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1 Introduction

Compactifications of spaces are useful in diverse cir-
cumstances. Alexandroff’s compactifications of locally
compact Hausdorff spaces appear in many instances.
More general compactifications (see [12], {13]) jge usu-
ally needed when smoothness issues are involved. For
example, the Alexandroff compactification of the cylin-
der
C= {(msy}z) |$2 + y2 =1, |Zi < 1}

is a torus with a strangulation point (a sausage with
identified end points} at which a conical neighborhood
appears, and thus is not a topological manifold. How-
ever, a two point compactification of C is a sphere.

The transfer of local properties of a space to its com-
pactifications is a frequent issue. For example, the trans-
fer of local connectedness or of local path-connectedness
is usually related to problems of analytic continuation
and may be of importance.

In [4] it s shown that the local connectedness of a lo-
cally compact space is preserved by Alexandroff’s com-
pactification. This also holds for local path-connected-
ness of g-compact or paracompact spaces. In [3], these
results are extended to finite point compactifications un-
der the additional assumption of local path-connected-
ness by closed neighborhoods.

The purpose of this paper is to extend the results
in [4],[5] to infinite point compactifications. For in-
finite point compactifications matters are rather more
delicate. For example, the space

X = {(z,y)ly=sin(gl?),0<:ﬂ51}

is locally compact, locally connected and locally path-
connected for its topology of subspace of R?, and X =
XU{{(0,y)| -1 <y <1}, also with the subspace topol-
ogy, is a compactifications of X by addition of the in-
finite set N = {(0,)| — 1 € y < 1}. However, X is
not locally connected at any point of N, and thus not
locally path-connected at those points. As a matter
of fact, X, though connected, is not path-connected.
Therefore, conditions must be imposed on infinite point
compactifications to preserve local connectedness or lo-
cal path-connectedness. The conditions we give are ap-
propriate for local path-connectedness. They may be
relaxed if only local connectedness is sought. The main
difficulty in dealing with local path-connectedness, as
compared to local connectedness, lies in the fact that
path-components may not be closed, and also in that
the closure of a path-connected set may not be path-
connected, as the above example shows. Nevertheless,

we will establish local path-connectedness of countably
infinite compactifications, and even more general, under
not very demanding constraints. As a matter of fact, we
show that some of the assumptions in [3] can be relaxed.
However, we think our results are only partial and not
entirely satisfactory. It is difficult, for example, to con-
struct significative examples to ilustrate them. We sus-
pect more natural conditions exist that can be expressed
in terms of connectedness or path-conncctedness prop-
erties of the compactifying sets. We have not succeded
in stablishing these properties, though.

2 Preliminary notions and results

The terminology we follow is basically that of {3] or [6] .
All topological spaces are supposed to be Hausdorff. If
X is a topological space and w € X, X is said to be
locally connected at w if the connected neighborhoods of
w are a fundamental system, i.e., if for any neighbor-
hood UV of w in X there is a connected neighborhood V
of w such that ¥V C U. If this holds for any point w in X,
X is called locally connected. If Y is a subset of X and
C is a connected subset of ¥ not properly contained in
any other connected subset of ¥, C is called a connected
component, or, simply, a component of Y; ifa € C, C
is also called the component of a in ¥ and is denoted
by Co(Y);if C is a component of ¥ and C denotes the
closure of C in X, it follows from the connectedness of
CnY ([3],p.124) that C is closed in Y. The space X is
locally connected if and only if the components of open
sets of X are open in X. If C is connected and A is
an open and closed set in X, in which case we say that
A is clopen in X, such that C N A # ¢, then C C A.
Thus, any component of X is contained in any clopen
set meetjng it, and any component of a clopen subset
of Y is a component of Y. If X is compact, any com-
ponent of X is the intersection of the clopen sets con-
taining it {[3],p.224). If X is a topological space and
Y C X, apath in Y is a continuous map e : [0,1] - Y,
or, the same, a continnous map « : [0,1] — X such
that @ ({0,1]) C Y. If a,b € Y and there is path o in
Y such that o (0) = @ and « (1) = b, it is said that
a and b can be joined by a path in Y. If any pair of
points a,b in Y can be joined by a path in ¥, Y is called
a path-connected subsef of X. Any path-connected set
is also connected. The closure of a path-connected set
may not be path-connected (see the example in Section
1). A path-connected subset of ¥ not properly con-
tained in any other path-connected subset of Y is called
a path-component of Y. Path-components of ¥ may not
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be closed in Y (see example in Section 1}. If C is a
path-component of Y and e € C, C is called the path-
componentof a in Y and is denoted by C, (Y). Hf C is a
component of Y and B is a connected subset of Y such
that BN # ¢, then B C €. Hence C, (Y) C Co(Y).
If w € X and has a fundamental system of connected
neighborhoods, X is said to be locally path-connected at
w, If X is locally path-connected at every point, X is
said to be locally path-connected. A space X is locally
path-connected if and only if path-components of open
sets are open. In a locally path-connected space, path-
components are also closed. Thus, in a locally path-
connected space, components and path-components co-
incide.

A compactification of a topological space X is a com-
pact topological space X such that X is an open sub-
space of X and X = X (A will always be the closure
of Ain X). We assume that X and X are Hausdorff
spaces. The set N := X — X is closed in X. There-
fore, its set D(N) of limit points is contained in N,
Also D™ (N) := D(D"1(N)) € D1 (N) and
D (N) is closed for each n > 1 {we also agree on

DO (N) = N). The set D™ (N) is called the nth-
derived set of N. Points in N — D (N) are said to be
isolated relative to N. Clearly w € N — D(N) if and
only if there is a neighborhood U of w in X such that
UNN = {w}. For X to have a compactification in the
above sense it is necessary that X be locally compact.
Provided X is not compact, this condition is also suffi-
cient for one point {Alexandroff) compactifications.

A compactification X of X is said to be obtained
from X by addition of the set N = X — X. Observe
that each point in N is in the closure of X. A space
X is said to be o-compact {countable at infinity) if it is
locally compact and there a sequence (K,,) of compact
subsets of X such that

Then (K,) can taken such that K, C K ; (A° de-
notes the interior of A in X. See [3],[6]). A space X is
called paracompact if it is locally compact and there are
disjoint, o-compact, open subsets X, o € I, of X such

that
X =] Xa.
acl
A subset U of X is said to be relatively o-compact if
there a sequence (K,) of compact subsets of X such
that K,, € K3_, for all n and U C | ;2| K. We finally
mention that if A is a family of compact subset of X such

that (4o 4 # ¢ for any finite F C A, then (4 4 A #
¢ (Cantor’s intersection theorem: [3],p.93).

3 Some basic results and obser-
vations

The following two elementary results on local connected-
ness will be needed.

Lemma 3.1. If X is a locally connected compact space,
then X has only a finite number of connected compo-
nents; i.e., a compact space having an infinite number
of connected components can not be locally counected.

Proof. Components are pair-wise disjoint and, under the
assumptions, they are also open in X. m

Lemma 3.2. If X has a locally connected compactifi-
cation X, then X has only a finite number of compact
connected components.

If X has only a finite number of compact connected
components and has a compactification X such that
N = X — X s finite, then X has only finitely many
components.

Proof. Since compact connected components of X are
connected components of X, the first assertion follows
from Lemma 3.2. As to the second, just observe that
the components of X meeting N are finite in number,
and that a compact component of X not meeting N is
a compact component of X. m

Remark 3.1. We observe that a space X having infinitely
many non-compact connected components may have lo-
cally connected compactifications (see Remark 3.3, next,
or Example 5.1). Notice finally that the second asser-
tion in Lemma 3.2 still holds if X has an infinite number
of non-compact connected components.

Remark 3.2. A closed subset of a o-compact space is
obviously o-compact. On the contrary, an open subset
may not be g-compact. For example, the Alexandroff
compactification X of an infinite, non countable, dis-
crete space X is o-compact (it is compact). However,
X is not o-compact (recall that the compact subsets of
X are the finite sets). Also, a closed subset of a para-
compact space is paracompact, but the same does not
hold for open subsets {for an example see [3], p.158, Ex-’
ercise 12).
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Remark 3.3, Let X =|J, Xo be a paracompact space,
where the X, are disjoint, open and o-compact. Then
any component C of X is contained in some X, (as X,
is clopen in X) and, being closed in X,, is g-compact.
Thus, when X is locally connected, we may assume
that each X, is a component X. If I is infinite and
only finitely many of the X, are compact, a locally con-
nected (locally path-connected) paracompact space may
have locally connected (locally path-connected) com-
pactifications. As matter of fact (see (3]}, its Alexan-
droff compactification is locally connected (locally path-
connected).

4 Local connectedness

Here we consider some results on local connectedness
which will be important in Section 5. Although our
approach in this and the next section is somewhat dif-
ferent, it is strongly motivated by ideas in [7] and [11].
In what follows, if W is a subset of the topological space

X, Br(iw) =Wn (){' - W) will be the boundary of
W, where A stands for the closure of A C X in X.

Lemma 4.1. Let X be a connected compactification of
the locally connected space X by addition of a set N.
Let w € N be isolated relative to N and let U be an
open neighborhood of w such that U N = {w}. Let
E{U) = U - Cy(U), where Cy, (U) is the counected
component of w in U. Then w ¢ £(U) and E(U) is a
compact subset of X.

Proof. We assume on the contrary that w € £ (/) and
let W be an open neighborhood of w such that W C U.
Any component of W is contained in a component of U.
Let £ (W)be the union of those connected components
of W which are contained in a component of £ (/) . Then
E'(W) = E(U)yNW. Therefore w € £ (W). Let C, be
the component of w in £ (W) and let A be a clopen sub-
set of £/ (W) such that w € A. Since ANE (W) # ¢, A
contains a component C of £ (W). Now, C is closed in
W—{w}andw ¢ C.1fCNBr (W) = ¢, then C = C and
thus C would be closed in X. Since C is open in W—{w}
and thus in W, then C would also be open in X. This
is contradictory (as X # C). Thus, since A 2 C then
AN Br (W) # ¢, and hence C,,, being the intersection
of all such clopen A's, will also meet Br (W) ([3],p.224
and Cantor’s intersection theorem}. Since w ¢ Br (W},
there is z € U, = # w, such that x € C,. Now, since
the component C, (I — {w}) is open in X, and since

r € Cp C & (W), then C, (U — {w}) NE (W) # o.
On the other hand, C,, (/), the component of w in U,
does not meet £ (/). But Cy, being connected in U,
is contained in C; (U/), the component of x in U. Then
Ce(U) = Cyu(U), and Co,{U)NE (W)} = ¢. This is
a contradiction, as C; (U — {w}) € C (U). Therefore
w ¢ £(U), and the lemma is proved. m

Remark 4.1. Qbserve that in the above result it is im-
portant that X be connected. If X has infinitely many
connected components, the conclusion may not hold.
Let X = |y, In, where I, = {1} x [0,1] with the
topology of subspace of R?, and let X be the Alexan-
droff compactification of X by addition of the point
w = (0,0). This is just X as a subspace of R%. Ob-
serve that Cy, (IJ) = {w} for any neighborhood U of w,
but £ (U) always contains a set o, I, m > 1, and
w is in the closure of such set. However, if X has only
finitely many components, we may take I/ meeting only
one of them, Y, and the argument above applies with ¥
in the place of X. Summing up, Lemma 3.1 holds if we

assume that X may have finitely many components.
We have:

Theorem 4.1. If X is a connected compactification of
the locally connected space X by a set N, and if w e N
is isolated relatively to N, then X Is locally connected

at w.

Proof. Let U be an open neighborhood of w in X such
that UNN = {w}. Since w ¢ £ (U) and the component
Co (W) ofwin U is U — £ (U), there is a neighborhood
Vof w, VC C,(U). Hence, Cy (U) is a connected
neighborhood of U contained in UU/m

Remark 4.2, Observe that if I/ is open in X and UNN =
{w}, then Cy, (U) is open in X. In fact, if 2 € Cy, ()
and © # w, so that z € X, the component C; (U — {w})
of z in U ~ {w} is open in X and contained in Cy, (U).
Also observe that £ (U) is closed in U and E(U) =
£ (U) n U. Moreover,

Co()= ] Ca(U-{whu{w}

zEU—E(U)

w is in the closure of C;, (U - {w}) and C, (U} = C,, (V)
forallz e U - E(U).

Corollary 4.1. Let X be a connected compactification
of the locally connected space X by addition of N. As-
sume that N has only finitely many limit points in X.
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Then X is locally connected.

Proof. Any point in N — D (N) is isolated relative to N,
sothat Y = X U(N — D(N)) = X ~ D(N) is a locally
connected open subspace of X, and X is a compactifi-
cation of ¥ by addition of the finite set D (N). Since
D(N), being finite, has no limit points, X = YU D (N)
is locally connected at each point of D (N). Thus, X is
locally connected. m

Corollary 4.2. Let X be a connected compactification
of the locally connected space X by addition of N. Also
assume that D™ (N) = ¢ for some n > 0. Then X is
locally connected.

Proof. From above, the assertion is true for n = 0,1,2,
and it follows by induction on n for n > 3, observing that
X is a compactification of the locally connected space
Y = X U(N — D(N)) by addition of M = D (N}, and
DY (M)=¢.®

Remark 4.9 If X is not connected but has instead
finitely many components, and the remaining assump-
tions of Theorem 4.1 and its corollaries hold, each com-
ponent of X will be locally connected. Hence, X itself
will still be locally connected; i.e., the conclusions of
Theorem 4.1 and its corollaries hold if X is locally con-
nected and X is required to have only finitely many
connected components. Because of Lemma 3.1 it is not
to the point to let X to have infinitely many connected
components.

5 Local path-connectedness

Now we come to the main results in this paper. Recall
that if X is locally path-connected then any connected
open subset of X is path-connected. In particular, com-
ponents and path-components of X are open and coin-
cide,

Lemma 5.1. Let X be locally compact and locally
path-connected, and let X be a compactification of X
by addition of a set N. Assume that X has only finitely
many connected components and let w € N — D(N).
If w has a countable fundamental system of ncighbor-
hoods, then X is locally path-connected at w.

Proof. The space X is locally connected at w (Theo-
rem 4.1 and Remark 4.3). Let U be an open connected

neighborhood of w such that U NN = {w}, and let
(Uyp) be a fundamental system a neighborhood of w.
There is no loss of generality in assuming that the U,
are open and connected and that Upyy C U, CUp = U
for each n > 0. Let a = ag € U,a # w. The path-
component Cq (U — {w}) is clopen in U — [w} and open
inU. If w ¢ Ca (U — {w}), it would also be closed in U,
which is absurd. Then let a; € Co (U — {w}) N U1, a2 €
Ca, (U1 — {w})NTs, and continuing this way, let a1y €
Ca, (Un — {w}) NUpny1,n 2 2. Now choose (t,) in [0,1)
such that t, < tp41,to = 0and t, — 1. Since @y, an41 €
Ca, (Un — {w}), there is a path a, : [ta,tny1] = Un —
{w} such that an (tn) = @n,@n (tnt1) = @n41. Let o :
[0,1] - U be defined by a(t) = an (1) if t, <t < thi,
a (1) = w. Clearly « is continuous in [0,1). It is also
continuous at ¢ = 1. In fact, o (t) € Un, for ¢ > 1,5, and
(Uyn) is a fundamental system of neighborhoods of w.
Hence « is a path of U, and thus I/ is path-connected.
This proves the lemma. @

Remark 5.1. It follows that for any open neighborhood
of w such that UNN = {w} we have Cy, (V) = G (U) =
Co(N=Cr(U)forall z e U ~E(U); and if U is con-
nected, it is also path-connected.

Corollary 5.1. Let X be locally path-connected and
let X be a compactification of X by addition of a finite
set N. Assume that X has only finitely many compact
connected components. Also assume that each w € N
has a countable fundamental system of neighborhoods.
Then X is locally path-connected.

Proof. Under the assumptions X has only finitely many
components (Lemma 3.2}, and ecach point of N is iso-
lated relative to N.m

Corollary 5.2. Let X be locally compact and locally
path-connected, and let X be a compactification of X
by addition of a set N having only finitely many limit
points. If X has only finitely many components and if
any point in N has a conntable fundamental system of
neighborhoods, then X is locally path connected.

Proof. The space X is the compactification of the locally
path-connected subspace Y = XU(N — D (N)}) of X by
addition of D (N), which is finite. m

By induction it follows as before that:

Theorem 5.1. If X is locally compact and locally path-
connected, if X is a compactification of X by addition
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of a set N such that D™ (N) = ¢ for some n > 0, if
X has only finitely many components, and if any point
in N has a countable fundamental system of neighbor-
hoods, then X is locally path-connected.

Corollary 5.3. If X is Iocally compact and locally
path-connected, if X isa compactification of X by ad-
dition of a set N such that D™ (N} = ¢ for somen > 0,
if X has only finitely many components, and if for each
w € N there is a neighborhood U such that U — {w}
is relatively o-compact in X — {w}, then X is locally
path-connected.

Proof. Since the space X is locally connected, so is the
open subspace Y =X — {w}. Observe that X is the
Alexandroff compactification of ¥ by addition of w and
that U—{w} C [ne, Kn, where the K/ s are compact
subsets of Y such that K, C K5, for each n > 1.
Let £, (U) = KaU € (U — Kan). Then &, (U) is compact
subsct of Y. Let U, = U — &, (U). Since any ncighbor-
hood V of w in U contains one of the form U — K where
K is a compact subset of I/ — {w}, and since K C K,
for some n, so that V' 2 U, it follows that (I/,,) is a fun-
damental system of path-connected neighborhoods of w
in X.m

Corollary 5.4. If X is locally path-connected and o-
compact, and if X is a compactification of X by addition
of a countable set N such that D™ (N} = ¢ for some
n 2> 0, then, provided it has only finitely many compo-
nents, X is locally path-connected.

Proof. Let w € N. We may assume N — {w} = [wy|n >
1}, where w,, # wy, for m # n. Let (Kn) be a sequence
of compact subset of X such that X = |J;, K, and
let K, = K, U {w,}. Then (K} is a sequence of com-
pact subsets of X — {w} such that X — {w} = - e

Thus, any neighborhood U of w is such that U — {w} is
locally o-compact in X — {w}. m

Remark 5.2. Corollary 5.1 was proved in [5] under the
additional assumption that any point * € X had a
fundamental system of closed path-connected neighbor-
hoods. This assumption thus proves to be superfluous.

Corollary 5.5. Assume X is paracompact and locally
path-connected, and let (X4),c; be the family of its
distinct connected components. Let X be a connected
compactification of X by addition of a set N and assume
X has only finitely many compact components. Then X

is locally path-connected at any point w € N — D{N).

Proof. In fact, there is an open connected neighbor-
hood U of w with U N N = {w}. For each a € I, let
Uy = UNXg and U, = Cy, (Uy) . Observe that Ul, = ¢
if w ¢ Xg, ie., if w ¢ Uy. On the other hand, U, = U],
if w e Uy. In fact, Uy = (U N X,)U {w}, and any com-
ponent C' of I/ N X, such that w ¢ C, being clopen in
[/, is a component of /. Hence w is in the closure of any
component of I/ N X, and therefore U, is connected.
Since Uy — {w} = U N X, is relatively o-compact, it
follows that U, = U, is also path-connected (Remark
5.1). Finally, since U = |J,c; Us, and the latter set is
path-connected, the assertion follows.

Theorem 5.2. Let X be a locally path-connected and
paracompact space and let X be a compactification of
X by addition of a finite set N. Also assume that X
has only finitely many compact components. Then X is
locally path-connected.

Proof. Since X has only finitely many components (Lemma
3.2), and since D(N) = ¢, sothat N—D(N)=N, X
is locally path-connected. m

Remark 5.3 Theorem 5.2 is Theorem 4.2 in [5], proved
without the assumption that points in X have funda-

mental systems of closed path-connected neighborhoods,

Remark 5.4. Let X = |J,e; Xa be a locally connected
paracompact space, the X, being the components of X.
Let X be a compactification of X by addition of an in-
finite set N, so that D (N) # ¢, and assume X has only
a finite number of components. The set D (N) of limit
points of N is closed in X. Hence, Y := X — D(N) =

XU(N — D(N))is and open subset of X, and therefore
a locally compact subspace of X. Furthermore, Y is lo-
cally connected, as follows from Theorem 4.1. Thus,
if w e N— D(N)}, the component Cy (YY) of w in
Y is of the form Cy (Y) = Ny U Uaer, Xa, where
Ny, € N-D(N), I, € I and each point £ € N,
is in the closure of {J,; Xa (if not, there would be
an open neighborhood W of x such that WNC,, (Y) =
WnNCy, (Y) = {r}, and {z} would be clopen in C, (¥)).
As a matter of fact, # 15 in the closure of some X,, e €
I,. To see this, let U be an open connected neighbor-
hood of z such that U N N = {z}. Since z is in the
closure of {J,o; Xa then UN X, # ¢ for some o € I,
and some component C, of U — {r} has to be contained
in X,. If 2 ¢ C,, then C, would be clopen in U (it is
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clopen in I/ — {z}), which is absurd since I/ is connected.
Hence = € C,, and thercfore z € X,. Also observe that
since Y is locally connected, C,, (V) is open in Y, and
hence in X, for all w € N — D{N). Now assume that
I, and Ny, are countable. Thent . 1, Xa is o-compact
and therefore the union of a sequence (K, } of compact
subset of X. Let N, = {wq|n > 1}. Then C,, (Y') is the
union of the compact subsets K, U {z,} of X and is
also g-compact. Thus, if I, and N,, are countable for
all w € N — D(N) then all the components of ¥ are
o-compact. Thus, Y = X — D (N} is paracompact and
locally path-connected (Corollary 5.5). Therefore, the
following result holds.

Theorem 5.3. Let X be paracompact and locallv path-
connected, and let X be a compactification of X by
addition of an infinite set N having only finitely many
limit points in X. Also assume that X has only finitely
many components and that for each w € N — D (N) the
sets I, and N, in Remnark 5.4 are countable .Then, X
is locally path-connected.

A situation in which Theorem 5.3 can be applied is
the following.

Ezample 5.1, Let I = [—7,7] and for each # € [ let
Lg be the subset of C (the complex numbers)} given by
Lg = {re'®|0 < r < 1}, re*® = r (cosd + isin8) . Endow
Ly with the topology of subspace of C, and let X :=
(User Lo be given the sum topology {A C X is open in
X if and only if AN Ly is open in Ly for each 8. See
(3],p.33). Then X is paracompact and not o-compact.
Let N = {e®|0 € I} U {0}. Also let Lg := Ly U {&®}
with its subspace topology and Y := User Lo with the
sum topology. Finally let X be the Alexandroff com-
pactification of ¥ by addition of {0}. Then X is a com-
pactification of X by addition of N. Since X is para-
compact and locally path-connected, and since N has 0
as its only limit point, then X is locally path-connected.
Observe however that since Y is paracompact, this as-
sertion also follows from Theorem 5.2. We are missing
at the present time a simple more typical cxample of
Theorem 5.3. Also observe that X is the unit disc in C,
but its topology is not that of a subspace of C.

Remark 5.5. Theorem 5.3 most naturally applies when
N is infinite countable, D {N) is finite, and each point
w € N — D(N} is in the closure of at most count-
ably many of the X,. This is trivially the case of the
compactification X = [0,1] of X = (0,1) — M (with

their topologies of subspaces of R), where M = {;1;|n =

2, }u{fgln = 1,2,---}. In fact, X is obtained
from X by addition of N = M U {0,1}. Observe that
in this case 0,1 arc not in the closure of any component
of X, while all the other points in N are in the closure

of just two such components. Of course, X is locally
path-connected.

Theorem 5.4. If X is a locally path-connected para-
compact space, if X is a locally connected compactifi-
cation of X by addition of a countable sct N, and if
each point w € N — D (N) is in the closure of at most
countably many components of X, then X — D (N) is
paracompact and locally path-connected. Furthermore,
if N has only finitely many limit points in X, then X is
locally path-connected.

Proof. We only need to prove that the sets I, w €
N — D(N), in Remark 5.4, are countable. But this is
trivial, as, with the notations in Remark 5.4, any X,.,
a € I,,, must have some z € Ny, in its closure in X (if
this were not the case, X, would be clopen in C,, (Y)),
and N, is obviously countable. m

Remark §.6. Under the assumptions of Theorem 5.4, if
the number of components of X is not countable, some

w € D (N) has to be in the closure of an uncountable
number of X/ s.

Theorem 5.4 can be further generalized.

Theorem 5.5. Let X be locally path-connected and
paracompact, and let X be a compactification of X by
addition of a countable set N such that D™ (N) = ¢
for some n > 1. Also assume that each point in N —
D=1 (N) is in the closure of at most countably many
connected components and that X has finitely many

connected components. Then, X is locally path-connect-
ed.

Proof. For each m £ n—1 let
Y™ =xu | (D(k—“ (N) — DW (N)) .
k=1

Since D1 (N) — D®) (N) € DO (N) — D"~} (N)
= N-D"~1 (N), it follows from Theorem 5.4 that Y
is paracompact, locally path-connected and, since any
compact connected component of ¥ is a connected
component of X , Y1) may have only finitely many com-
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pact components. Assume the same holds for all m <

n — 1. Then

Y(n-—l) = Y(n—2) U (D(n—2) (N) _ D(n—l) (N))

and we have to prove that any component of Y(®=1) ig
o-compact. Let w € Y"1, Then

Co (YY) =Nyu | Xa
aEly,

where N, € D=2 (N) — D=1} (N) C N — D=1 (N)
is countable and each one of its points is in the clo-
sure of at most countably many of the X]s. But, as
in the discussion in Remark 5.4, any X,, a € I, has
a point x € N, in its closure. Thus, I, is count-
able and C,, (Y("~1) is g-compact. Hence, Y("~1) is
paracompact, locallly path-connected with only finitely
many compact components, and since X = Y{»-1 y
D@1 (N) and D=1} (N) is finite, it follows from The-
orem 5.2 that X is path-connected. m

Remark 5.7. The conditions we have given so far on
N point in the direction of strong disconnectedness of
this set. In fact, if D™ (N) = ¢, w € N, and C,, (N) is
the connected component of w in N, also D™{C,, (N))
= ¢, and we may assume that D("_I)(CW(N)) # ¢. But,
since C,(N) is connected, it has no isolated points.
Thus G, (N) = DU(CL(N)) = DPD(C,(N)) =+ =
D=U(C,(N)), and since this set is finite, it has to
reduce to a point; i.e.,, N is totally disconnected How-
ever, we have not succeeded in establishing local path-
connectedness of X from total disconnectedness of N.
We think the issue deserves further research.

Remark 5.8. Additional results on the local connected-
ness of compactifications can be found in [1] and [2]. The
case of the Stone-Céch compactification of a completely
regular (not necessarily locally compact) space poses a
different kind of problem, as the space is not necessar-
ily open in the compactification, but it is dealt with in
(8] and [10]. It seems that little can be said about local
path-connectedness in this case. The relationship be-
tween local connectedness and local path-connectedness
within the frame of metric space is examined in detail
in [9].
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