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Abstract
Interference in optics has been described as a result of the superposition of light waves in ordinary 
space. However, this phenomenological description does not seem to fit non-paraxial single-photon 
interference in ordinary space due to the corpuscular nature of photons and the fact that only one 
photon moves in the setup at each time. A quantum interference operator, deduced from the exact (non-
paraxial) mathematical model, indicates that the spatial morphology of interference is independent of 
the presence of photons in the setup and remains unchanged in their absence. This suggests a new 
interpretation of interference in terms of the photon confinement in geometric states of ordinary space. 
Here, we discuss the physical and phenomenological implications of this new interpretation.
Keywords: States of space; Geometric potential; Confinement; Spatially structured wells; Vacuum; 
Interference operator.

Resumen
En óptica la interferencia se ha descrito como resultado de la superposición de ondas de luz en el 
espacio ordinario. Sin embargo, esta descripción fenomenológica no parece ajustarse a la interferencia 
no-paraxial con fotones individuales en el espacio ordinario debido a la naturaleza corpuscular de los 
fotones y a que solo un fotón se mueve en la configuración en cada momento. El operador cuántico 
de interferencia, deducido del modelo matemático exacto (no-paraxial), indica que la morfología 
espacial de la interferencia es independiente de la presencia de fotones en la configuración y 
permanece inalterada en su ausencia. Esto sugiere una nueva interpretación de la interferencia en 
términos del confinamiento de los fotones en estados geométricos del espacio ordinario. Se discuten 
aquí las implicaciones físicas y fenomenológicas de esta nueva interpretación de la interferencia.
Palabras clave: Estados del espacio; Potencial geométrico; Confinamiento; Pozos espacialmente 
estructurados; Vacío; Operador de interferencia.

Introduction
Single photon interference has been of fundamental importance in quantum optics and 
photonics (De Martini et al., 1994; Shih, 2021) playing a crucial role in the analysis of 
the quantum properties of light (Hessmo et al., 2003; Jones & Wiseman, 2011), basic 
quantum phenomena (Rueckne & Peidle, 2013; Tang & Hu, 2022), and technology 
development (Mérolla et al., 1999; Witkoskie & Cao, 2008). Due to this wide range 
of uses and applications, single-photon interference is also considered paradigmatic in 
education (Rueckne & Titcomb, 1996; Marshman & Singh, 2017).

The standard quantum formalism predicts experimental outcomes of paraxial single-
photon interference. However, it is unsuitable for non-paraxial interference approximation 
of, and its phenomenological description does not seem to fit the photon corpuscular nature 
in ordinary space and the fact that only one photon moves in the setup in each experimental 
realization. This theoretical term denotes the experimental segment that begins with the 
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emission of a single photon at the source and ends with its annihilation by the detector so 
that only this photon propagates in the interferometer without explicit connections with 
preceding and posterior photons. Consequently, single-photon interference experiments 
can be theoretically characterized as a binary sequence of only one-particle systems 
separated by zero-particle systems.

Here, we propose an alternative description developed in the framework of a recently 
reported non-paraxial quantum formalism of interference with light and single-matter 
particles (Castañeda et al., 2023). This new formalism is compatible with the photon 
corpuscular nature and considers ordinary space as a system with geometric states that 
confine single photons in spatially distributed zones. In section 2, we deduce a quantum 
interference operator which includes density operators of the geometric states of space 
as shown in section 3. In section 4, we discuss the characterization of preparation and 
measurement (P&M) configured interferometers in terms of geometric states of space, 
and in section 5, we describe the phenomenology of individual experimental realizations 
in single-photon interference. Conclusions are summarized in section 6. Details of the 
mathematical model can be found in the supplementary information.

Quantum interference operator
We show (see Supplementary Information for details) how the non-paraxial Hamiltonian 
for the electromagnetic field of single photons takes the form

,       (1)

with  (h is the Planck constant), ω the photon frequency, and n̂ the number 
operator. It is assumed that single photons propagate between two consecutive planes, M 
and D, at a distance |z| (Figure 1S, https://www.raccefyn.co/index.php/raccefyn/article/
view/2863/4467). Reduced coordinates  and  denote pairs of 
points at M and D, respectively, with the coordinate suffixed A specifying the midpoint 
between the pair and the coordinate suffixed D denoting their separation vector. For null 
separation vectors, the reduced coordinates denote single points. Furthermore,

   , (2)

with  and  representing the complex amplitude 
of probability for single photons at M,  and 

 the complex transmission function at M, and   
 and  the unit photon polarization 

vector at M. The angles  and  are shown in figure 2S, https://www.raccefyn.co/
index.php/raccefyn/article/view/2863/4467. Finally (Castañeda et al., 2020),

   , (3)

with k = ω/c and c representing the light speed in the vacuum. Equation (3) defines a 

non-local, non-paraxial basis where  

are functions of the Hilbert space corresponding to the coordinate representation of kets 

,
 
 which are labeled for each point at M. Therefore,

 
 

is the coordinate representation of the operator
 

, labeled for specific 
pairs of points at M, i.e.,

 
. It is apparent that

 , i.e.,
 

, is a self-adjoint operator.
From the above, the operator

               ,               (4)

https://www.raccefyn.co/index.php/raccefyn/article/view/2863/4467
https://www.raccefyn.co/index.php/raccefyn/article/view/2863/4467
https://www.raccefyn.co/index.php/raccefyn/article/view/2863/4467
https://www.raccefyn.co/index.php/raccefyn/article/view/2863/4467
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with energy units and  denoting adjointness, is deduced straightforwardly. It should be 
noted that  so that the geometric features of interference described by 

 are independent of the number of single photons moving in the MD volume. For n 
individual experimental realizations of single photon interference, this operator determines 
the non-locality at D

     ,    (5)

and the energy of the recorded photons at each detector pixel

     .   (6)

Equations (5) and (6) provide an exhaustive description of any individual experimental 
realization in the preparation-and-measurement configured interferometers, as discussed in 
the next section. It should be emphasized that Eqs. (5) and (6) do not describe a many-
particle system, no matter that n grows arbitrarily. Actually, they describe the formation 
of single-photon interference patterns as the accumulative outcome of n individual 
experimental realizations without connections between them, i.e., each realization is 
strictly an independent only-one-particle system.

Therefore, H in Eq. (4) is the fundamental mathematical concept for the complete 
quantum description of single-photon interference experiments. We call it the quantum 
interference operator.

States of space
The binary segments of a single-photon interference experiment are characterized by the 
sequence , . In the absence of photons, Eq. (4) gives

                     ,                 (7)

which is quite different from the standard paraxial approximation result (Walls & 
Milburn, 1995). The significant novelty evidenced by Eq. (7) is that the non-paraxial 
geometric features of interference remain in the vacuum, i.e., in the absence of photons in 
the setup. More precisely, they seem to be independent of the presence of photons, thus 
remaining unchanged along the binary sequence of the experiment. Hence, ordinary space 
seems to be a system with geometric states of the vacuum energy , described by the 
density operator  (Castañeda et al., 2023). The contrast between this conception 
of ordinary space and the Newtonian description in the standard interference formalisms 
opens the way for the community to discuss the role of ordinary space in interference.

Besides, coefficient  in Eq. (7) behaves as a filter placed at M that selects 
and weights the geometric states of space in the vacuum, thus characterizing each 
specific interferometer. Such a filter (defined in Eq. (2)) is realized by the interference 
device, usually a mask, with the effective non-local transmission  

 under the prepared non-locality .
This role of the setup in the absence of photons invites us to revisit the phenomenological 
fundamentals of quantum mechanics (Bohr, 1935) considering that the interpretation 
above does not result from heuristic assumptions but from the direct phenomenological 
analysis of the mathematical model.

To determine the geometric states of space in the quantum interference operator in the 
vacuum, it is useful to introduce the dimensionless function

 
 in the 

integrand of Eq. (7), with
 

 as the Dirac delta function, resulting in:

                ,                   (8)

where  is the density operator of excited states of space 
(Castañeda et al., 2023),
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              (9)

provided by the term δ(ξD), is the density operator of ground states of space labeled at the 
points ξA of M, and

                   ,                     (10)

given by the term 1 - δ(ξD), is the density operator of non-local geometric excitation modes 
called the geometric potential operator (Castañeda et al., 2023). The density operators   
and  are independent from each other.

In Eq. (9),  denotes the transmittance of M without polarizers (Born 
& Wolf, 1993) while  represents the effective transmittance with 
polarizers. Therefore, the coefficient  determines the quantum 
probability of finding a single photon emerging from ξA  (see Supplementary Information 
for details). In turn, each non-local mode   of  in Eq. (10) provides 
the same geometrical excitation at the same time to the ground states of space labeled 
at the pair of M points . The excitation is activated by the non-locality 

 that links these points. Thus, each individual ground state of space should be 
geometrically excited by . So,  involves the spectrum of spatial modulations 
that excite the ground states of space  and produce the excited geometric states . Such 
spectrum is filtered (selected and weighted) by the non-locality at M for any single photon 
interferometer and it is not activated if  for any . In this case, none of 
the ground states of space are excited so that the geometric states of space reduce to the 
ground states, i.e., .

Preparation and measurement scheme
Space states for non-locality preparation
Figure 1 depicts the conceptual configuration of single-photon interference setups, in other 
words, the P&M scheme. Equation (8) gives the interference operator in the vacuum for 
the MD stage and, after expressing it as reduced coordinates of the SM stage, it also gives 
the interference operator in the vacuum for this stage. However, the geometric potential is 
not activated in the SM stage because the individual experimental realizations of single-
photon interference experiments are independent of each other. Therefore, only ground 
states of space are established in the SM stage, so that,

                .              (11)

The projection of the interference operator in Eq. (11) on pairs of points at M gives the 
prepared non-locality at M , with

       .     (12)

Remarkably, non-locality at S is not required to prepare non-locality at M. Moreover, 
only one ground state of space can prepare the non-locality  

 at M, as illustrated in figure 2. This exact numerical simulation points out 
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that Eq. (12) describes cones in ordinary space with vertices at specific  points on S, the 
bases on the pairs of M points ξ± of the region centered at a given ξA and Lorentzian cross-
sections at any distance from S. The cone effective angular aperture is ~80°.

The prepared non-locality  corresponds to the cross-section at 
M of the overlapped ground states in Eq. (11). The area of the cross-section centered at 
ξA, where the prepared non-locality takes on non-negligible values, determines its support 
(Castañeda et al., 2023) and specifies the non-locality links between pairs of points ξ± 
symmetrically distributed to ξA. Such links are negligible or nullified for pairs of points 
with separation vectors longer than the non-locality support diameter.

We emphasize that the ground states establish Lorentzian cones in ordinary space 
for the non-locality preparation and are compatible with the local nature of the photon 
emissions by the source. Indeed, the factor  in Eq. (12) 
determines the quantum probability for a single photon to be emitted at cone vertex . 
However, the preparation of such quantum probability does not require the presence of 
photons in the setup.

Figure 1. Conceptual sketch of the single-photon interference setup in the preparation-and-
measurement (P&M) scheme. The expressions are explained in the text.

Figure 2. Non-locality Lorentzian cone for a single ground state of space prepared in the SM-stage 
in figure 1. (a) Cross-section at z'=50λ (λ = 0.4 μm) and (b) axial section for 0 ≤ z' ≤ 50λ. The Well 
vertex is at r'A = 0 on S. Non-locality support centered at ξA = 0 on M is described by (a) and the  
vertical profile in (b). The horizontal and vertical axes are the Cartesian components of ξD in (a), and 
z' and mutually parallel components of r'A on the left side and ξD on the right side in (b). Axes units 
are μm and the scale is in dimensionless arbitrary units.



773

Quantum interference operator
48(189):768-783, octubre-diciembre de 2024. doi: https://doi.org/10.18257/raccefyn.2863
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

The set of ground states of space with vertices at the emitting points of an extended 
photon source is non-separable. The complex-valued function in Eq. (12) is non-factorable 
and given its harmonic factor, Eq. (11) implies that each ground state is spatially modulated 
by the remaining ones. Consequently, non-locality spatially structured Lorentzian cones, 
as illustrated in figure 3, work for spacing the vertex array longer than λ in (a)-(c) and 
shorter than λ in (d)-(f). Given the non-separability of ground states for the non-locality 
preparation, the set associated with all the emitting points should be included in the integral 
of Eq. (11), no matter that the emission of the single photon in any individual experimental 
realization is a local event occurring at a specific source point.

Now, the  projection on individual M points gives the real-valued, positive, 
definite, and separable functions

     ,      (13)

that determine a Lorentzian cone in the SM stage, with angular aperture of ~70° and vertex 
at the emission point , so that takes the form  
as , as illustrated in figure 4. It is worth noting that the complex-valued function 
in Eq. (12) cannot determine an observable so the prepared non-locality at M in Eq. (11) 

Figure 3. Spatially structured non-locality cones established by an array of 3x3 ground states of 
space in the SM stage of the setup in figure 1. Horizontal and vertical array spacing are 1.5λ in (a)-(c) 
and 0.5λ in (d)-(f) (λ = 0.4μm). Cross-sections at z' = 0.1λ on the left column, z' = 20λ on the central 
column, and axial sections for 0 ≤ z' ≤ 20λ on the right column. Cone vertices are at the 3x3 array 
of emitting points at S and their basis is centered at ξA = 0 on M. Prepared non-locality supports are 
described by graphs on the central column and vertical profiles on the right column. Horizontal and 
vertical axes of cross-sections are the components of the separation vectors ξD. Axial-section axes 
are z' (horizontal) and mutually parallel components of   on the left vertical edge and ξD on the right 
one. The axes units are μm and the scale is in dimensionless arbitrary units.
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is not measurable by a square modulus detector. In contrast, Eq. (13) characterizes such 
observable by determining the quantum probability of finding the emitted single photon at 
any point ξA of M in each experimental realization, as

                               .                            (14)

Nevertheless, the vertex position of this Lorentzian cone is restricted by the geometric 
uncertainty in the sense that it can be any point within an area of diameter λ/10 around each 
S point  (Castañeda et al., 2020; 2023).

The numerical simulation of the exact (non-paraxial) Eq. (14) in figure 4 has 
some important phenomenological implications: (i) it is compatible with a corpuscular 
characterization of the single photon; (ii) its Lorentzian profile distributes the quantum 
probability of emission in a conical volume maintaining the largest probability along the 
cone axis; therefore, the cross-section in figure 4 (a) describes the expectation of single 
photon measurements at M; (iii) once the SM stage is configured, all the  
functions are established with the same geometry, given by .

These features suggest that  determines a Lorentzian well for single 
photon propagation from each emitting S point to any M point. Such Lorentzian well 
confines the photon preferably around the axis. This description is supported by a rigorous 
exact (non-paraxial) deduction and the confinement pins down the unrestricted spatial 
behavior attributed to the photons by the paraxial approximated formalism, thus increasing 
the accuracy of the description.

Space states for interference measurement
The quantum interference operator in the vacuum (Eq. (8)) gives the quantum 

probability for single photon arrivals to the detector pixel at any  point of D as follows:

                   ,                 (15)

where the ground states of space establish the Lorentzian wells

Figure 4. The Lorentzian well for a single ground state of space in the SM stage of figure 1. (a) 
Cross-section at z' = 50λ (λ = 0.4μm) and (b) axial section for 0 ≤ z' ≤ 50λ. The well vertex is at  = 
0 on S. The vertical profile in (b) shows the Lorentzian profile of the cross-section. Horizontal and 
vertical axes are the Cartesian components of ξA in (a), z' and the mutually parallel components of 

 on the left side, and ξA on the right side in (b). Axes units are μm and the scale is in dimensionless 
arbitrary units.
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             (16)

in the MD stage, as illustrated in figure 5, and the geometric potential provides the 
excitation

  
  .   (17)

In Eq. (17), Re denotes the real part and the following features are considered: (i) 
; (ii) the Hermitian symmetry of integrand in Eq. 

(10) for permutation , and (iii) the addition of the integrand terms for the two 
degrees of freedom in the orientation of the separation vector, i.e., . Therefore, the 
geometric potential  is real valued and takes on positive and negative values, 
as illustrated in figure 6 (a)-(c).

Equation (15) reduces to  if  
for , and Eq. (16) points out that the Lorentzian wells cannot spatially modulate 
each other by overlapping in , as illustrated in figure 5. Therefore, the geometric 
potential is necessary and sufficient to excite the ground states, thus producing the spatially 
structured Lorentzian wells  required for 
interference, as those illustrated in figure 6, and implying  for .

We emphasize that both the vertex position of the geometric states of space and the 
excitation provided by the geometric potential are restricted by the geometric uncertainty 
(Castañeda et al., 2020; 2023). The vertex position can be any point within an area of 
diameter λ/10 around each considered point ξA of M, and the geometric potential cannot 
excite the space states whose vertex separation is no longer than λ/10. Consequently, such 
an area is associated with a unique ground state of space with a vertex at any point within 
the area. It has been shown that this geometric uncertainty cannot be removed or reduced.

Due to the geometric uncertainty, the configuration of the mask placed at M, and 
the prepared non-locality on this plane, a discrete and finite set of geometric states 
of space is established in the MD stage of the setup. This set is filtered (selected and 
weighted) by the non-locality κ(ξ+,ξ-). More precisely, its local component for ξD 
= 0,  determines the quantum probability 

Figure 5. Lorentzian well provided by an array of 3x3 base states of space in the MD stage. (a) Array 
of vertex points at M with horizontal and vertical spacing of a = 3λ (λ = 0.4μm). (b) Cross-section at z 
=100λ. (c) Axial sections for 0 ≤ z ≤ 20λ. Horizontal and vertical axes: (a), (b) Cartesian components 
of , (c) z and mutually parallel Cartesian components of ξA at the left edge and  at the right edge. 
Axes units are expressed in μm and the scale is in dimensionless arbitrary units.
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that filters the set of ground states while its non-local component for , 
 filters the set of 

geometric potential modes that excite these ground states. Such excitations only configure 
specific distributions of zones of non-null quantum probability in the volume of the 
Lorentzian wells. Thus, spatially structured Lorentzian wells are established in the MD 
stage where the concentration of quantum probability characterizes the confinement 
zones. However, the spatially-structured Lorentzian well of each geometric state of 
space, , takes on non-positive values at 
the points  in which  and  (Figure 
7). Such points configure forbidden regions for confinement because confinement is 
characterized by the concentration of quantum probability configuring the observable to 
be measured by a square modulus detector (Castañeda, 2022). Nevertheless, condition  

 for  must be fulfilled 

to ensure the achievement of Eq. (15). This means that:
(i) The set of geometric excited states of space is non-separable because the space state 

overlapping is required to fulfill Eq. (15).
(ii) The forbidden zones, whose modes are non-factorable quantities, are excited by 

the geometric potential. Indeed, the geometric potential operator in Eq. (17) takes the non-
factorable form

.(18)

Consequently, the density operator of geometric states of space  

Figure 6. Cross-sections (left and central columns) and axial sections (right column) of the geometric 
potential on the top row and the spatially structured Lorentzian wells on the bottom row of the 
example in figure 5 under a maximum prepared non-locality at M
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Figure 7. Cross-sections (left and central columns) and axial sections (right column) of some 
individual spatially structured Lorentzian wells of the example in figure 6 (bottom row). White dots 
of the cross-section on the left column denote the vertex of the corresponding well.
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becomes non-factorable for high non-locality values .
(iii) Forbidden zones of each geometric state of space must coincide with confinement 

zones of the remaining space states in such a way that the forbidden regions are removed 
by the addition of the space states. As a consequence, the values of the confinement 
zones of each geometric state of space diminish because of the negative values of the 
coincident forbidden zones of the remaining space states. It can be formalized without loss 
of generality by considering the two geometric states of space in a Young interferometer, 
whose vertices are placed at the mask pinholes in ξA = ± a/2. Therefore, the inequality

                                        (19)

is fulfilled except over the forbidden zones of .
These features suggest a new type of entanglement between the geometric states of 

space that we call spatial entanglement (Castañeda, 2022), (Castañeda et al., 2023). 
Usually, the term entanglement denotes certain interactions at a distance between photons 
or matter particles (Hessmo et al., 2003; Jones & Wiseman, 2011). In the proposed theory, 
this term denotes the fact that pairs of geometric states of space with vertex separation 
longer than the geometric uncertainty limit can modify each other’s confinement zones in 
the absence of photons. In this sense, geometric states of space under high-valued prepared 
non-locality become spatially entangled at their forbidden zones.

The individual geometric states of space can be numerically modified by considering 
their spatial entanglement so that  and

  . These modified space states should provide the quantum 
probabilities for single-photon detection in the individual experimental realizations. 
However, their measurement is challenging for experimentalists, mainly because of the 
stringent restrictions established by quantum eraser experiments (Scully & Zubairy, 
1997), (Rueckne & Peidle, 2013).

Given that each geometric potential mode excites only a specific pair of space states, 
the modification of a set of geometric states of space should be performed by pairs. For the 
monomodal Young interference, the modification is performed as follows:

•  for the confinement zones, where   
.

•      for the forbidden zones, where  

•      for the spatial entanglement 
zones, where  and .

Figure 8 illustrates the modified geometric states of space by considering their 
spatial entanglement, for an array of 2x2 points at M, as well as the pattern obtained after 
their overlapping.

However, by suitably weakening the prepared non-locality, the forbidden regions are 
removed and, therefore, the spatial entanglement between the excited states of space is 
removed too, although the excitation provided by the geometric potential modes is yet 
visible, as illustrated in figure 9. These results show that single-photon interference without 
spatial entanglement is also feasible.

Theoretical description of the individual experimental realization
The theoretical term “individual experimental realization” denotes the interval for  
of the binary sequence ,  of the basic experiment segment in single-
photon interference.

It is well-established that single photons can be created by local emissions resulting 
from atomic transitions of matter that specify its frequency ω and can be annihilated 
by local detection at a pixel of a square modulus detector (Saleh & Teich, 2019). The 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 8. Cross-sections at z = 0.1λ on the upper row and z = 20λ on the second row (λ = 0.4μm) of the 
modified individual excited states of space by spatial entanglement in the MD stage and the complete 
excited state ((i), (j)) for single-photon interference with 2x2 array of points at M under high prepared 
non-locality. The points are placed on the vertices of a square with a side of 3λ in length. Closed 
contours in graphs (a)-(h) denote the forbidden zones set to null by spatial entanglement. Horizontal 
and vertical axes: Cartesian components of  in μm. The scale is in dimensionless arbitrary units.
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photon’s corpuscular nature is also well-established as a particle of quantum energy E = 
ℏω (Mandel & Wolf, 1995). In P&M-configured setups for single-photon interference 
(Figure 1), a photon source and a square modulus detector are placed at the S and D 
planes, respectively. The interference device, usually a mask, is placed at a third plane, 
M, between S and D. Local observables for photon emission at S and photon arrivals at 
M and D are determined by the quantum probabilities  in Eq. 
(11),  and

 
 given by Eqs. (14) and Eq. (15), respectively. Therefore, the 

single photon of any individual experimental realization should be considered as a particle 
moving in the interferometer. The localizability of such a particle in the setup is restricted 
by both the quantum and the geometric uncertainties. However, the determination of the 
specific photon path is irrelevant to both the phenomenological explanation of interference 
and the mathematical prediction of the experimental outcomes. In contrast, the following 
description should be the relevant characterization of an individual experimental realization 
in the framework of the proposed model:

(i) The single photon locally emitted by the source with a specific quantum probability 
enters the ground state of space with the vertex at the emission point and moves confined 
in the volume of the corresponding Lorentzian well until locally arriving at any point of the 
interference device in the well basis.

(ii) If the arriving point is opaque, then the photon is annihilated by absorption by 
the device. If the arriving point is transparent, the single photon crosses the device with a 
specific quantum probability and enters the geometric state of space with the vertex at the 
crossing point.

(iii)  If the prepared non-locality at M links the crossed point with other transparent 
points of the device, then the space state is excited by the geometric potential establishing 
a spatially structured Lorentzian well in the volume delimited by the interference device 
and the detector. The single photon moves confined in any of the confinement zones of this 
well until being locally measured by the detector.

This description results from a direct phenomenological interpretation of the 
mathematical model for which further premises or hypotheses about the corpuscular 
nature of the photon and its behavior in the setup have been not advanced. Therefore, the 
local events of source emission, mask crossing, and detector recording, and the photon 
confinement in the spatially structured Lorentzian well of any geometric state of space 
in the setup characterize the proposed theory as a corpuscular framework. By including 
single-matter particle interference in ordinary space  ̶ which can be explained in the same 
way by this theory ̶ , the proposed corpuscular framework should motivate the community 
to revisit the phenomenology of the wave nature of interference.

Figure 9. Cross-sections at z = 20λ of the complete excited state for single-photon interference 
with the 2x2 array of points in figure 8 under Gaussian-prepared non-locality at M with a standard 
deviation of (a) 2.7λ and (b) 2.4λ
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The canonical equation for the quantum interference operator is expressed as

                                          ,                                      (20)

with  for the SM stage,  for the MD stage, and , which implies 
. Therefore, the canonical quantum interference operator for any 

individual experimental realization is

                                      .                                   (21)

Equation (21) points to the fact that one photon of quantum energy E = ℏω propagates 
confined in the geometrical states of space of the vacuum energy (1/2)ℏω established in the 
setup and its arrival to a plane of reduced coordinates (uA, uD) is canonically described by

                               ,                             (22)

with (uA, uD) ≡ (ξA, ξD) for the SM stage and (uA, uD) ≡ (rA, rD) for the MD stage. 
Therefore, the single photon emitted at  of S moves confined in the Lorentzian 
well with the vertex at this point and arrives to any point ξ0 ≡ u0 of M in accordance 
to , with . The arriving point is placed 
within the non-locality support given by 
with . Now, let us consider that (i) the arriving point q0 = ξ0 is transparent 
and (ii) there are transparent points, q0 ± qD, so that the pairs (q0, q0 ± qD) belong to non-
locality supports centered at qA = q0 ± qD/2. Therefore, the single photon that arrives at ξ0 
≡ q0 enters the individual geometric state of space  excited by

 , i.e., the geometric potential composed 
by the subset of modes activated by the prepared non-locality for pairs of points (q0, q0 ± 
qD). The single photon cannot be confined in the forbidden  zones and the probability 
to be confined in a spatially entangled zone given by  is lower than the corresponding 
value given by . Consequently, the single photon moves in the MD stage effectively 
confined in the modified geometric state of space  so that its detection by any pixel of 
the detector at D is described by  where  
represents the quantum probability of finding the single photon at the point uA ≡ rA of D. So, 
the modified quantum interference operator by spatial entanglement  
describes the effective single photon confinement in the individual experimental realization 
represented by the modified geometric state of space . Consequently, the canonical 
quantum interference operator can describe exhaustively any individual experimental 
realization of single-photon interference in ordinary space and points to the fact that they 
are not pure random events because of the deterministic Lorentzian wells in the SM stage 
and the spatially structured Lorentzian wells in the MD stage established by . The 
statistical appearance of single-photon detections in the complete interference experiment 
is due to the statistics of source emissions and mask crossings, the quantum and geometric 
uncertainties that randomize the confinement in the established zones in each experimental 
realization, and the quantum sensitivity of the detector that determines its detection rate. 
However, this statistical appearance is compatible with the deterministic geometries of the 
space states established in the experimental setup.

Conclusions
The rigorously deduced quantum interference operator describes non-paraxial single-
photon interference as resulting from the photon confinement in geometric states of space 
filtered (i.e., selected and weighted) by the setup. This exact second-order mathematical 
tool confers a physical meaning to geometry in interference, as relativity did for gravity. 
It implies an epistemological departure from the standard interference formalism based on 
the paraxially approximated first-order procedure of wave superposition that calls for its 
discussion by the community.
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More precisely, in this framework, ordinary space is considered a system with geometric 
states provided by the vacuum, i.e., in the absence of photons and with the vacuum energy. 
Ground states of space can be geometrically excited (i.e., spatially modulated) by geometric 
potential modes. Such modes are activated by prepared non-locality functions also provided 
by the vacuum. This conception of ordinary space completely differs from the Newtonian 
passive scenario of the standard interference formalism. Indeed, the geometric states 
of space determine interference so that the patterns recorded as experimental outcomes 
are effectively space state maps performed by the single photons that move along their 
confinement zones.

The corpuscular framework of the proposed theory is remarkable. It also explains 
single matter particle non-paraxial interference, which opens the way to the community 
revisiting the wave nature attributed to interference. Additionally, the description does 
not resort to wave-particle duality and associated hypotheses to describe interference 
(particle delocalization, self-interference, and wave collapse, for instance). It only requires 
the notion of confinement as the phenomenological principle to explain interference in 
a generalized context (including classical light and matter particles) (Castañeda et al., 
2023). Furthermore, the quantum interference operator introduces new interference 
features not evidenced by the standard formalism, such as geometric uncertainty and 
spatial entanglement. 

We should emphasize that the phenomenology of the interference operator refers to 
ordinary space, which is the environment where interference experimentally occurs instead 
of exclusively calculating the probability distributions of experimental outcomes in the 
Hilbert space, as established in quantum mechanics. From this point of view, our model 
could be considered as a realistic theory, also compatible with classical light interference, 
by considering a significantly large number of photons emitted at a time. Given their 
bosonic nature, photons can occupy the geometric states of space at a time, thus filling 
their confinement zones. For n>>1/2, the interference operator gives the well-known result 
nℏω for light irradiance (Saleh & Teich, 2019). Besides, the angular factors of the effective 
transmission τeff (ξ+, ξ-) lead to the fulfillment of Malus’ and Fresnel-Arago’s classical laws 
of polarization (Born & Wolf, 1993).

Given these attributes, the phenomenology provided by the quantum interference 
operator seems to be more effective than the standard formalism for explaining 
interference in ordinary space. From this perspective, the proposed theory opens a 
pertinent discussion on the foundations of interference, the review of its philosophical 
implications, and the performing of new experiments to examine the validity of this 
alternative phenomenology.
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