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Se calculan la dimensidn fractal y el méximo exponente de Lyapunov para el electroencefa-
lograma (EEG) humano durante el suefio. Para este proposito se supone que el EEG es generado
por un sistema dindmico determinista no lineal. Se encuentran pequefias diferencias entre algu-
nas etapas de suefio. El método usado se describe detalladamente e incluye cdmo encontrar el
espectro de exponentes de Lyapunov, la entropia de Kolmogorov-Sinai y la dimensién de
Lyapunov. También se discuten resultados que contradicen el origen exclusivamente deterministico
no lineal que algunos autores le atribuyen al EEG.
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Abstract

I calculate the fractal dimension and the largest Lyapunov exponent for the human
electroencephalogram (EEG) during sleep. For this purpose I assume that the EEG is generated
by a deterministic nonlinear dynamical system. Slight differences among some sleep stages are
found. The used method is thoroughly described and for completeness it includes how to find
part of the Lyapunov exponents spectrum, Kolmogorov-Sinai entropy and Lyapunov dimension.
I also discuss some results that apparently challenge the belief that the EEG is solely generated
by a deterministic nonlinear dynamical system.
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1. Introduction

The existence of deterministic chaos or low-dimensional
nonlinear dynamics in the human EEG is still under dis-
cussion {Albano and Rapp 1992; Doyon 1992; Elbert et al.
1994; Fell et al. 1993; Frank et al. 1990; Palus 1992;
Theiler 1995). Thus, the application of numerical
techniques based on nonlinear sysiems to the EEG is an
active research area. Although in this article 1 am
particularly mterested in describing clinical applications of
nonlinear systems analysis, 1 will also discuss some results
that dispute the presence of deterministic chaos in the EEG.
Chaos is here regarded as a manifestation of some
deterministic nonlinear dynamical systems that combine
acute sensifivity to initial conditions with aperiodic and
bounded behavior.

It is possible to start with a scalar time series for
one obscrvable, such as one EEG channel, and obtain a
phase-space representation by phase-space reconstruction.
Thus, information from all degrees of freedom coupled to
the observable can be recovered. Although there is a variety
of methods to achieve this (Casdagli et al. 1991; Landa and
Rozenblyum 1989; Mindlin et al. 1991), the most popular
and perhaps the only systematic procedure is time-delay
embedding, originally described by Packard et al. (1980) and
put on firmer footing by Maiié (1981) and Takens (1981).
After having obtained a phase-space representation of the
time series, we can perform a number of classifications,
natmely, dimensions (Elbert et al. 1994; Farmer et al. 1983;
Grassberger 1983; Grassberger and Procaccia 1983a;
Grassberger and Procaccia 1983c¢: Kantz and Schreiber
1954), Lyapunov exponents (Oseledec 1968}, Kolmogorov-

Sinai (KS) entropy (Farmer 1982: Grassberger and

Procaccia 1983b). and spectram of singularities f{a)
(Chhabra and Jensen 1989; Halsey et al. 1986).
Dimensions (fractal and of the natural measure) are
the most basic property of an attractorZ. An attractor is
defined to be d-dimensional if in a neighborhood of every
point it is diffeomorphic to an open subset of R?. A torus,
for instance, has d=2 because it opens into a two-
dimensional rectangle. The attractor is strange if it is a
fractal, i.e. its dimension is non-integer. The presence of a
strange attractor almost always implies chaotic behavior,
Dimensions provide the most basic level of knowiedge
necessary to characterize the properties of an attraclor. They
tell us the amount of information necessary for specifying

2 Informally, an attractor is a set in phase-space that attracts
trajectories after the transient has died out.

the position of a point on the attractor with a given
precision, and are an inferior bound to the number of
essential vaniables required t0 model the dynamics of the
system. However, much more information about the
dynamics of the system is provided by the spectrum of
characteristic Lyapunov exponents. These exponents
provide a quantitative measure of chaos by describing the
mean rate of divergence of initially neighboring frajectories.
In a chaotic system at least one exponent is positive, while
for pericdic or quasi-periodic behavior the largest exponent
is zero. Furthermore, there are known relations between
Lyapunov exponents and other measures, such as KS
entropy and the dimension of the natural measure. Here 1
will analyze sleep EEG using both criteria: dimensions and
Lyapunov exponents.

The fractal dimension of the attractor has been a
common criterion 1o classify EEG signals. It has been
found, for example, that in normal healthy subjects, the
deeper the sleep, the lower the EEG dimensionality
{Roschke and Aldenhoff 1992; Roschke and Aldenhoff
1993). Measurement of Lyapunov exponents of EEGs has
been less frequent due to its technical difficulties. Frank et
al. (1990) found the first Lyapunov exponent for an
epileptic seizure, using a modification of the method by
Wolf et al. (1985). The unmodified method was used by
Babloyantz and Destexhe (1986} and by Fell et al. (1993) to
determine the largest Lyapunov exponent during an instance
of epilepsy and during sleep, respectively, Gallez and
Babloyantz (1991) applied a procedure by Eckmann et al.
(1986) that shouid find the complete spectrum of Lyapunov
exponents and encountered at least two positive Lyapunov
exponents in instances of alpha waves, deep sleep, and
Creutzfeld-Fakob coma. This listing is by no means
complete, but it gives an idea about recent research results.

In this article I look for changes in dimensions and
Lyapunov exponents that may allow the characterization of
sleep stages. Human sleep stages are classified as rapid-eye-
movement (REM) (also fast-sleep or paradoxical sleep) and
non-REM (slow sleep). The latter is further divided in
stages 1-4. Stage 1 corresponds to drowsiness, 2 to light
sleep, 3 to deep sleep, and 4 to very deep sleep. Although it
is a fact that wakefulness EEG is richer in information than
a sleep record, there are a number of conditions, especially
in the domain of epileptic seizure disorders, in which sleep
provides essential information, This obviously excludes the
sleep disorders themselves. It is worth mentioning that 2 is

" the most informative sleep stage from a clinical point of

view. (Niedermeyer 1993)
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2. Procedure

In this section I outline in some detail the general analysis
procedure performed on the data. Firstly, I assume that the
data can be described by a deterministic flow of # generally
coupled, nonlinear ordinary differential equations,

x =[x, .., x,)], M

where = (f1, ..., fy) are unknown functions of the coor-
dinates x(t). Although this assumption has been very fre-
quently used in prior investigations, it is stiil an active
research area as I already mentioned. Now, using time-delay
embedding (Maii¢ 1981; Packard et al. 1980; Takens 1981),
I can reconstruct phase-space. Given the time series x(f;) a
dg-dimensional phase portrait is reconstructed with delayed
coordinates, i.e. a point on the attractor is given by

X)) =[x(t), x(t; +7), x(f; +27), ...,

x(¢; + (de — DO,
where T is a multiple of the sampling time (7T;), because we
have a sampled signal. Thus, reconstruction requires finding
an appropriate time-delay (t) and embedding dimension
(dg). According to Takens (1981), under some general
conditions the orbit followed by X(¢) in this dg-dimensional
embedding space differs from the actual solution x(f} of (1)

only by a smooth change of coordinates.

x = f(x),

@

x(t) 20

Mafié (1981) and Takens (1981) claim that phase-
space reconstruction is independent of the time lag chosen,
Nevertheless, this statement is not very useful for analyzing
data. If 7 is chosen too small x(f) and x{(7 + 7) will be so
similar that they will not provide independent information,
If, on the contrary, T is too large x(f) and x(f + ) will be
totally uncorrelated, and the projection of the attractor will
occur onto two totally unrelated directions. See figures 1
and 2 for an illustration of right and wrong choices of time-
delay. So, to find an optimal 1 I use the method proposed
by Fraser and Swinney (1986), which prescribes a selection
based on the averaged mutual information (AMI) function
(1). I measures the number of bits that one does learn on the
average about a set of measurements A={q;} from a set of
measurements B=(b;}. Its definition is

Pla..b.)
=Y Pa,b)log,| —-i- |
(© Zb @b;) ng[P(.a,.)P(b,.)]

where P(-,-) is the joint probability distribution for sets A
and B, and P(-) is the individual probability distribution for
either of the measurements. In our case the two sets of mea-
surements are x(¢;) and x(¢; + T). So, since 7 tells us how
much information one can learn about a measurement at

Figure 1. Phase-space representation of the Lorenz attractor (see table 1 for equations): (a) original
attractor; (b) reconstructed attractor using time-delay embedding (time-delay = 0.1s corresponds to the
first minimum of AMI).
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Figure 2. Reconstructed Lorenz attractors: (a) time-delay ten times smaller than in Fig. 1b; (b) time-de-
lay ten times larger than in Fig. 1b.

one time from a measurement taken at another time, T is
chosen at the location of the first minirnum of the AMI.
When [ does not have a minimum, but is a monotonously
decreasing function, I use the empirical criterion proposed
by Abarbanel et al. (1993), that selects T according (o
KO/H0) = 1/5. If T = 10-T; or more, the data may be
oversampled according to Kennel and Abarbanel (1996).
One way to deal with this problem is to down-sample {i.e.
toss out data), until T < 5-T; or s0. This works, but it
disposes of valuable hard won data in a quite casual fashion,

Takens (1981) proved that a sufficient condition for
the embedding dimension is dg > 244, where dj is the
dimension of the attractor. Nevertheless, to obtain accurate
estimation of exponents it is essential to find a necessary
embedding dimension (dy), because 100 large an embedding
dimension reduces the density of points defining the
attractor, fills empty space with noise, and increases expo-
nentially the computational cost. Furthermore, dy puts an
upper bound on the dimensionality of the system. To find
dy T use the method of false nearest neighbors (FINNs),
originally described by Kennel et al. (1992), with one of the
improvements (use of decorrelation intervals) proposed by
Kennel and Abarbanel (1996). With this addition, the
method not only improves FINN estimation, but provides
means for testing for an extremely important feature: signal
stationarity. When (2) is used to reconstruct phase-space,
every point X(z;) will have another point that is its nearest
neighbor (XNN(1;)), with nearness in the sense of some
distance function (e.g. Euclidean distance). If these points
are close together not because of the topology of the

attractor, but due to projection of the attractor in too low a
dimensional space, then XNN(t,-) is a FNN of X(#;) (see
figure 3 for an illustration). The procedure I apply then, is
to find an estimation of the number of FNNs by gradually
increasing embedding dimension. The embedding dimension
for which percentage of FNNs approximately drops to zero
is dyy. When the signal is distorted by noise the percentage
of FNNs raises monotonously after reaching a minimum. 1f
the value of the minimum is acceptable (i.e. it is close
enough o zero) it can be chosen as dy. It is worth
mentioning that the complexity of an algorithm that looks
for nearest neighbors in a straightforward manner is propor-
tional to Nzl2, whete N is the size of the data set. Thus,
with increasing data sets a more efficient handling becomes
obligatory. I use the box method described by Schreiber
(1995) to tackle this problem (~ N log N).

Once | have a phase-space reconstruction I apply the
Grassberger and Procaccia {(1983a) method as described by
Holzfuss and Mayer-Kress (1986). Thus, I obtain an
estimalte of the correlation dimension {(d7). Now, we can
use the robust and now classical method of Wolf ¢t al.
(1985) to find the largest Lyapunov exponent (A1) for every
epoch. But in order to comrectly estimate A it is necessary
to take into account some fundamental limitations of the
procedure as expressed by Eckmann and Ruelle (1992).
They have shown that to obtain correct results, the time
series must satisfy

log N > dy log(Dir), )]
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Figure 3. Data from the Hénon attractor (see table 1 for
equations): (a) in 0o low an embedding space, (b) in a large
enough embedding space. In (a) A, B, and C are neighbors,
while in (b) it becomes clear that A is a true neighbor of B,
while C is a false neighbor of B.

where N is the length of the time-series, d7 is the corre-
lation dimension, D is the diameter of the reconstructed
attractor, and r is a parameter of the Wolf et al. (1985)
method. As a measure of D one may use the rms value of
the time series

'=lZMWJﬁ

N =
where 5§ is the average of the observations. In order to
obtain sensible results it is required that /D is of the order
of 1%.

Then I apply the method proposed by Holzfull and
Lauterborn (1989) to find part of the characteristic
Lyapunov exponents (A;) spectrum (ordered by their
magnitudes A, > A, > &, >---). Thus, the exponent ob-
tained with the first method should help eliminating large
spurious exponents that result from the application of the
second one. I have not used the popular method by
Eckmann et al. (1986} to find the Lyapunov exponents
spectrum, due to concemns about its robustness expressed by
Vastano and Kostelich (1986).

A relation between KS entropy and Lyapunov ex-
ponents was originally presented by Pesin (1977). Namely,
KS entropy (K) equals the sum of the positive Lyapunov

exponents if the system is ergodic3. K is the rate at which
the system generates information, and is therefore inversely
proportional to the predictability of the system. KS entropy
is also a measure of how chaotic a system is.

The definition of Lyapunov dimensioii (Young
1982) was introduced by Kaplan and Yorke (1979):

d,_—]+|

where j is the largest integer for which zi A;>0.
According to Farmer et al. (1983) for a lyp:ca'l attractor
Lyapunov dimension should be equal to the dimension of
the natural measure. Nevertheless, since the data sets we are
working with are finite and not necessarily products of a
perfectly stationary system, this equality does not hold
exactly. Comparison of this dimension with the one
obtained before is, nonetheless, a relatively accurate way of
validating measured Lyapunov exponents.

In figure 4 1 present a schematic summary of the
procedure just described. Time sampling and epoch selection
are briefly described in the next section.

3. Analyzed material and numerical results

Prior to EEG analysis [ have tested the correctness of the
above exposed method with simulated data: logistic
mapping, Hénon mapping, and noiseless and noisy Lorenz
system. For the latter I used additive gaussian ditribution
noise (zero mean and standard deviation equal to 1% of the
reconstructed attractor size) as proposed by Yao and Tong
{1934). Table 1 summarizes calculated values and references
to sources of alternative results or alternative methods. In
general, the values I have obtained depend strongly on the
chosen parameters,

Figure 5 illustrates a noteworthy fact: for certain
parameter values of the logistic map the FNN method gives
erroneous results (FNN percentage never drops (o zero and
after reaching a minimum it rises as for a noisy time
series). This is caused by the AMI method which yields too
large a time delay (it should be 1). This is an interesting
fact, because as I will discuss in some detail later I obtain
similar results when I analyze certain sleep stages. With
sleep stages, however, the fact that the FNN percentage
does not approach zero is not due to a wrong time-delay
selection.

3 a system is ergodic if its Lyapunov ¢xponents are
independent of the position in phase-space.
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Figure 4. Summary of the applied method. See text for
details. .

Experimental data analysis has been performed on
three EEG signals of different sleeping subjects taken from
the MIT-BIH (1992) polysomnographic database. Subjects
were monitored for evaluation of chronic obstructive sleep
apnea syndrome (Broughton 1993). EEG recordings were
taken in position C4-A1l according to the international 10—
20 system (Reilly 1993) and had lengihs that varied from
two to six and a half hours, at a sampling rate of 250
samples per second. For analysis purposes, I have divided
time series in 10.000 points epochs. Using such long
sections is a must to comply with restriction (3). The 40-
second epochs are selected visually in order to qualitatively
assure stationarity, absence of artifacts, and permanence in a
single sleep stage. Visual inspection also includes analysis
of power spectra for shorter 512 points sub-¢pochs, as it is
usual in clinical applications. The long epochs can be cho-
sen, because I am further testing for stationarity using the
method described by Kennel and Abarbanel (1996) (as I al-
ready discussed).

Unfortunately, I have not been able o analyze sleep
stage 1, since its duration in the examined EEGs was too
short. Furthermore, the distinction between deep drowsiness
and light sleep is imprecise and has necessarily been drawn
in a somewhat arbitrary and artificial manner.

Application of the AMI method (Fraser and Swinney
1986) yields time-delays in the range 4-T5-9-T¢. Thus, in
accordance to the criterion by Kennel and Abarbanel (1996)
the signal is somewhat oversampled in most cases. Since
the oversampling is not too acute, however, I do not down-
sample the signal. Some AMI functions show marked
minima, while others do not. In general I have found that
the AMI function for REM sleep is the most jagged one,
while the one for sleep stage 4 is the smoothest. Figure 6
shows two typical results of the AMI procedure.

As expected for a noisy signal, percentage of FNNs
raises monotonously after reaching a minimum. For
operative purposes if the minimum value of FNN
percentage is below 5% 1 consider the epoch acceptable. 1
have-not been able to find epochs corresponding to sleep
stages 2 and REM that comply with this restriction. Figure
7 illustrates this fact. This issue is very important and will
be further discussed in the next section.

Moreover, the FNN procedure further provides a
stationarity test, by calculating the diverse results for
various decorrelation intervals. For the procedure described
herein I use decorrelation intervals in the 0-20-1 range. If
the various plots coincide in what seems a unique bundle,
the epoch is stationary. See figure 7 for an illustration.

The last part of the procedure is to find the ¢i-
mension of the attractor and the largest Lyapunov exponent.
Finding the correlation dimension is straightforward. The

100~
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Figure 5. FNN percentage for the logistic mapping with a
= 3.9. The procedure erroncously gives dy > 1. Moreover
the FNN percentage has a minimum that is well above zero
and then rises as if the time series were noise contaminated.
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System Parameter  Theoretical T using dp using d> using Largest ex-
values Lyapunov  (Fraserand (Kenneland  (Holzfuss  ponent using
spectrum Swinney Abarbanet  andMayer- (Wolfetal.
(bitsfiter.} 1986) 1996; Kress 1986) 1985)
(iter.) Kennel et al.
1992)
Logistic mapping:
(Binder and Campos 1996) a=36 A =0.1814 1 1 092 0.22
X1 = 8%, (1= X,) =39  A=0491 9 4 0.93 051
Hénon iterator:
(Wolf et al. 1985) a=14 A, = 0.603 8 2 1.22 0.56
2
xn+l =1_a‘xn +yn b=03 R‘Z =-2.34
yn-i-i = 'bxn
Noiseless Lorenz:
(Wolf et al. 1985) o=16.0 A, =216 0.16s 3 2.08 2.03
¥=0(y—x)
) r=4592 i, =000
y=—xz+rx-y
i = xv— bz b=40 ), =-324
A (bits/s)
(sampling rate: 100Hz)
Noisy Lorenz:
(Wolf ¢t al. 1985) Same as Same as 0.16 3 2.10 2,13
above above

Table 1. Resulis of procedure applied to simulated data.

result of the Wolf et al. (1985) algorithm, on the other
hand, is a series of points. In order to obtain a correct re-
sult, it is necessary that the points converge to a value like
shown in figure 8. To achieve convergence a parameter (the
evolution time between replacements) must be adjusted by
trial and error. A wide range of evolution times must be
checked, since we do not know the mechanism for chaos of
the system, Table 2 is a summary of the obtained numerical
results.

4. Discussion and conclusions

Unfortunately it is not possible to find the dimensions and
the largest Lyapunov exponent for every sleep stage. For
the few sleep stages that can be analyzed, however, I have
found that apparently the deeper the sleep, the lower the
EEG dimgnsionality. This result is in agreement with the
ones presented by Réschke and Aldenhoff (1992, 1993).
The largest Lyapunov exponent also seems 10 decrease with
deeper sleep. Variations among sleep stages are,
nonetheless, not large.

I have applied a procedure that finds the Lyapunov
exponents spectrum. However this method does not yield
valid results, due to a significant lack of robustness. Ideally
the whole spectrum of Lyapunov exponents should be
calculable, nevertheless, several factors can induce errors in
the performed analysis: measurement conditions,
nonstationarity of the signal (Elbert et al, 1994), spurious
exponents (Grassberger 1991; Holzfuss and Lauterborn
1989), sampling-rates, time series and epochs lengths
{Eckmann and Ruelle 1992; Kantz and Schreiber 1994),
filtering, and noise reduction (Kantz and Schreiber 1994
Molinari and Dumermuth 1992), For a brief but complete
discussion about influence of some of these factors
specifically on the analysis of EEGs see Albano and Rapp
(1992). Thus, we should call the measured exponents the
“apparent spectrum of Lyapunov exponents”. These have
only meaning in a comparative sense.

The present EEG analysis has a number of im-
provements over previous investigations. Many previous
researches bave used the first zero-crossing of the auto-
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Figure 6. Typical AMI functions for the EEG (solid line).
The dashed line corresponds to 1/5 of the maximum AMI
value. (a) Stage 4 sleep. No marked minimum is present.

(b) REM sleep. In this case a first minimum is well
defined. Notice the approximate agreement of the first
minimum criterion and the 1/5 of maximum value criterion
for this case.

correlation function (Abarbanel ¢t al. 1993) to find the
embedding time. This method, however, only assures linear
independence of the used samples, which are most likely to
be generated by a nonlinear system. For the analysis
presented here I used the first minimum of the AMI
function to find time-delay. Thus, the coordinates used are
more generally independent and allow a better reconstruction

ETFNN

40
35 (b)
30

Z 25
20
15
10

dr

3 5 7 9
Figure 7. FNN percentage for the EEG. Curves correspond
to different decorrelation intervals in the 0-20-7 range.
They are bundied because both time series are almost
stationary. (a) Stage 4 sleep. %FINN has minimum at
dp=T. Its value there is less than 5%, so dy=7 is
acceptable. A fictitious rise in the 1-2 range is due to lim-
itations of the box-algorithm (Schreiber 1995) for small
dg. (b) REM sleep. In this case the minimum occurs at
dp=4, and its corresponding value is t00 high to be
acceptable. Compare this result with figure 5. As before,
the 1-2 region is false.

of phase-space, as shown by Fraser and Swinney (1986).
Many previous investigations have not taken into
account that the length of the selected epochs sets an upper
limit to the numerical results one can get from the Wolf et
al. (1985) method . In the procedure here presented | use the
criterion proposed by Eckmann and Ruelle (1992) to avoid

Sleep stage AMI T dy dy {avg.) Aj
1 — — — _— —
2 jagged 5-9 — — —

3 smooth 46 5-6 3.38 0.5-0.7

4 smoothest 5-7 67 3.36 0.4-0.6
REM most jagged 638 — — _

Table 2. Summary of the obtained numerical results.
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Figure 8. Typical converging result of the Wolf et al.
(1985) algorithmn,

this limitation. Thus, long time series are required which
make stationarity tests a must.

Another positive feature of the analysis presented
here is the use of the FNN method (Kennel and Abarbanel
1996; Kennel et al. 1992) to find a necessary embedding
dimension. This procedure directly addresses problems
common in time-delay embedding, and thus works
extremely well for phasc-space reconstruction, I have also
used the invariant saturation method described by Abarbanel
et al. (1993), but I encountered that the FNN procedure is
more robust. Furthermore, the FNN method gives a
numerical estimate of the error that comes about from
choosing too small an embedding dimension. This may be
desirable at some times if we need to sacrifice some
precision to lessen computing time. Since the method is
quite accurate, we alsg obtain a good estimate of an upper
bound io the dimensions of the attractor. Most recently
Kennel and Abarbanel (1996) made appreciable im-
provements to this method (called now the method of FNN
and false strands). I have already applied one of these
improvements in this article, the use of a decorrelation
interval, which not only improves FNN estimation, but is
also a stationarity test.

As I mentioned before, figure 5 shows the erroneous
result yiclded by the FNN method when applied to the
logistic mapping with ¢=3.9 and 1=9, where T has been
found by the AMI method (Fraser and Swinney 1986). The
FNN percentage does not approach zero and after reaching a
minimum rises as if the orbit were noise contaminated.
This outcome is not in accordance with the deterministic
origin of the time series. The correct result is obtained
when I use 1=1. This illustrates that the method described
herein must be applied carefully to orbits generated by
discrete time systems.

For the EEGs of sleep stages 2 and REM (see figure
7b) I have found that the FNN percentage does not approach
zero. In this case the result is not due to a wrong time-delay
selection. Nor is noise responsible for this effect. I have
also tested “deterministic” nonlinear systems with noisy
parameters and have not found a similar result. Non-
stationarity does not seem (o be the reason for the effect
either, since I obtain the same results for time series*half as
long. Thus, I presume that the most feasible explanation of
the FNN not approaching zero is that the assumption that
the EEG is generated by a deterministic nonlinear dynamical
system is fanlty, The FNN method (Kennel and Abarbanet
1996; Kennel et al. 1992) is directly founded on Takens’
theorem (Takens 1981), which works for every
deterministic nonlinear system. Thus, a FNN percentage
that does not come close to zero tells us that there is no
finite dimensional embedding space in which we can
describe the system dynamics. This strongly suggests that
the EEG does not originate solely from a deterministic
nonlinear system, If this is true a totally different analysis
approach must be applied to take into account the stochastic
element of the EEG.

I have used a Cray J916 and a SUN workstation.
Analysis of each 40-seconds epoch takes typically one and a
half hours. The FNN method consumes most of the time
(90% on the average). Therefore if this nonlinear analysis
technique is to be used in real-time it is indispensable 10
use a more efficient method for finding near neighbors, than
the one I have used for this analysis. I do not recommend
circumventing this bottle-neck of the process by using a
fixed embedding dimension, because the estimation of the
largest Lyapunov exponent is very sensitive to its accurate
selection. Furthermore, the FNN method provides
information about stationarity that is indispensable because
of the long epochs that are necessary. On the other hand,
real-time Lyapunov analysis is being developed.

‘There are still a number of improvements and of
additional investigations that can be performed based on the
work done so far. One is (0 use some new methods
developed for analysis of shott noisy data sets. Thus we
could analyze shorter time-series, making visual inspection
of the data less critic and less necessary. Another open field
is to study whether EEGs originate from low-dimensional
deterministic nonlinear dynamics, In this article | have
already mentioned a hint against this assumption, but it
must be put on firmer ground. For instance, to test whether
the EEG is colored noise is straightforward, using the new
improved method of FNN and false strands (Kennel and
Abarbanel 1996). [t has the advantage that it needs much
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less computation than the standard surrogate data approach
used for this purpose. Furthermore, it distinguishes suc-
cessfully low-dimensional chaos from noisy periodicity and
other highly resonant lingar systems that frequently fool
surrogate data methods.,

Articles on this subject rarely describe thoroughly
the procedure followed. Decisive steps, such as choosing
the necessary embedding dimension and time delay are
usually described vaguely if not totally omitted. In this
article I have made an effort to present the details of the
procedure, to make EEG analysis by non-linear means a
more accessible tool for everyone. Furthermore, the
analysis procedure described herein is general and can be
applied to any time series originating from a deterministic
nonlinear dynamical system.
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