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Se llev6 a cabo una aproximacién al conjunto de ecuaciones obtenidas del anilisis de estabilidad

de un plasma con abundancias solares, Ibdfiez, Steele, and Higuera (1995), Higuera (1995).
Esta consistié en hacer que el coeficiente AV = 0 (factor de estabilidad o inestabilidad ) en el con-
Junto de ecuaciones obtenidas sea igual a cero {estado marginal), esto permite ejecutar un algoritmo
que soluciona dicho sistema. La integracién numeérica realizada muestra el comportamiento de la
temperatura del centro T, con respecto a la temperatura de borde Ty, asi como la dependencia entre
el pardmetro ¢+ con T, en la estructura laminar bajo estudio.
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Abstract

It was carried out an approximation to the joint of equations obtained from the stability analysis
of a plasma with solar abundance Ibdfiez, Steele, and Higuera (1995), Higuera (1995). Theses
consisted in make the coefficient A/ (stability or instability factor) equal to zero (marginal state)
permitting to execute an algorithm that solves the equations derived. The numerical integration
shows the behavior of the center temperature 7. with respect to the boundary temperature Ty, as
well as the dependency between the parameter ¢, with 7, in the laminar structure.
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During the past few years, both theoretical models,
and numerical codes have substantially modified our
knowledge about the thermal stability of a plasma with
solar abundance. In a previous paper Ibdnez, Parra-
vano & Mendoza (1992). The generalized problem
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(with cooling and heating terms included at the same
time) were analyzed and they have been established that
exist steady solutions which depends of three parameters:

85, & and A, the central and boundary temperatures
and the dimensional parameter, respectively. A non-
linear analysis were carried out Ibanez, et al (1993) a-
pplying the Landau (1944) method, in a slablikes sys-
tems. The second order approximation permitted them
to derive some general conclusions about the nature and
stability of nonhomogeneus thermal structures. On the
other hand it was found that the nature of the thermal
instability depends on a eigenvalue @) (linear approxi-
mation) and on a Landau constant ag, which is equal to
az = w{m + n — 1 — k)/3, if the system is found nearby
marginal state (¢; ~ 0). Furthermore under the no-lineal
analysis, they found that the values m, n and &, in con-
Junction with the direction of the disturbance are deter-
minant to observe the evolution of the system.

In the present paper the above work will be generalized
when one introduces dynamics. The object under study
is a plasma with solar abundance, enclosed in a slablike
thermal structure, which at the same time is affected by a
warming-cooling function and a thermal diffusion of heat,
dependent both of the temperature and density. The
structure will be assumed to be initially in a steady-state
at constant pressure with a given boundary temperature.
Numerical results for particular cases are obtained.

Dynamic equations

Ideal gases with a ratio of specific heats, 7, and a mean
molecular weight, 4 are governed by

Dp
E+PV'U—O, (1)
Dv
oy TVP=0, _ (2)

T
R (_l_pD_ - T&) +pL(p, T)-V (,kVT) =0,

p\y—1" Dt Dt
(3)
R
p= FPT' (4)

The previous four relations are the known gas dynamic
equations, where p, v, p, T, &, and R are: mass den-
sity, velocity, pressure, temperature, coeflicient of ther-
mal conductivity, and a gas constant, respectively. On
the other hand L{p,T’) is the heat-loss function per unit
mass and time which is defined as

PL(p.T) = Ap, T) - T(p,T) , (5)

being I, the heat liberated per unit volume and time
by processes of an irreversible character and/or heat ab-
sorbed from and external source, and A, the heat loss
rate per unit volume and time.

The relationships for the warming and cooling func-
tions are given by,

[(p,T) = Cp*T?, (erg em™® s71), (6)

where ', a, b are constants given (Rosner it et al.,
1978; Dahlburg & Mariska, 1988); and

MpT) = ALY rgen s, (@)
(Vesecky it et al., 1979).

Furthermore the thermal conduction coeflicient is
taken under the form

#(p,T) = k1p°TT (8)

where x1, ¢ and ¢ are given constants (Parker, 1953,
Spitzer, 1962, Ibdnez & Plachco, 1991).

If is eliminated from the problem the temporary de-
pendency, that is to say the derivatives with respect to
the time are made equal to zero in the relations (1) - (4),
is derived the stationary case studied by Ibdinez, et all
(1992).

The geometry of the problem is a pair of parallel
plates to constant pressure, in which the different func-
tions (warming, cooling,) are evaluated point to point.
Higuera (1995)

If for the thermodynamic variables involved in the
problem, are introduced solutions of the form,
'I'(;v,y,z,t):\llo(x,y, z)+6\Il(z,y,z,t), (9)

to the joint of equations (1) - (4) (neglects non-linear
terms in 6¥) the system is reduced to

S50 4V - (pubr) =0, (10)
e,
pob—{(év)+V6p:0, {11)
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f—f[ TPV, (60) + = 1at(5T) Tdt(6p)]

+[po L, + Lo — Vi, VT, — k,V?T,)ép

+lpoLr — VT, - Vir — k7 V2T,)(6TY — £,V2(6T)
—k,Vbp VT, — (Vre + k7 VT,} - V(6T) = 0.
(12)

where Y; = JY/0¢.

If furthermore they are considered solutions in terms
of normal modes (Chandrasekhar, 1961), i.e.

o _ n(z)expli(ksz + kyy) + N,

[}

%T = 6(z) explilkez + kyy) + M),
v = vl(z) expli(ksz + k,,y) + Nt]1
Ia)_;; = Bz) expli(kzz + kyy) + N1, (13)

where k; = (k;, ky) is the wave number normal to z and
Nis the growth rate, one may simplify the problem into
the following three differential equations

— N+ NTE ”z + (N2 + 2k + c2k2 8 = 0,
(14)

do
Ny dn, 4

15
antLte =Y {15

. dn de
vl — (‘XOJ— —[2(g+ 1) — c]xo‘&—z

-1 1
77 N_7702{ ,,+Lo)+

c(g+1—c)xoI%* + cxaéﬁ}] 7

dzg -

1 2  ¥—1
_Xoa; + {;N + x.k1 + ?E—[TOLT —

(¢g+ L]} =0, (16)

2
where 3 = %ﬂ, 63 = %; Xo = Kofpocp (thermo-

metric conductivity), and ¢, (the isothermal sound ve-
locity, ¢2 = RT,/p).

With the help of equation (13) the velocity may be
eliminate, and reduce the set of equations (14)-{16) to
two coupled ordinary differential equations. These equa-
tions can be written in a dimensional form as

d?n N? 9 4?9 -,
-9 _ - — k4= 17
dz (T tRL it g k=0, ()
¢ — g—c
3 {[2g+1) - daTi- A +1} 5
4N __1£_&€(;1“—'-;;—1_aj'1:1—1)+
Y 7,
elg+ 1 —c)aTd—*3* + c&Tg‘Cé‘&] n
dn d*8
o Q [ —_— g—c —_‘
J( 9N + )d~ aT; N +
—ﬁf{li +aTd= k] +ael(v—g - 1)IP7 -
YT, '
(b—q— 1)[?‘;"'1]} =0, (18)
where
: P T g
= % , To = T—: , ki = (Ikg)z + (l'kan.d) s
N 2 *
:T:N ) T*=L ) ™ = ’ &:T_,
Cx Xn Tx
2 -1 2 -1
Cp = l FlT:n ‘: I AIT:! . (]‘9)
Ka K

In the above equations the subindex (.) refers to the
respective quantity evaluated at the temperature 7,. In
particular, c. is the isothermal sound speed at T, Ad-
ditionally, due to the fact that the steady pressure is a
constant p,, the heating and cooling functions were ex-
pressed in identical form as in Ibdhez, et al (1992), i.e
I'=rIyT", A = AT, T and A, being constants, and
m=b—-—a n=v-2

At this stage, the problem at hand has been reduced
to finding the functions 7(z), 8(z) and the eigenvalues A’
for which the two equations (17) and (18) are compatible
to each other for a given steady solutions 7,(z) and for
particular plasma conditions (i.e. for given values of ¢, g,
a, b, and v). Obviously, appropriate boundary conditions
for free, or rigid bounding surfaces also have to be pro-
vided. (enerally, the above problem has to be solved nu-
merically. However, analytical solutions are possible for
the steady trivial solution T, = 1 which physically corre-
sponds to the solution for thermal equilibrium. (L, = 0).
Higuera.G.M.A (1994)
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On the other hand,the equations (17)-(18) also can be E=% (caTg—cN”' + 1) (25)
expressed in a matricial way:
d? d? - . .
ric n A BY[nl_ (0 F=al N +9|[@2¢+1)—c)aTi*N +1 (26)
(Edi F:%){B}+(C' p)l6f=\0) ey
(20) Marginal states
where . .
_ Independently of the boundary conditions, exists a
A=_ N? e 91 non-trivial solution for the equation system (20) that
- T L 2y corresponds to A' = 0. This root identifies a shift of
the static equilibrium values at constant pressure, where
B = _f2 (2 the change in density just equalizes the change in tem-
=Tt perature.
~ N . If is replaced the value A’ = 0 in the equation (17) we
C=N [LT — €, (pim_1__sm—1}, COTIE :
7-1T, (272~ )4+ Yo obta.m,
(23) @En = -8 +E] (27)
{(g+1 -c)%z-f-d%}] : n = 6
=N l_A_f + aT9-e k2 + ae, {(7 —g¢— DI - On the other hand, if is replaced the previous resulted
1T, in the equation (18) and are recrganized the remaining
(24) terms, one obtained,

(b—q- 1)7”";"-1}]

326 ( Tq c) + d_ [2(9' +1- c)aTﬂ' C] 3+

~ (L4 +aTre + el - o )P = (b—q - )T
_{ =LA Ge, (201 — afot) 4 cady- ”[(q+1—6)92+5~‘f]]

(28)
now if A = 0 finally one obtain,
42 o, df
= (6Tre) + 2 [2a + 1 - gafy—] 3+
, [~aTy=B - deul(v — g - D=1 = (b - g - D]
-~ a - = 0
+ [&a(?Tc‘,“l — a7 1) — e®TY[(g+ 1 - )32 + 59‘]] (29)

Table 1
HEATING FUNCTIONS
Case Description a b
Constani per unti volume heating 0 [1]
B Constant per unit mass heating 1 [
o) Heating by coronal current dissipation 1 1
D Heating by Alfvén modef/mode conversion T/6  7/6

E  Heating by Afvén mode anomaluos conduction damping 1/2 —1/2

Five dominant heating processes in astrophysical plasmas.

Figure | is a plot of the previous heating mechanisms.
In all cases the value of density was p = 4.96
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Figure 1. The heatings functions for five kinds of mechanisms, I'(p,T)=Cp*T®, see Table 1.

The steady state distributions of temperature are ob-
tained through the equation,

d (=, _.dT - -

= (Tg-*"-—_) = £, [T,;’-2 -7y,

4 &3 (30)

where v~2=nandb—a=m.
The cooling and heating functions

There are five heating processes, of particular impor-
tance in astrophysics, see for instance, Rosner, Tucker,
& Vaiana (1978), Dahlburg & Mariska (1988) and refer-
ences therein. Notice that the index m may only have
two values, —1, or () for the five heating mechanisms un-
der consideration.

The Table 2 shows the different values for the terms of
the cooling function.

Table 2
Radiated Loss Function
TH{K} Aj v
1.00 ¢ 102 1.85 x 1017 +0.4000
1.00 = 10* 2.42 z 10%¢ +7.1700
1.56 z 10* 5.88 z 1025 —0.8390
3.16 z 104 3.25 = 10%% +1.4300
1.00 = 10* 1.68 x 1026 —0,0307
2.51 z 105 1.63 = 1026 —1.7400
6.31 z 105 3.28 = 102%® —0.0792
2.00 z 10% 2.99 z 10%° ~0.6640
3.16 z 107 4.78 » 10%¢ +0.2930
4.00 £ 107 5.13 ¢ 10%¢ 40,500

Ten diferrent values of the loss functions

Figure 2 shows the graphics relationed with the former

table.
A+ 294 non: 1.."1 1027 k
' i 1
204294 1 264
Setté]
] R 4 , N et
E) 12 T o x NE—
v =+0.40 v=+7.17 v =-0.839 v=+1.43 v =-0.0307
. - 1, Seriiy
" el i (¥
7 s S
O T R T it T i s faad et T2t
v =-1.740 v =-0.0792 v =-0.6640 v =+0.2930 v =+0.5

Figure 2.The cooling functions for the all diferents values shown in Table2, and p =4.96.
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Astrophysical Applications

For context, the case n = —3/2, m = —1 studied in
paper I will be analyzed. This case corresponds to a
slab of plasma with solar abundance heated at a rate
constant per unit mass (case B), and cooled by free-free
radiation (v=1/2). Additionally, under the above condi-
tions, the heat diffusion is dominated by electrons and the
well known relation of Spitzer (1962) holds (i.e. ¢ =0,
g=>5/2)

02 04 06 08 1.0
T

[

1.2 14

The equations (29) and (30) represents the condition
for N = 0. i.e. N, =0, A; = 0. The boundary condi-
tions are that & = 1, % =0 when Z = 0, and # = 0 when
Z = 1. As the system is oversuscribed by one quantity,
¢« plays the role of an eigenvalue.

Under this context the expression,

1—/1ldT
~Jo T|dz

defines de inhomogeneity of the system.

dz, (31)
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Figure 3. Constant heating per unit mass (Case B). Left picture corresponds to K=1.0, and right picture corresponds 10 K=n/4
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Figure 4. Constant heating per unit mass (Case B). 1Left picture corresponds to a=1.0, and right picture corresponds to a=10
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With the help of a numerical code one can resolve this
equations and obtain the dependency among the central
temperature T, and the frontier temperature 7;. On the
other hand one can be derived the dependency among
the parameter ¢, and T, as well as the factor of inhomo-
geneity [ with T,

Figure 3 shows ¢, varying with 7., also are plotted
the parameter I and the outer temperature T} for Case
B. Left picture corresponds to K = 1.0 and right to
K = x/4. The behavior of the edge temperature T}, as
compared to the center temperature T in the laminar
system, shows that for values of T, less than 1, T} grows
in equal proportion, meanwhile for values of T, greater
than 1, T, growing while T} reduces. On the other hand
for values of T, greater than 1.45, T} grows strongly. It
is interesting to note that the parameter ¢, for values of
T, between 0,0 and ~ 0,] stays constant, however above
0,5 grows in direct proportion to the central tempera-
ture. On the other hand the factor of inhomogeneity [
for values of T, among 0,0 and 1,0 decreases until a value
of zero, however above this value grows in function of T,.

Figure 4 shows the same variables as figure 3 but in
this case it was maintained constant the value of X and
was modified the parameter & between 0.1 and 0. Of
course 1t does not exist any dependency of the variables
with this parameter.

In the Figure 5, the parameter €., the outer tempera-
ture T3 and the inhomogeneity I are plotted for Clase A.
The boundary temperature increases quickly with respect
to the center temperature (for values of T, < 0,3), above
this temperature, T, grows while T; decreases slightly.
On the other hand the parameter e. grows slowly with
T.. The factor I for values of T, > 1,0 is resembled to
show in the case B, however for T, < 1,0 I grows strongly
until T, ~ 0,2 below of which these factor tends to re-
duce.

Conclusions

Such as in the previous work {(Higuera, 1995), the ge-
neral problem of own values was reduced to two coupled
differential equations of second order those which should
be solved numerically. It was made carry out the approxi-
mation A = 0 (marginal state) and was solved the set of
corresponding equations.

Such as is observed in the Figure 4, and derived of
the obtained equations, for the marginal state (N = 0)
does not exist dependency of the variables involved with
the parameter & The behavior of the center tempera-
ture versus the boundary temperature in the two cases (A
and B) shows considerable differences. For example while
for the range 0,0 < T, < 0,3 in the Case A, the fron-
tier temperature increases more quickly than the central
temperature, in the Case B grow proportionally. Now
for the range 0.3 < T, < L.0 in the Case A, T,

,lIlIlIIIIII!\IIIIIII'IITIT’III

1.4
1.2
1.0
0.8
0.6

0 1y ] l-l‘i'i'l-;-.l_-lhl el l‘-.l-"-‘.... 0.0

06 08 1.0 1.2 14 02 04 06 08 10 1.2 1.4 16
T, T,

0.2 04

Figure 5. Constant heating per unit volume (Case A). Left picture corresponds to K=1.0, and right picture corresponds to K=/4
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stays approximately constant, while in the Clase B, the
two temperatures stay proportional, Finally for values
T. > 1,0 in the Case A, T} decreases slowly while in the
Case B decreases more quickly. Of the previous analy-
sis can be concluded that for the Case A in the range
0.0 < T, < 0.3 this present an instability.

I want to express my more sincere gratefulness to the
teachers Miguel H Ibafiez and Colin Steel by their help
in the accomplishment of this work, as well as to the
Observatorio Astronémico Nacional by its support.
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