(H) → R(H0) splits into three maps R(H)F → R(H0)F
for F in {R,C,H}. In the real case the homomorphism

R(H)R
�→ R(H0)R (26)

is an isomorphism with R(H0)R fixed by the Z2 action. In the quaternionic case the homo-
morphism

R(H)H → R(H0)H R(H)H⊗Q �→ R(H0)H⊗Q (27)

is injective and of full rank (it is multiplication by 2 on the generators), and therefore an
isomorphism rationally, with R(H0)H fixed by Z2. In the complex case the homomorphism

R(H)C
�→ R(H0)

Z2
C (28)

is an isomorphism with the Z2 invariant part.

Hence the restriction homomorphism

R(H)→ R(H0)
Z2 (29)

is injective and of full rank. Rationally we get an isomorphism

R(H)⊗Q→ R(H0)
Z2 ⊗Q. (30)

Now, let us take any G-orbit type G/H for H ⊂ G. We have two cases, either H ⊂ G0 or
not. Assuming that H ⊂ G0 we have that

KG(G/H) � KH(∗) and KG0(G/H) � KH×G0(G) � KH(∗)⊕KH(∗) (31)
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where the Z2 action on KH(∗)⊕KH(∗) swaps the summands. We have that the restriction
map in this case induces an isomorphism

KG(G/H) ��

�

��

KG0(G/H)Z2

�
��

KH(∗)
� �� (KH(∗)⊕KH(∗))Z2 .

(32)

Whenever H � G0 we have that H is a magnetic group with H0 = G0 ∩H. Hence

KG(G/H) �KH(∗) and KG0(G/H) = KH0(∗), (33)

and the restriction homomorphism for the orbit type G/H boils down to the restriction
homomorphism for the magnetic group H:

KG(G/H) ��

�

��

KG0(G/H)Z2

�

��

KH(∗) �� KH0(∗)Z2 .

(34)

Since the bottom horizontal map is an isomorphism rationally, then the upper horizontal
map is also one. We conclude that the the restriction homomorphism

KG(G/H)→ KG0(G/H)Z2 (35)

induces an isomorphism rationally

KG(G/H)⊗Q �→ KG0(G/H)Z2 ⊗Q. (36)

The previous argument can also be applied for G-spaces of the form G/H ×X where X has
no G-action, thus implying that the restriction homomorphism

KG(G/H ×X)→ KG0(G/H ×X)Z2 (37)

is an isomorphism rationally

KG(G/H ×X)⊗Q �→ KG0(G/H ×X)Z2 ⊗Q. (38)

The compatibility with open G-equivariant charts on both sides of the restriction homomor-
phisms, the Mayer-Vietoris sequence, together with the five-lemma and the fact that the
higher K-theory groups are defined with the usual suspension equality of eqn. (4), implies
that the restriction homomorphism induces an isomorphism rationally.

□

Twisted case
The magnetic G-equivariant K-theory has an extension to the case on which the local mag-
netic representations are projective. A simple way to understand this feature is the follow-
ing.

Take A ⊂ S1 and consider an extension G̃ of G by A fitting in the exact sequence

1 → A → G̃ → G → 1 (39)
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where G acts on A by complex conjugation through the homomorphism φ . That is G×A →
A, (g,a) → a−1 if g ∈ G\G0 and (g,a) → a otherwise. Denote by G̃0 the group extension
over G0 and note that we have the following diagram of exact sequences:

A

��

A

��

G̃0 ��

��

G̃ ��

��

Z2

G0 �� G �� Z2.

(40)

The groups G̃ and G are magnetic, the former extending the latter in the middle vertical exact
sequence, the left vertical exact arrow encodes the fact that G̃0 is a central A-extension of
G0, and the horizontal exact sequences encode the information of the magnetic groups G̃
and G.

A G̃-twisted magnetic G-vector bundle over the G-space X consists of a magnetic G̃-equivariant
vector bundle E → X where the subgroup A acts on the fibers of E complex linearly by mul-
tiplication of scalars. Here X is considered a G̃-space by the induced action of the projection
map G̃ → G.

The G̃-twisted magnetic G-equivariant K-theory of X , denoted as G̃KG(X), will be the
subgroup of the magnetic G̃-equivariant K-theory KG̃(X) generated by G̃-twisted magnetic
G-vector bundles over X .

If we restrict the group G̃ to A

resG̃
A : KG̃(X)→ KA(X) (41)

and noting that KA(X) � R(A)⊗K(X), we may take the irreducible representation ν of A
induced by the canonical inclusion A ⊂ S1. Then the G̃-twisted magnetic G-equivariant
K-theory of X can be understood as the following inverse image:

G̃KG(X) = (resG̃
A )

−1 (Z⟨ν⟩⊗K(X)) . (42)

The higher K-theory groups G̃K −q
G (X) are defined as in eqn. (4), and therefore we obtain

the inclusion:

G̃K −q
G (X)⊂ K −q

G̃
(X). (43)

The G̃-twisted magnetic representations of G define a subgroup of the magnetic representa-
tions of G̃ and they split accordingly into real, complex and quaternionic type:

G̃R(G)⊂ R(G̃), G̃R(G)F ⊂ R(G̃)F, for F ∈ {R,C,H}. (44)

The coefficients of the twisted case G̃K −q
G (∗) split as described in eqn. (9):

G̃K −q
G (∗) � (45)(

G̃R(G)R⊗KO−q(∗)
)
⊕
(

G̃R(G)C⊗K−q(∗)
)
⊕
(

G̃R(G)H⊗KSp−q(∗)
)

9
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The restriction to G̃0 gives us a natural homomorphism

G̃K ∗
G (X)→ K∗

G̃0
(X)Z2 (46)

inducing a rational isomorphism with its image. But note that the image does not lie only
in the G̃0-twisted complex K-theory G̃0K∗

G0
(X) unless the group A = Z2. This follows from

the fact that the conjugate representation of the canonical inclusion A ⊂ S1 is only equal to
the canonical one when the group A is Z2.

Since the case A = Z2 is of independent interest, our main Theorem implies the following.

Corollary. Let X be a compact G-space, G
φ→Z2 a magnetic group, ι : G0 →G the inclusion

of the kernel of φ , G̃ a central extension of G by the groups Z2 and G̃0 the kernel of the
induced homomorphism from G̃ to Z2. Then the pullback of the restriction from G to G0
induces a homomorphism of twisted K-theories

ι∗ : G̃K ∗
G (X)→ G̃0K∗

G0
(X)Z2 (47)

and it becomes an isomorphism rationally

ι∗ ⊗Q : G̃K ∗
G (X)⊗Q �→ G̃0K∗

G0
(X)Z2 ⊗Q. (48)

Applications
The motivation for defining the magnetic equivariant K-theory groups comes from the realm
of condensed matter physics. The electronic properties of crystals, magnetic or not, can be
modeled with computers using Density Functional Theory (DFT) and the different programs
that have been developed for this task. The bundle of valence eigenvectors of the associated
Hamiltonian, the Bloch bundle, in the case that the energy is gapped at the Fermi level,
defines a magnetic equivariant vector bundle. Adiabatic perturbations of the Hamiltonian do
not change the topological type of the Bloch bundle, and therefore the topological invariants
of the Bloch bundle, as an element in the magnetic equivariant K-theory, become topological
invariants of the Hamiltonian.

Several papers have been written on this regard (see (Gomi, 2023) and references therein),
but very few explicit calculational tools have been developed in order to extract the topolog-
ical invariants from the Bloch bundle of a prescribed Hamiltonian. The main Theorem of
this work provides a calculational tool that may permit extract the non-torsion invariants of
the Bloch bundle, in particular in the case that the Hamiltonian models a magnetic material.

But before we see the applications in condensed matter physics, let us first start by relating
the magnetic equivariant K-theory groups to other known K-theories.

When the magnetic group G is Z2 and φ is the identity, the magnetic equivariant K-theory
groups are exactly Atiyah’s real K-theory groups (Atiyah, 1966):

K ∗
Z2

= KR∗. (49)

For spaces X with trivial Z2 action we recover the K-theory of real vector bundles

K ∗
Z2
(X) = KO∗(X). (50)

When the magnetic group G is again Z2 with φ the identity, and we choose its twisted ver-
sion, namely Ĝ = Z4 and A � Z2 acting by multiplication by −1, then we recover quater-
nionic K-theory (Gomi, 2023):

Z4K ∗
Z2

= KH∗. (51)

10
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For spaces X with trivial Z2 action we recover the K-theory of symplectic vector bundles
(Dupont, 1969):

Z4K ∗
Z2
(X) � KSp∗(X). (52)

The well known relation between symplectic and real K-theory KO∗−4 = KSp∗ also works
for Z2-spaces and we have K ∗−4

Z2
� Z4K ∗

Z2
(Gomi, 2023). The restriction homomorphism

ι∗ lands in both cases in complex K-theory K∗ and the induced Z2 action is simply the
conjugation action on the complex vector bundles. The generator of K−2 is the virtual
bundle H −1 where H is the Hopf bundle over S2 and 1 is a trivial vector bundle of rank
1. The conjugation map sends H − 1 to H − 1 and in K−2 one is the additive inverse of
the other.

In K−4 the generator is P −2 where P is a rank 2 complex vector bundle over S4 whose
clutching function is given by the canonical diffeomorphism η : S3 �→ SU(2). Since the
matrices of SU(2) all commute with the matrix iσyK where σy is the second Pauli matrix and
K denotes complex conjugation, then it is clear that the conjugate clutching function η :=
KηK is the same as the clutching function (iσy)η(iσy)

−1. Therefore P and its conjugate
P are isomorphic. This implies that the conjugation action of Z2 is trivial on K−4. By Bott
periodicity we see that the complex K-theory groups as Z2 modules are the following:

Kq =



Z trivial Z2 −mod. for q ≡4 0
Z sign Z2 −mod. for q ≡4 2
0 for q ≡2 1.

(53)

We therefore have that the restriction maps

ι : K ∗
Z2

→ (K∗)Z2 ι : Z4K ∗
Z2

→ (K∗)Z2 (54)

recover the well known rational isomorphisms:

K ∗
Z2
�Q

Z4K ∗−4
Z2
�Q (K∗)Z2 �Q


Q for ∗ ≡4 0
0 for ∗ �4 0 (55)

Now that we have determined the Z2-module structure of the complex K-theory groups in
eqn. (53) we are now ready to show an application in condensed matter physics.

Topological Insulators Altermagnets
Altermagnetism is a type of magnetic state in crystals on which the magnetic structures
are collinear and crystal-symmetry compensated resulting in zero net magnetization. But
unlike ordinary collinear antiferromagnets, the electronic bands in an altermagnets are not
Kramer’s degenerate (Šmejkal et al., 2020). The symmetry that is present in some of these
2D materials is C4T, a composition of a four fold rotation with time reversal symmetry.

Whenever the material is an insulator, various works have put forward the idea that there is
a topological invariant that separates trivial insulators from the topological ones (Day et al.,
2023; Zou, Fu, & Shen, 2024). It turns out that the magnetic equivariant K-theory predicts
the existence of a bulk Z2-invariant on 2D systems with the C4T symmetry (González-
Hernández, Serrano, & Uribe, 2025). This invariant can be extracted adding the spin z
operator Sz on the system, and the reason for this procedure to work, lies in the rational
isomorphism presented in the Corollary above.

The setup is as follows (for details we refer to (González-Hernández, Serrano, & Uribe,
2025)). The group is the one generated by C4T and Sz and they act on the 2D torus T 2. The
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operator Sz squares to 1 and acts trivially on T 2. The other operator acts on the space as
follows:

C4T : T 2 → T 2 (x,y) → (y,−x), (56)

while on the fibers it incorporates the interaction of the spin with the lattice (spin orbit
coupling). We have that (C4)

4 =−1 and T2 =−1, therefore (C4T)4 =−1.

The spin commutes with the rotation C4 while it anticommutes with T. Therefore C4T
and Sz anticommute on the fibers, while they clearly commute acting on T 2. To bring the
notation we have employed in the previous section we have that the group of symmetries is
G = Z4 ×Z2 = ⟨C4T⟩×⟨Sz⟩, and the homomorphism φ is:

φ : Z4 ×Z2 → Z2, φ(a,b) = a mod 2. (57)

Now, because of spin-orbit coupling, the group G acts projectively on the fibers and there-
fore we need to take a central A = Z2 extension G̃ of G, where A acts on the fibers by
multiplication. We have the extension

Z2 → G̃ → G (58)

where G̃ is given by the following generators and relations

G̃ = ⟨ã,b|ã8 = b2 = 1,bab = a5⟩. (59)

The equations above follow from the facts that (C4T)4 = −1 and Sz(C4T) = −(C4T)Sz =
(C4T)5Sz. Here we have that

G0 = ⟨a2,b⟩ � Z2 ×Z2 and G̃0 = ⟨ã2,b⟩ � Z4 ×Z2. (60)

Note that the restricted twisted group G̃0 becomes abelian. This is important for the calcu-
lation.

We want to determine the non-torsion invariants of the twisted equivariant magnetic group
G̃K ∗

G (T 2) and for this we are going to calculate
(

G̃0K∗
G0
(T 2)

)Z2
. First note that

G̃0K∗
G0
(T 2) � R(Z2)⊗Z4K∗

Z2
(T 2) (61)

since the spin z operator Sz commutes with (C4)
2 = C2, and R(Z2) denotes the representa-

tion ring of Z2. The conjugation Z2-action generated by the operator C4T on the complex
vector bundles splits into, conjugation composed the pullback of the four fold rotation in
Z4 K0

Z2
(T 2), while on R(Z2) sends spin up to spin down and vice versa.

Therefore, as a Z2-module, we could take the isomorphism

G̃0K∗
G0
(T 2) �

(
Z4K∗

Z2
(T 2)

)↑
⊕
(
Z4K∗

Z2
(T 2)

)↓
(62)

where the arrows denote that we have split the bundle into spin up and spin down part. The
Z2-action simply maps spin up bundles to spin down, and vice versa. Hence, we could take
the spin up bundles as the representatives of the Z2-invariants thus getting the isomorphism:

(
G̃0K∗

G0
(T 2)

)Z2
�

[(
Z4K∗

Z2
(T 2)

)↑
⊕
(
Z4K∗

Z2
(T 2)

)↓
]Z2

�
(
Z4K∗

Z2
(T 2)

)↑
(63)
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Now, since H2(Z2,S1) = 0 we know that Z4K∗
Z2
(T 2) is isomorphic to the untwisted version

K∗
Z2
(T 2) (Adem & Ruan, 2003). Therefore we conclude that the non-torsion invariants of

the twisted equivariant magnetic K-theory that we were interested in are isomorphic to the
non-torsion invariants of the complex K-theory K∗

Z2
(T 2):

G̃K ∗
G (T 2) �Q

(
Z4K∗

Z2
(T 2)

)↑
�Q K∗

Z2
(T 2). (64)

We can therefore conclude with the following result.

Result: Bundles over the torus T 2 with both the C4T symmetry and Sz spin symmetry pos-
sess an integer invariant coming from the 2D- cell (the bulk). This invariant can be extracted
by determining the Chern number of the spin up bundle.

The previous result was exploited in the work of the first two authors (González-Hernández,
Serrano, & Uribe, 2025) where it is furthermore shown that there is a Z2 bulk invariant for
systems that preserve the C4T symmetry on a 2D torus. Incorporating the spin z it is shown
that the value of this invariant can be extracted as the parity of the Chern number of the spin
up bundle defined above.

Conclusions
We have shown that the torsion free part of the magnetic equivariant K-theory can be ex-
tracted from the conjugation invariant part of the restricted complex equivariant K-theory.
We have used this result to show that the spin up Chern number of bundles with C4T and
spin z symmetry over the 2D torus determine their bulk invariant. The parity of this invari-
ant turns out to be the Z2 invariant that classifies topological insulators altermagnets with
C4T symmetry.

Further research is needed in order to determine the bulk invariants of magnetic symme-
tries that involve compositions of rotations, time reversal symmetry, and translations. These
compositions require the definition of a more general kind of twistings that incorporate in-
formation of the base space. The associated twisted magnetic K-theories need to be defined
and its properties determined. We leave this project for a future publication.
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