
30

49(190):30-43, enero-marzo de 2025. doi: https://doi.org/10.18257/raccefyn.2897
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Electrostatic Energy for a Circular Charged Configuration: 
Discrete vs. Continuum
Energía Electrostática para una Configuración de Carga 
Circular: Caso Discreto vs. Continuo
    Omar Aguilar-Loreto1,*,     Antonio Muñoz1,     Belter E. Ordaz-Mendoza2

1Engineering Department, University of Guadalajara, Av. Independencia Nacional 151, 48900, Autlán, 
Jalisco, México

2Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

Resumen
El concepto de energía potencial electrostática ha servido como punto de partida para un mayor 
entendimiento de varios modelos en teoría electromagnética. Usamos el concepto de energía 
potencial electrostática buscando una conexión entre varios de estos modelos, en particular, 
analizamos la contribución de la energía potencial electrostática para diferentes configuraciones de 
carga eléctrica con simetría circular. Estudiamos los modelos asociados a un conjunto de cargas 
discretas posicionadas en una figura poligonal, una distribución unidimensional de carga continua, y 
un toroide con carga continua, considerando las analogías que existen entre ellos. También se buscan 
los contrastes que existen entre las situaciones discretas y continuas de los modelos.
Palabras clave: Electromagnetismo; Energía potencial electrostática; Simetría circular.

Abstract
The concept of electrostatic potential energy has served as a starting point for a deeper understanding 
of several models in electromagnetic theory. We use this concept looking for a connection between 
some of those models, in particular, we analyze the contribution of electrostatic potential energy for 
different configurations of electric charge with circular symmetry. We study models corresponding 
to a discrete set of point charges arranged in a polygonal figure, a uni-dimensional continuously 
charged ring and a continuously charged torus, considering the existing analogies between them. In 
addition, we contrast the situation between the discrete and continuum models.
Keywords: Electromagnetism; Electrostatic potential energy; Circular symmetry.

Introduction
Interactions between elementary particles are one of the most fundamental features 
in physics to analyze the evolution and structure of several physical systems presented 
in nature (Feynman, Leighton, & Sands, 1963; Griffiths, 1999; Kittel, Knight, & 
Ruderman, 1973).

Besides the gravitational force, the electromagnetic interaction has been widely 
studied since ancient times. It is the sole source of forces between atomic nuclei and 
orbiting electrons, and the reason for the existence of electromechanical devices. For two 
stationary objects with an excess charge which are located in the same reference frame, 
they manifest attraction or repulsion. If they have opposite sign charge, the force between 
them is attractive, and if they have the same sign charge, the force is repulsive.

The fundamental law that postulates that equal charges repel and different charges 
attract each other, has served as an elementary law for the development or operation of other 
experiments in physics (Greiner, 1998; Kittel, Knight, & Ruderman, 1973). On the other
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hand, through the concept of work in mechanics, a consistent definition of energy, which is
also fundamental in physics, has been established (Wells, 1967; Whittaker, 1917). Energy
is defined as the work done by an applied force on a particle that leads to a change in its spa-
tial configuration. In the context of electrical forces, this is known as electrostatic potential
energy or simply potential energy (Griffiths, 1999). The concept of potential energy plays
an important role in modern technology advances with implications in several branches of
science. For example, it plays a significant role, if we are interested in processes occurring
in molecular mechanics such as composition and charge interacting in solvents, ionized
media, and on surfaces of molecular structures (Besley, 2023), or describing the nature of
noncovalent and protein–protein interactions which are essential in chemical and biological
processes (Brinck & Borrfors, 2022; Maleki, Vasudev, & Rueda, 2013).

In this article, we are interested in studying the potential energy stored in different geomet-
rical charge configurations with circular symmetry in the electrostatic case. We consider
classical charged particles whose interactions are equal to the sum of Coulomb forces only.
Even though the static interaction force between charged particles originates from the elec-
tric field-induced interactions, here we do not derive results using an electric field scheme.

This work is organized as follows. In section theoretical framework, we introduce an ele-
mentary definition of electrostatic potential energy based on classical literature (Feynman,
Leighton, & Sands, 1963; Good, 1999; Griffiths, 1999; Wangsness, 1997). In section
potential energy for a discrete arrangement of point charges, we describe the energy stored
in a set of point charges in electrostatic equilibrium in empty space, the one-dimensional
electrostatic interaction of several point charges located at vertices of a polygon, and in-
scribed into a unitary imaginary circle interacting with another point charge located along
the axis of the circle and out of the plane. The analysis of the electric potential energy of
a uniformly charged ring interacting with a point charged particle located along the axis of
the ring and out of the plane is studied in section electrostatic energy for an a uniformly
charged ring and a point charge. In section electrostatic energy for a uniformly charged
torus and a point charge, we study a similar charge configuration as in the aforementioned
section but this time with a uniformly charged torus instead of a uniformly charged ring.
All of the different configurations above have an axial symmetry, which allow us to explore
possible similarities between them. Finally, we present our conclusions in the last section.

Theoretical framework
We consider the work done by an electrical force that interacts with a test charge to change
its position from position a to position b. We know from classical mechanics (Feynman,
Leighton, & Sands, 1963; Kittel, Knight, & Ruderman, 1973; Wells, 1967) that the work
done by a force to move an object from position a to position b is

W =
∫ b

a
F• dl. (1)

If there is a charge interacting with an electric field, then the force expression is F = qE.
Here q is the electrical charge, and E is the magnitude of the electrical field. It is well
known that the electrostatic force is conservative, thus, the total work is path independent,
and depends only on the initial and final position of the electric charge in the field, that
means, no matter what the election path is, the total work depends only on the initial and
final positions of the electric charge in the field, that is W = q(V (b)−V (a)), where V (a) and
V (b) are known as the electric potentials at positions a and b, respectively (Griffiths, 1999;
Wangsness, 1997). For an individual charge, we say that it is moved from a far position
in which the electric potential is zero, to a final position r from the origin of a coordinate
system. In this form, the expression for the electric work is W = qV (r). We will use this
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last definition for all cases described later. If we study the case of two point charges, then
the electrical work stored in the electric field is

W12 =
1

4πε0

q1q2

|⃗r2 − r⃗1|
, (2)

where ε0 is electrical permittivity of vacuum, q1,q2 are point charges and r⃗1 = (x1,y1,z1),
r⃗2 = (x2,y2,z2) are charge positions, respectively. We can say that electric charge number
two has move to actual position in the presence of the field generated by electrical charge
number one, mathematically, W1 (⃗r2) = q2V1 (⃗r2) or vice versa, W2 (⃗r1) = q1V2 (⃗r1). This last
definition allow us to rewrite the expression for the potential energy for a system of N point
charges at electrostatic equilibrium. Since the electric force is conservative, the potential
energy for a system of N point charges at electrostatic equilibrium can be expressed as

U =
1

4πε0

N

∑
i=2

i−1

∑
k=1

qiqk

|⃗ri − r⃗k|
. (3)

Another equivalent relation is

U =
1

8πε0

N

∑
i=1

N

∑
k=1
k�i

qiqk

|⃗ri − r⃗k|
, (4)

where the terms i = k are omitted. If we rearrange terms we obtain

U =
1
2

N

∑
i=1

qiV (⃗ri) , (5)

with

V (⃗ri) =
1

4πε0

N

∑
k=1
k�i

qk

|⃗ri − r⃗k|
, (6)

this last expression corresponds to the electric potential due to the kth charge system in the
ith charge position, respectively (Greiner, 1998; Griffiths, 1999; Wangsness, 1997).

Potential energy for a discrete arrangement of point charges
We consider the situation of a charge distribution consisting of several discrete point charges
in a plane and located at the vertices of a polygon inscribed into an imaginary circle with
radius a, and a single point charge out of the charge distribution plane and placed over the
axis of the circle perpendicular to the plane. A similar approach is proposed in (Antonov,
2003).

We propose the potential energy of such charge distribution as the sum of three energetic
terms that we call three dimensional energy utrid , polygonal energy upolig, and diametrical
energy udiam. The three dimensional energy refers to the sum of energy terms due to the
interaction between the axial point charge at height h on the z axis, and the rest of the
charges located in the plane of the circle in the xy plane. The polygonal energy is the sum
of potential energy terms produced by the interaction of neighboring charges located on
the circle. The diametrical energy is produced by the interaction of diametrically opposite
charges, thus, the total potential energy is

UTotal (n) = utrid (n)+upolig (n)+udiam (n) , (7)

where n corresponds to a potential energy dependence on an even natural number N of point
charges. In order to generalize, we begin by considering the case of five point charges as
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indicated in Fig. 1. For this configuration, the number of terms contributing to each energy
type are provided by equations (8), (9), and (10).

Figure 1. Top view of five point charges located at the vertices of a tetrahedron. The point charges
in blue are located in the xy plane and inscribed into an imaginary circle of radius a. The point
charge in red is located on the z axis along the axis of the circle.

utrid = 4
q2

4πε0

1√
a2 +h2

, (8)

upolig = 4
q2

4πε0

1
2asin π

4
, (9)

udiam = 2
q2

4πε0

1
2a

. (10)

The terms corresponding to the utrid energy result from taking the distance between point
charge in the z axis and a charge in the plane by using the hypotenuse of the right trian-
gle that is formed. The terms for the upolig energy are obtained by accounting for all the
inscribed diagonals that connect different vertices within the polygon. Since it is a regular
polygon, it is possible to relate it to trigonometric functions based on the angles formed by
the inscribed triangles within the same polygon. For the udiam energy, it is sufficient to take
the distance between pairs of charges that are diametrically opposed.

We can extend the system for 2n (with n∈N) discrete point charges whose general equations
are

utrid (n) = n
q2

4πε0

1√
a2 +h2

, (11)

upolig (n) = n

n
2−1

∑
k=1

q2

4πε0

1
2asin

( kπ
n

) , (12)

udiam (n) =
n
2

q2

4πε0

1
2a

. (13)

We have taken an even number of charges since the inscribed polygons are symmetrical and
allow for faster calculation. Moreover, for our purpose, symmetrical polygons converge to a
circle for a very large number of charges n. To illustrate the mathematical induction process
we include Table 1.

To better understand the energy contribution by each term in Eq. (7), we plot utrid (n),
upolig (n) and udiam (n) in Fig. 2a. We see that the term upolig(n) contributes the most to
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Charge configurations
for n = 6,8,10

Energy contribution
by the point charges
located in the plane
of the circle

Energy contribution by
the point charge located
in the axis of the circle
at point P(0,0,h)

upolig = 6
q2

4πε0
×

2

∑
k=1

1
2asin

( kπ
6

)

udiam = 3
q2

4πε0

1
2a

utrid = 6
q2

4πε0

1√
a2 +h2

upolig = 8
q2

4πε0
×

3

∑
k=1

1
2asin

( kπ
8

)

udiam = 4
q2

4πε0

1
2a

utrid = 8
q2

4πε0

1√
a2 +h2

upolig = 10
q2

4πε0
×

4

∑
k=1

1
2asin

( kπ
10

)

udiam = 5
q2

4πε0

1
2a

utrid = 10
q2

4πε0

1√
a2 +h2

Table 1. Different circular charge configurations for n = 6,8,10 (in dark blue) and a point charge
(in red) at height h on the axis of the circle.
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the total potential energy UTotal(n), and keeps increasing. In Fig. 2b, we plot utrid (n) and
udiam (n) for a better comparison. Although the potential energy UTotal(n) is apparently zero
in the figure 3; when n = 2 corresponding to the lower case, the total potential energy value
is of the order of 0.08, where we have taken h = 2m and a = 1m.

(a)
Potential energy terms utrid(n), upolig(n) and
udiam(n) in dimensionless units. The term upolig(n)
contributes the most to the total potential energy
UTotal(n).

(b)
Potential energy terms utrid(n) and udiam(n) in di-
mensionless units.

Figure 2. Energy contribution to the potential energy as a function of even natural numbers n. The
parameters have been rescaled and set to q =

∣∣e−∣∣, h = 2m and a = 1m.

This discrete ring-type distribution allow us to classify the total amount of energy as the
sum of three contributions. If we consider the interaction between all pairs of point charges,
the UTotal(n) diverges for large n as can be seen in Fig. 3. It is worth noticing that the
increasing upolig contribution is cut off in Fig. 2a but still remains increasing.

Figure 3. Normalized total potential energy UTotal(n) as a function of even natural numbers n.

In Fig. 4a, a description of the energy behavior is shown as a function of the height h of
the charge along the z-axis and the radius of the circle a where the polygon resulting from
the distribution of discrete charges is inscribed. We observe that the energy variations are
imperceptible with changes in height while keeping the radius fixed. Unlike the previous
case, the energy of the discrete charge distribution with a fixed height and changing the
radius of the circle where the geometric polygon of the charges is inscribed shows noticeable
differences as the radius increases, as can be seen in Fig. 4b. We observe that as the charges
move further apart from each other, in addition to moving away from the charge on the
z-axis, the energy is expected to decrease.
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For the figures presented in this work, as well as for the calculations, we have used SI units,
and the potential energy has been normalized by a factor of U0 = 0.5×1027J, i. e., results
are presented in normalized units of U/U0. Units of height h, radius a and charges q are
given in meters (m), meters (m) and Coulombs (C) units, respectively.

(a)
Total potential energy Udiscrete(n) as a function
of even natural numbers n and height h for h =
0,1,2, . . . ,6m and with a = 3m.

(b)
Total potential energy Udiscrete(n) as a function
of even natural numbers and radius a for a =
0,1,2, . . . ,6m and with h = 4m.

Figure 4. Description of the discrete arrangement of point charges as a function of height h, Fig.
4a, and radius a, Fig. 4b. We have set q =

∣∣e−∣∣ and all parameters have been rescaled to have nor-
malized units.

The so called utrid three dimensional energy contribution for the discrete case is compared
with the following situations in next sections such as for a uni-dimensional continuous
charged ring and a continuum charged torus. We observe that upolig and udiam correspond
to the work needed to assemble the polygonal configuration of charges.

Electrostatic energy for a uniformly charged ring and a point charge
In this section, we consider a uniformly charged ring lying on the xy plane with a radius a
and with a linear charge density λ . The ring’s symmetry axis matches with the z axis and a
point charge q is placed at a height h on the z axis.

The model is represented in Fig. 5 and the potential energy due to the system ring-point
charge is calculated from

U = qV (⃗r0) , (14)
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Figure 5. Geometrical configuration of an electrical charged ring of radius a and a point charge at
height h on the ring’s axis.

where the point charge q is located at point r⃗0 = (0,0,h), and the electric potential V (⃗r0)
is due to a continuous charge distribution on the ring with radius a whose expression is the
continuum limit of Eq. (14). Nevertheless, it is important to note that Eq. (14) does not
represent the energy of the configuration as a whole, but specifically applies to the ring-point
charge scenario.

Even though the calculation of the electric potential of the ring can be pursued by a simple
integral, as done in many electromagnetism textbooks, here we cite results for the more
general case off-axis and evaluate in the limit on-axis case. In (Escalante, 2021), a simi-
lar configuration but for a ring without axial symmetry was developed. The case of a ring
symmetry in electric potential calculations is extended to include disc and cylinder gener-
alizations in (Charyyev & Shikakhwa, 2018). We based our results on a previous work
developed in (Ciftja, Babineaux, & Hafeez, 2009; Good, 1999). Even though the cal-
culation for the case r = 0 is straightforward and can be found in any basic electrostatics
textbook, we consider that the approach taken there significantly lacks details for further
investigations. In (Ciftja, Babineaux, & Hafeez, 2009), the axially symmetric electrostatic
potential for a uniformly charged ring V (r,z) is given as

V (r,z) =
1

4πε0

λ4a√
(r+a)2 + z2

K

(
4ra

(r+a)2 + z2

)
, (15)

where (r,z) are cylindrical coordinates, a is the ring’s radius, and the azimuthal angle φ has
been omitted. Here

K (m) =

∫ π
2

0

dθ√
1−msin2 (θ)

, (16)

is an elliptic integral of the first kind.

If we use equations (14) and (15) with r = 0 and z = h, the electric potential energy stored
in the ring-point charge system is

U = qV (0,h) . (17)

With λ = Q
2πa , where Q is the total ring’s charge, we can calculate the potential energy of the

system U . In order to make a comparison with the discrete case discussed in the previous
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section, we assume that total ring’s charge is an integer n multiplied by the fundamental
electron charge, i.e., Q = n |e−|, then the potential energy becomes

U =
q
2

n |e−|
4πε0

1√
a2 +h2

, (18)

where K(0) = π
2 . Note that Eq. (18) matches exactly with Eq. (8) with q = |e−| and the

corresponding graph of Eq. (18) should mirror utrid (n) in Fig. 2b. Even though these are
different approaches to describe the ring-point charge configuration, we note that the results
are equivalent; this is because in the limit of infinite charges in the polygonal configuration
we obtain the continuous distribution of charge on the ring.

Electrostatic energy for a uniformly charged torus and a point
charge
Another situation of interest and quite similar to those in the previous sections, corresponds
to a uniformly charged torus and a point charge. Indeed, a torus is a geometrical configura-
tion with circular symmetry, which in the appropriate limit, coincides with a charged ring.
We consider a charge uniformly distributed on the surface of the torus, and calculate the
electric potential at a point on its axial axis. The torus has a minor radius which is denoted
by r and a major radius denoted by R (Hernandes & Assis, 2004; Tashayev, 2019). The
torus is located on the xy plane and its axial symmetry axis coincides with the z axis as
shown in Fig. 6.

Figure 6. Torus with a uniform surface charge density and a punctual charge located at a height h
on the axial z axis. The torus has a minor radius r and a major radius R.

The electric potential can be calculated using toroidal coordinates

x = a
sinhη cosϕ

coshη − cosξ
, (19)

y = a
sinhη sinϕ

coshη − cosξ
, (20)

z = a
sinξ

coshη − cosξ
. (21)

8
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The parameter a characterizes a ring with equations x = acosϕ , y = asinϕ , z = 0 as long as
η goes to infinity. Here ϕ is the azimuthal angle. A constant parameter η = η0, where η0 =

ln


R
r +


R2

r2 −1


, describes the torus surface, thus, there are two regions: one internal

identified with η > η0, and one external with η < η0 . The electric potential for a uniform
surface charge density on the torus in an exterior point, is given by

V (η < η0,ξ ,ϕ) =


coshη − cosξ×
∞

∑
p=0

Ap cos(pξ )Pp− 1
2
(coshη) , (22)

where Ap are coefficients given by

Ap =

√
2A(2−δ0p)Qp− 1

2
(coshη0)

πPp− 1
2
(coshη0)

, (23)

and δi j is the Kronecker delta, which is zero for i � j and one for i = j. The functions
Pp− 1

2
(coshη0) and Qp− 1

2
(coshη0) are known as Legendre polynomials of the first and

second kind, respectively. Eq. (22) was reported in (Hernandes & Assis, 2003; Hernandes
& Assis, 2004) and we use it to calculate the potential energy for the system torus–point
charge.

We are interested in the case when the minor radius r tends to zero, this is the situation when
the torus corresponds to a charged ring. The limit r → 0 is equivalent to choose η0 ≫ 1 and
therefore coshη0 ≫ 1. Under this limit, we have R ≈ a, and the coefficients in Eq. (23) are
neglected except for p = 0, thus, the electric potential can be written as:

V (η ,ξ ,ϕ) =
q

4πε0
√

2a

×


coshη − cosξ P− 1
2
(coshη) . (24)

In spherical coordinates, the last expression becomes (Hernandes & Assis, 2004):

V (ρ,θ ,ϕ) =

q
4πε0

1

(ρ2 −a2)2 +4a2ρ2 cos2 θ

 1
4
×

P− 1
2




ρ2 +a2


(ρ2 −a2)2 +4a2ρ2 cos2 θ

 1
2


 . (25)

Using Eq. (5) together with Eq. (25), if we choose ρ = h, θ = 0, and having P− 1
2
(1) = 1,

we obtain Eq. (18) which is exactly the same as for the charged ring, and for the discrete
system (11). In this situation, the total amount of charge has been set to q = n |e−| for the
charge on the surface of torus distributed uniformly, and we have omitted the corresponding
plot since it coincides exactly with (18). Here we observe again that different approaches
lead to equivalent results. Both cases, ring-point charge and torus-point charge in the zero
minor radius limit coincide with the total potential energy contribution. This is reflected in
expressions (18) and (25), under appropriate limits, and they match also with utrid(n) in Fig.
2b.

9



40

Aguilar-Loreto O., et al.
49(190):30-43, enero-marzo de 2025. doi: https://doi.org/10.18257/raccefyn.2897

Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

(a)
Electrostatic potential energies for the three cases
studied, Udiscrete(n), Uring(n) and Utorus(n) respec-
tively, as a function of even natural numbers n. The
potential energy for the discrete case, Udiscrete(n),
grows at a higher rate than the other two cases in-
volving continuous charge distributions.

(b)
Electrostatic potential energies Uring(n) and
Utorus(n). The two continuous charge distributions
have a non-zero potential energy and grow at the
same rate as n increases. Here we have considered a
torus with zero minor radius limit which coincides
with the charged ring.

Figure 7. Electric potential energies, in dimensionless units, as a function of even natural numbers
n. The parameters have been rescaled and set to q =

∣∣e−∣∣, h = 2m, a = 1m, R ≈ a.

Figures 7a and 7b show the electrostatic potential energies for the three cases considered
in this work: a discrete charge configuration, a charged ring, and a charged torus. In Fig.
7a, it can be seen that the energy contribution of the discrete charge system is considerably
higher when accounting for the interactions between the discrete charges located on the xy-
plane. The energy contributions of the ring-point charge and the torus-point charge systems
coincide due to the symmetry and assuming the minor radius r of the torus is very small.
The potential energy contributions of the charged ring and torus are not visible in Fig. 7a,
thus, the potential energy for these two systems has been plotted in Fig. 7b.

It is important to note that the self-energies of both the ring and the torus have not been
considered in this case. According to the work of (Ciftja, 2023), the energy stored in the
ring is divergent and independent of the amount of charge accumulated in it. This prevents
us from making a comparison with the discrete case, which is based on the methodology
we have applied across the three cases as a function of the number of charges involved.

Let us recall that, in the case of the ring and the torus, the continuous charge distribution can
always be expressed as a multiple of the elementary charge of the electron, which allows
for a comparison of the three schemes. In the discrete charge distribution, the number
of charges considered is countable, which enables the calculation of a finite energy value
for the charges that form the polygon. This, however, is not the case for the ring and,
consequently, for the toroid in the limit where the minor radius r tends to zero. We can
think of the ring and the torus as a single entity that interacts with a point charge, as in
the cases studied in this work. The energy of the system is defined as that which arises
from considering the interaction between the point charge located at an axial point and the
electrostatic potential produced by the ring or the torus at the same point. This is the method
that has been employed in the three schemes analyzed.

Concluding Remarks
In this paper, we used the concept of electrostatic potential energy for different arrange-
ments of electric charge with circular symmetry. Firstly, we analyzed a discrete set of point
charges arranged in a polygonal figure, this configuration corresponds to an inscribed poly-
gon within a circle; as we increase the total amount of discrete charges we approximate
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to a ring-type distribution of charges. This discrete character of the ring-type distribution
allowed us to split the total amount of energy as the sum of three contributions. We consid-
ered the interaction between a pair of point charges and the total potential energy diverged,
as we expected.

A similar analysis was made for a uni-dimensional continuous charged ring and a continu-
ous charged torus. The total contribution of the electrostatic potential energy for the three
arrangements on a point charge located on a symmetry axis perpendicular to the plane of
the charge distributions becomes equivalent no matter the nature of the geometrical dispo-
sition, nevertheless, we take into account just the so called utrid three dimensional energy
contribution for the discrete case; the terms upolig polygonal energy and udiam diametrical
energy correspond to the work needed to assemble the polygonal charge distribution and
do not account of the charge-ring interaction. It is worth noticing that even though the last
two cases were for continuous charge distributions, the total amount of charge preserves the
quantization law of electrical charge, thus, this allowed us to obtain the equivalence between
the three distributions.

We would like to emphasize also, that the term udiam in Eq. (10), remains constant regard-
less of the number of charges, which could also be demonstrated in the case of a continuous
distribution. Given the symmetry of the configurations, it is natural to expect this behavior
for the ring and toroid in diametrically opposite locations. In the discrete case, we have
directly identified the diametrical contributions between the corresponding pairs of point
charges by constructing the regular polygon. However, in the continuous case, the pro-
cess of integration over the respective charge differentials is carried out implicitly during
the integration process. It is not immediately evident that the energetic contributions from
diametrically opposite charge differentials can be separated from those of adjacent charge
differentials along the arc length of the ring during the integration process. A similar ar-
gument applies to the case of the toroid. The authors believe that further investigation into
these contributions could be explored in an extension or future work of this article.

We observe that even in classical books such as (Feynman, Leighton, & Sands, 1963;
Good, 1999; Griffiths, 1999; Kittel, Knight, & Ruderman, 1973; Wangsness, 1997),
electrostatic potential energy for continuous charge distributions are done as integrals around
the entire space and few examples for the inside and outside volumetric charge distributions
are given. In addition, the case of a uni-dimensional continuous charge distribution such as
a ring-type shape is not clear. We hope that this work further clarifies such charge configu-
rations. For the last two continuous cases, the total amount of energy contribution coincides
as we considered a torus thin enough (in the limit r → 0) for the exterior potential region
equivalent to a uni-dimensional charged ring.
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published version of the manuscript.

11



42

Aguilar-Loreto O., et al.
49(190):30-43, enero-marzo de 2025. doi: https://doi.org/10.18257/raccefyn.2897

Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Institutional Review Board Statement
Not applicable.

Informed Consent Statement
Not applicable.

Conflict of Interests
The authors declare that they have no affiliations with or involvement in any organiza-
tion or entity with any financial interest in the subject matter or materials discussed in this
manuscript

References
Antonov, V. (2003) Inequalities for electrostatic energy. Technical Physics, 48, 928–930.

https://doi.org/10.1134/1.1593202
Besley, E. (2023) Recent developments in the methods and applications of electrostatic

theory. Accounts of Chemical Research, 56(17), 2267–2277. https://doi.org/10.
1021/acs.accounts.3c00068

Brinck, T., Borrfors, A. N. (2022) The importance of electrostatics and polarization for
noncovalent interactions: Ionic hydrogen bonds vs ionic halogen bonds. Journal of
molecular modeling, 9(28), 275. https://doi.org/10.1007/s00894-022-05189-6

Charyyev, A., Shikakhwa, M. S. (2018) Ring symmetry in electric potential calculation
extended to discs and cylinders. European Journal of Physics, 39(6), 065204. https:
//doi.org/10.1088/1361-6404/aae357

Ciftja, O., Babineaux, A., Hafeez, N. (2009) The electrostatic potential of a uniformly
charged ring. European Journal of Physics, 30(3), 623. https://doi.org/10.1088/
0143-0807/30/3/019

Ciftja, O. (2023) Stored electrostatic energy of a uniformly charged annulus. Journal of
Electrostatics, 122, 103794. https://doi.org/https://doi.org/10.1016/j.elstat.2023.
103794

Escalante, F. (2021) Electrostatic potential and electric field in the z axis of a non centered
circular charged ring. European Journal of Physics, 42(6), 065703. https://doi.org/
10.1088/1361-6404/ac221c

Feynman, R. P., Leighton, R. B., Sands, M. (1963) The feynman lectures on physics,
vol. i: The new millennium edition: Mainly mechanics, radiation, and heat. Basic
Books.

Good, R. H. (1999) Classical electromagnetism. Saunders College Publishing.
Greiner, W. (1998) Classical electrodynamics. Springer New York.
Griffiths, D. J. (1999) Introduction to electrodynamics. Pearson Education.
Hernandes, J. A., Assis, A. K. T. (2003) Electric potential for a resistive toroidal conductor

carrying a steady azimuthal current. Physical Review E, 68, 046611. https://doi.
org/10.1103/PhysRevE.68.046611

Hernandes, J. A., Assis, A. K. T. (2004) Surface charges and external electric field in
a toroid carrying a steady current. Brazilian Journal of Physics, 34, 1738–1744.
https://doi.org/10.1590/S0103-97332004000800041

Kittel, C., Knight, W. C., Ruderman, M. A. (1973) Berkeley physics course: Mechanics.
McGraw-Hill.

12



43

Electrostatic Energy for a Circular Charged 
Configuration: Discrete vs. Continuum49(190):30-43, enero-marzo de 2025. doi: https://doi.org/10.18257/raccefyn.2897

Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Maleki, M., Vasudev, G., Rueda, L. (2013) The role of electrostatic energy in prediction
of obligate protein-protein interactions. Proteome Science, 11((Suppl 1)). https :
//doi.org/10.1186/1477-5956-11-S1-S11

Tashayev, Y. N. (2019) Paraxial approximation of the electrostatic potential of a charged
nonconducting torus. Journal of Physics: Conference Series, 1400(4), 044034.
https://doi.org/10.1088/1742-6596/1400/4/044034

Wangsness, R. (1997) Campos electromagnéticos. Limusa.
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