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Z.1. Borevich & L. R. Shafarevich conjeturaron la racionalidad de la serie de Poincaré 3,,,c,U",
donde c¢4= 1y ¢, (n=1) designa al nimero de soluciones de la reducciéon médulo , ¢ primo racional,
de un polinomio H(y) € Z,[i], t= (1,....t,). Esta conjetura fue confirmada por J. Igusa, usando el
profundo teorema de resolucién de singularidades de Hironaka. Més tarde, J. Denef dio una nueva
demostracién usando esencialmente el hecho de que Q: admite eliminacién de cuantificadores,
evitando asi el teorema de Hironaka. La misma conjetura esta ain sin resolver en el caso de carac-
teristica > 0, anotdndose que ninguna de las técnicas usadas en el caso de caracteristica 0 parece ser
apropiada en caracteristica > 0. En esta corta comunicacién demostramos la conjetura en caracte-
ristica > 0 para algunos tipos de polinomios, usando métodos elementales.

Palabras claves: Geometria algebraica, cuerpos aritméticos de funciones, series de Poincaré.
Abstract

Z. 1. Borevich & I. R. Shafarevich conjectured the rationality of the Poincaré series 3,,,,¢,U®,
where c,= 1 and ¢, (n=1) denotes the number of solutions of the reduction modulo #, ¢ a rational
prime, of a polynomial H(t) € Z [t], t= (t,...,¢,). This conjecture was settled in the affirmative by J.
Igusa, using Hironaka's deep resolution of singularities teorem. Later on, J. Denef produced a new
proof of this result, essentially using the fact that Qr admits elimination of quantifiers, avoiding thus
Hironaka's result. The same conjecture for characteristic > 0 is still an open problem, and none of the
techniques used in characteristic 0 seem to help in characteristic > 0. In this short note we prove the
conjecture in characteristic > 0 for some special cases of polynomials, using elementary methods.
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§1. Introduction

In [5], Problem 9, page 47, Borevich and Shafarevich
asked the following question: given a fixed rational prime
¢, let @y be the field of £-adic numbers and let Z; be the
ring of £-adic integers. For a polynomial H(t,,--- ,t,} €
Zy[ts,- - ,t,], let c(n; H) (or simply c(n) if there is no
possible confusion) denote the number of zeroes of the
reduction Hyp(ty, - ,t,) of H(ty, - ,%,) in the residue
ring Zf€"Z,. Is then the Poincaré series of H

P(U;H): =) o(n; H)U" € Z[[U]]

n=0

(1.1)

where ¢(0;U) = 1, a rational function of I/ 7 Partial an-
awers to this question were known before 1973 (for which
we refer to [7]), when Igusa ([11], [12], [13]) gave a gen-
eral affirmative answer, based on Hironaka’s resolution
of singularities theorem in characteristic zero. His re-
sults, however, did not show how to effectively compute
(1.1) and thus how to express it as a quotient of two
polynomials in I/. Later on, in 1984, Denef [7] gave a
new and elegant proof of the conjecture, essentially using
the fact that @, admits elimination of quantifiers, avoid-
ing thus Hironaka’s result. Related to this conjecture is
the following one by Hayes and Nutt [10]: P(H;U) =
Q(U)/R(U), where Q(U) and R(U) are polynomials in
Z[U] satisfying the following conditions: @(0) = 1, and
R(U) is a product of polynomials of the form (1-£mU"),
where m > () and n > 1 are integers for whick the in-
equality m < ns holds. They called this assertion the
2-conjecture.

Due to the existing analogy between arithmetic
fields of characteristic zero and those of characteristic
> 0 (i.e. arithmetic function fields), it is quite natu-
ral to propose the analogous question in this latter case.
However, in this case we do not have a general resolution
of singularities theorem ([1], [2]), nor the rings invelved
admit elimination of quantifiers ({3], [4], [6]). Because
of these facts it seems that a direct approach to the con-
Jecture in the arithmetic function field case, by means of
elementary methods, & la Abhyankar ([1], [2]), would be
of some interest. Indeed, in this paper we show for some
special cases the validity of the conjecture, and compute
explicitly some of the corresponding Poincaré series, in a
rather elementary way using simple arithmetical proper-
ties of the field L{[Z]] of formal meromorphic functions
over a finite field L. Also, we show that the ()-conjecture
of Hayes and Nutt is valid for these cases.

§2. Some preliminary results

We begin this section by recalling (see [14]) that a
formal power series

do+diU+ - +d U+ €Z[U] (21)

is a rational function of I/ if, and only if, there is an
index m > 1 such that all the numbers d,,, n > m, can
be computed from do,d;,- - ,dy by means of a linear
recurrence, say

Untk = QUngk-1+ -+ Gy, (R>m>1} (2.2)
where
up=do, g =d1, ++, Up=dn_1, -,
k is the order of the recurrrence and ay,- - - | a; are called

the coefficients of the recurrence relation (2.2). More-
over, (2.1) can be expressed as the quotient Q(U)/R(U),

Q) :=uws 4+ (ua—aqqu U+ -+

+ (Uk+m_1 — Q1Ukgm—2 = =~ akum-l)Uk'H"_z
(23)

and
R(U)::l—alU_,,,_akUk_ (2.4)

Let now K be an arithmetic function field of character-
istic £ > 1, that is, a finite algebraic extension of F¢(X),
g = £%. Let p be a prime divisor of K, and let us consider
the completion Ky, of K at p. If w, represents the corre-
sponding discrete valuation, let us denote by O, = { z €
Ky ;5 wp(z) 20} and pOy = { z € Kp ; wp(2) >0},
wy(p) = 1, the ring of p-adic integers and the prime,ideal
of O, respectively. Then Ly, = O, /p0, is a finite exten-
sion of IFy, with, say, g elements. With this notation our
conjecture can be stated thus:

Let H(ty, - ,t,) € Qpfty, -~ ,t,] and let e(n; H) de-
note the number of zeroes of the reduction of H in the
residue ring O, /p" O, (n = 1,2,---). Then (1.1) is 2
rational function of U.

Since Oy = Lp[[Z]], where L, = O, /p0,, pO, = (2),
it suffices to prove the conjecture when H(iy,--- ,i,) has
coefficients in the ring L[[Z]], where L is a finite field
of characteristic £ and g elements. More precisely, it is
enough to prove that if ¢(n; /{) denotes the number of
zeroes of H in the residue field L[[Z]]/(Z"), then (1.1)
18 a rational function of U.

The Q-conjecture takes now the following form: Q(0)

=1 and R(U) is the product of polynomials of the form
(1—¢™U™), where m >0, n > 1, and m < ns.
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If m, : L[[Z]] — L[[Z]}/(Z"), defined by

wn(Za.Z' Za, 2,

where m,(Z) = 2,, is the canonical epimorphism onto
the residue ring, then 1,z,,---,z""! is a basis over L
of the algebra L[[Z]l/(Z"). Clearly, z£ # 0 for k =
0,---,n—1, and z£ =0 for k£ > n. Let us denote by L,
the n-dimensional L-algebra L[[Z]]/(Z™). The canonical

epimorphisms 7, 4y, ! Ly — Ln, m > n, given by

m—1 n—1
iy i
Trm E iz, ) = E iz,
i—o i=0

are L-algebra morphisms.

We write

n-1 n—1
Th = (E Tl;iz::li Tt z T”;‘Z:;) (T';J € L) (25)
i=0 i=0

for an element of L. If H(t1,--- ,t;) € L[[Z]][t1,- - - 1],
its reduction H,(ty,---,t,) is just the polynomial in
L[ty -+ ,t;] whose coefficients are the coefficients of
H(ty,- - ,1,) taken modulo (Z™). Also, with the obvious
meaning,

Tn,m(Hm(tl, e ,t,)) = Hn(tla' " :ta)

ifn<m.

If 7y € L2, is a zero of Hy(ty,--- ,t;) and m > n,
we say that 7, is a descendent of 1, if 7p m(Tm) = Tn;
obviously, if such is the case, H,(m,) = 0, and we also
say that 7, is an ascendant of 7,,,. Conversely, if , € L,
is a zero of H,(t;,--- ,t,), thenin L} , m > n, 7, has at
most ¢*(™=") descendants, if any.

A zero T, € L}, of Hy(ty,---
singular if

6H1 (Trl‘"(f")) —_ aHl(Tl,D: ey T
3ij - (%j

,ts) is said to be non-

.0) ?’—'0

for some j = 1,--- , 5. Otherwise 1, is called a singular

ZETO.

Proposition 2.1. Any descendant {resp. ascendant) of
a non-singular zero is a non-singular zero.

Proof. Obvious.

The group of units of a ring A will be denoted here
by A*.

Proposition 2.2. (a)

;v # 0}

, then 7, ;m(v) € LX for alln < m. Also,
p forallk > 0.

x -
LX={vo+tvizm+ - +vm_ 1z}

(b) Ifve L}
mm+k(v) c L

() Ifr, € L2 is 2 non-singular zero of H,(t1, -+ ,1,),
then for all its descendants and ascendants 1, we have
O Hm(tm))/0t; € LY for all j = 1,---,s satisfying
6H1(1'1)/3tj 7‘—' 0.

Proof. (a) The equation

(vo+vizm+---+ vm_lz,';‘“l)x
(Bo+Przm + -+ Bu_rzl =1

leads to a finite system of linear equations: vgfy =1, -,
from which the result follows readily.

(b) Follows easily from (a) and the fact that

mm+k(v)
= {vo + ViZmk +  + Umpk—12m v € L)
J

if v =uvo+vi2m + 4 Um_1207?
(¢) This follows from (a), (b), and proposition 2.1.

If 7,, is given by (2.5), let us denote by T+, the clement
in L} given by

n—2

_ § : i

= Tl,izny“'
i=0

This notation enables us to state the following version of
Taylor’s formula:

Proposition 2.3. If H(t,, -- ,t,) is a polynomial with
coefficients in L[[Z]], then for eachn = 1,2,.-- we have

" IZTJn laH (Tﬂ) .

n—2
§ : i
y T,I;z" .

i=0

Hp{m) = Ho{#a) + (2.6)

Proof. By induction on s.

Proposition 2.4. If o € L,,- and e < n, then zfa =0
if, and only f, wn_e,n(a) =

Proof. Let & = Y07} auzl. Then z8o = Y 00) agzite

n—-e—1 i
= St agzite = 0 if, and only i, ag = ay = -

an_e—) = 0. The result follows then from 7, _. n(a)

En-—-e-l
i=0 oy zn [

il



316

REV. ACAD. COLOMB. CIENC.: VOL. XXI, NUMERO 80-JULIO DE 1997

Proposition 2.5. Let H(1y, - ,t,) be a polynomial
with coefficients in L{[Z]], and let n > 1. Then:

(a) For each singular zero 7, of H,(t1,- -+ ,1;) we have
Hp(7n) = Hn(7n) - (2.7)
Further, the zero

n—2 n—2
hd . _ _ i i
Tn—1:= Wﬂ—l,n(Tn) = TLi%p_1:"" " T5,iZn-1
i=0 i=0

(2.8)

of H,_1(t1,-- ,t;) has always exactly ¢° descendants in

L.
(b) If 7, is a non-singular zero of Hn(t1,--- ,1,), then

Tn_1 has always exactly ¢*~! descendants in L3,

Proof. For j=1,---,s, let
OH, (+ B
gt( ) - ﬂj,o(") + ﬁj,l(n)zﬂ + -+ ﬁj.ﬂ—l(n)zx 1
i
(B;,k(n) € L). Replacing these expressions in (2.6), we
obtain

Hn(fn) = Hn(‘i-ﬂ)+ [Z Tj.ﬂ-—-lﬁj,ﬂ(n)] z:_l . (29)

i=1

If 7, is a singular zero of H,(t;, - ,t,), then 8; o(n)
=(Qforall j =1,---,s Thus we have (2.7). The rest of
part (a) in the proposition is an inmediate consequence
of (2.7). If now

Hu(#a) = y0(n) +71(n)2n + - 4+ Y1 (n)2n ™,

it follows from (2.9) ‘that 7, is a non-singular zero of

Ho(ty, - ) if, and only if,
() =)= = gaa(m) =0, (210)
and ,
Yn—1(n) + E Tin-18j0(n) =0. (2.11)
7=1

Let us remark that (2.10) is equivalent to Hﬂ_l(“f'ﬂ) =0.

Thus 7, has as many descendants in L} as solutions has
the linear equation (2.11). But, by hypothesis, there is
an index k (k = 1,---,5) such that i o(n) # 0; there-
fore, for any choice of the coefficients 7; .—1, j # k, the
equation {2.11) is solvable for 7x ,_1. But there are ex-
actly ¢°~! choices for the 1,1 (j # ) and hence ¢*~!

descendants of -\1,-,,. Finally, let us notice that the forego-
ing argument also shows that (2.11} is always solvable.

The following well-known result can be found in [9].

Proposition 2.6. Given a system
HY(t,--- t), - H (t,--- 1)

of polynomials in L[[Z]][t;,--- ,%,], they have a common
zero in L[[Z]]* if, and only if, for each n = 1,2,---,
the polynomials H)(t1,--- ,1,),--- ,H(t1, - ,1,) have
a common zero in L.

§3. Proof of the conjecture in some particular
cases

Given H(ty,--- ,ts) with coefficients in L[[Z]], let us
consider a zero 1 = (71,0, - ,Ta0) of Hi(ty,--- ,t,} in
L3. The number of descendants of 7y in L}, (n > 1) will
be denoted by d(n; H;71) (or simply d(n;T;) if there is
no possible confusion). Of course, d(1;71) = 1. With
this notation,

efn; H) = z din;m), n>1.
{m i H:i(m)=0}
The formal series
oQ
Z d(n;7)U" (3.1)
n=1

is called the contribulion of 7| o the Poincaré series of
H(ty,---,t,). Therefore,

PH;U)-1= > id(n; 0"

{m ; H,(m)=0} n=1

will be a rational function of U if each of the series (3.1)
is a rational function of /. For example, if T, is a non-
singular zero of Hy(t1,- - ,1,}, it follows from (b), Propo-
sition 2.5, that d{n; ) =d(n—1;7y)¢*" 1 £ O forn > 2,
and thus the contribution of 7, to the Poincaré series of

H(t,, - 1) is given by
U+qa—lu2+,,,+q"('_1)U“+1+...:
U
S (32

Consequeﬂtly we have proved the conjecture in the fol-
lowing special case.

Proposition 3.1. Let H(ty,--- ,t,) be a polynomial
with coefficients in L[[Z]}. If all the zeroes of H(t4, ..., ;)
are non-singular, then

U
P(H,U)—I'FC(I,H)I—_—&;"_—:[?, (33)
where c(1; H) is the number of zerves of Hi(ty,--- ,t,)

: 3
in Lj.
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Corollary. In the conditions of Proposition 3.1, the
Poincaré series of H(t,,--- ,t,) satisfies the Q-conjec-
ture.

Another case that we can handle inmediately is the
following: A form H(t,,---,t,) is called strongly non-
degenerate if (0,--- ,0) € Ef is the only singular zero of
Hy(ty,- - ,t,). For this particular type of forms we prove
the following result, analogous to the one to be found in
Goldman [8].

Proposition 3.2. Let H(i,,--- ,t,) be a strongly non-
degenerate form of degree e and coefficients in L[Z]].
Then the Poincaré series of H Is a rational function given

by
P(H:U) = 1+
Ude(; H)1 - ¢U) + [1 - ¢~ U] 1 = (¢°U)°]}
(-0 - ¢ 01 - D)

Proof. Let 1, be a descendant of 7 = (0,--- ,0) € L*.
Then

n—1 n—1
— i—1 o |
Tn = (2n E iz, 2y 2%n E TsiZy ),
i=1 i=1

so that
n—1 ) n-=1 .
Hn(‘rn) = Z:Hﬂ (Z 71I§Z;_1 R ,Z T.,.'z,',"'l) .
i=1 =1
(3.4)

If n < e, (3.9) is always equal to zero. Thus d(n;m) =
"=V If n > e, (3.9) equals zero if, and only if,

n—e n—e

E : f—1 E : i-1 1 _
Hn-e Ti%n—er""" Tai2p_e | = 0)

i=1 i=1

because of proposition 24. Thus d(n; ) = c(n — ¢)¢*®
and the contribution of 7, = (0,---,0) to the Poincaré
series of H(t,,---,i,) is given by

U+q:U2+___+qs(e—1)Ue+ Z c(n—e)q”U“

n=e+1
_ U[l _ (an)e] aerre - n—e
_.—l“q‘—U-i—q U n=gﬂf:(n—e)U
_ U [1 — (an)c] seyre .
__T—q'T+q U[P(H,U)—l]

(3.5)

The contribution of the other zeroes of Hyi(ty, - ,t,) is
given by
U

1—-g-1U°
using (3.2). From (3.5) and (3.6) the result follows read-
ily.

Corollary. The Poincaré series of a strongly non-de-
generate form satisfies the (J-conjecture

[c(1: H) = 1] (3.6)

Examples of strongly non-degenerate forms are the
following: quadratic forms if £ # 2, and forms of the
type

oy (25 + -+ a, (25,

where £ { e and the a;{Z) are units.

In order to treat cases in which at least one of the
zeroes of Hy(4q,--- ,t,) is singular, it is convenient to re-
duce ourselves to the case where the content of the poly-
nomial H(ty, - ,t,) is 1. In general, H(;, - ,¢,) can
be written as v(Z)Z"H*(ty,--- ,t,), where v(Z) is a unit
in L[Z]], » > 0, and H*(t1,- - ,t,) is a polynomial of
content 1. Since 7,(v(Z)) is a unit in L, foralln > 1, it
is evident that 2L H;(11,--- ,¢,) and H,(t1, - ,1,) have
the same number of zerces in L. Therefore, without
loss of generality, we may suppose that

H(t},"' sts) :ZrH*(tllll' :ta)'
Now,if r > 1, all the elements in L2, for n < r, are zeroes

of Hu(ty, -+ ,t,). Also, since 0H,/0t; = 2, 0H}, [0t;, all
of them are singular. That is,

Hy (1) = 2, Hy(7a) = 0, (3.7)

for all € L} if n < r. This means that d(n; H;m) =
din; H* ;1) = ¢ Vforn=12 . -,r. Ifn> T,
then (3.7) holds if, and only if, H}_ (7u_rn(7a)) =
H}_ (Ta_r} = 0, because of proposition 2.4. But this
implies that d(n; H;7) =d(n—»r; H*;7;) for all n > r,
by virtue of (a), proposition 2.5. Therefore the contribu-
tion of any 7, € L{ to the Poincaré series of H(t1,- - ,1,)
is given by

E;:l qs(n_l)Uﬂ + Z;I.o=r+1 d(n -r Ht: Tl)Un

U -@UY | s g it m o,

1—-qU
Therefore
P(H;U) =
1+4¢(1: H)Q-[ll—__(q‘{—g)] + UT[P(H*: U) - 1],

(3.8)

which proves the following
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Proposition 3.3. I r > 1 and H(t1,- - ,t,) =
ZTH*(ty,--- ,1,), then P(H;U) is a rational function of
U if, and only if, P(H*;U) is a rational function of U.

Thus from now on all polynomials under consideration
will be supossed to have content 1.

Proposition 3.4. The Poincaré series of the polynomial
Ht)=(-a(Z)), wherea(Z)=ag+ o1 Z+---,is a
rational function.

Proof. Let us consider Hi(t) = (t — ao)®. If e = 1,
we have H{(t) = 1 # 0, so that ay is a non-singular
zero. Using (3.2) we see that in this case P(H;U) =
1+ U/(1 — U). Suppose now that e > 1, so that g is a
singular zero. A descendant 1, of 7 = ap, forn > 1, is
given by 7, = ap + Tz + - - - + Tu-127 ! and satisfies

Ho(7a) = (T — ma(a(2)))°

=zil(n—e)+ -+ (ra-1 — an—l)z,'.'"z]c
=0. (3.9)
If n < e, (3.9) is satisfied for all choices of 7y, , 1.

That is, d(n; ;) = ¢*~ 1.
satisfied if, and only if,

He<n < 2e, then (3.6) is

(r—a)+ 4 (Tace—t —n—e—1)zizc7 " =0, (3.10)

by proposition 2.4, But (3.10) holds if, and only if,
7 = @1, since otherwise (1 —ay) + -+ (Taceo1 —
aﬂ_e_l)z::::} would be a unit, which is not possible.
But then (3.10) becomes
zi (i — )+t (Taemt — @n—e-1)zp_e °
=0, (3.11)
which holds for all possible choices of 72, -, Thoe-1, If
l<n—-e<e Thus,fore+1<n <2, dnmn)=
¢"~*"2¢* = ¢"~?, because of (a), proposition 2.5. Now
d(e;7) = ¢*~! = d(e + 1;71). An inductive reasoning
on k will show the following: if ke < n < (k+ 1)e, then

d(n; ) = ¢"~(*+1

d(ke; 1) = ¢*¢~V) = d(ke + 1;71).
From these identities we get
din+e;n)=¢"'d(n;71) for n>1.

This last identity defines a recurrent sequence of order e
withey =as = - = a._; = 0 and a, = ¢°~ . By virtue

of (2.3) and (2.4), the contribution of 7; to the Poincaré
series of H(t) is given by
Ull+gU+ -+ ¢ U]
1-— q.e-lUc

and thus

Ull+qU+:--+q- U]
l_qe-—er )

P(H;U) =1+

Corollary. The polynomial H(t) = (t — a(Z))° satisfies
the (J-conjecture.

Proposition 3.5. Let
H(t) = B(0) + B(1)t + -+ B(m)t™,  B(m) #0,)

where 3(j) € L[[Z]], s = 1,--- ,m. Then P(H;U) is a
rational function of U.

Proof. If H(t) has no roots in L[[Z]], the contribution
of any zero of H;(t) to the Poincaré series of H(t) is
a polynomial in U (because of proposition 2.6), so in
this case there is nothing to prove. Let thus a(Z) =
Y oteo @k Z¥ be a zero of H(t) in L[[Z]], with multiplicity
e > 1 so that

H(t) = (t — a(2))°G(),

where G(f) € L[[Z]]]t], G(a(Z)) # 0. Because of propo-
sition 3.3, and since we may write

ZTH(t) = (t - A 2))°G* (1),

with G*(t) € L((Z))[t], for some r > 0, we may as-
sume that G(t) € L[[Z]]{t]. Of course the multiplicity of
71{a(Z)) = ag in the polynomial H,(t) = (t —0)°G (1)
may happen to be > e, i.e. Gi(ag) = 0. However, there
is an index v such that G(m,(&)) # 0, since otherwise
G(a(X)) = 0 (proposition 2.6), contrary to the hypoth-
esis. Therefore, the contribution of 7 (a(Z)) = aq to the
Poincaré series of H(t) from 1 > v on will be the same
as that of ag to the Poincaré series of (£ — a(Z))®, which
we know, by proposition 3.3, is a rational function.

Corollary. The Poincaré series of a polynomial in one
variable and coefficients in L{[Z]] satisfies the Q-conjec-
ture.

Another case which can be handled in this elemen-
tary way, but whose proof we do not include here, is the
following;:

Proposition 3.6. Let H(t1, - ,t,) = a(Z)]* --- 1% be
a monomial. Then P(H;U) is a rational function of U.
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