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Se sabe que sus momentos caracterizan a una distribucién. Usando densidades generadas
por la distribucién que se estudia, podemos analizar partes de la distribucién original que estén
sombreadas por aquellas partes con altas densidades.
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Abstract

Moments are known to characterize a distribution completely. Using densities that are
generated from the distribution under study we can analyze partsof the original distribution
that are shadowed by those parts with high densities.
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1. Intraduction

Moments we known to characterize a distribution

completely. In practical situations we use at most moments

up to order fourth. Castaneda (1993) uses a method to
analyze characteristics of the tails of a symmetric distribution
by using bigh-order moments of a bivariate distribution. The
basic idea is to generate a family of distributions associated
with the given distribution of the data. This family of
associated distributions is generated in such a way that each
member is related to the moments of the given distribution.
Each of these distributions reveals characteristics in the

original distribution by given more weight ta some parts of
the distribution, for example, clusters or multimodality.

2. The method

Let us consider a continuaus diatribution with density
f(x) and moments with respect to the origin given by u® =E
XXl = fif(x)dx, k = 1,2,... If we are interested in analyzing
some specific parts of the distribution, maybe those with
low density that are shadowed by those parts with high
density, then we would like to
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give weights to f{z) in a systematic way. From the mo-
ment definition the integrand is z2* f (z), that properly
normalized is a new density function for k£ = 1,2,---.
The polynomial z2* gives different weight to different
parts of the support of the distribution. The advantage
of normalizing is that the moments of these new densi-
ties are related to those of the original distribution in a

simple way:
Izk T
(1) fe(z) = f(),k=1,2,---_
H2k

The random variable defined with this density has first
and second moments that are related to the moments of
the original distribution in the following way

(2) ”(k) _ Hak+1 and ”gk) _ #2k+2'.
H2k M2k

If we consider pgl), the center of the first moment-

generated distribution, and we compare this moment
to the first moment of the original distribution we can
build a measure of displacement that will be a measure
of skewness,

If we consider moments with respect to an arbitrary
_point, say a, we can screen some parts of the original
distribution that could be producing parts with high
densities in the moment-generated distributions. This
happens when the original distribution is highly skewed.
We can consider the moments with respect to the mode
to shadow the area with the highest density quickly.

_\2%
3)  fulo)= EZA @)
Hak

There is a problem when we use this procedure with
highly skew distributions. The area with high density
does not disappear and this does not permit us to ana-
lyze the tail where this concentration occurs. To avoid
this problem a symmetrization is recommended. We can
transform the data using a Box-Cox transformation.

k=1,2,... .

In practice we do not know the true distribution but
just a sample from that population. In that case we use
a smooth estimate of the density, for example a kernel
density estimate, say f(a:) (Silverman, 1986). Then
the associated distributions will be

2k §
@ fula) = 212

2k
It is well known that if the continuous random wvari-
able X has cumulative distribution F, then ¥ = F(X)
has a uniform distribution between 0 and 1. Thus the
transformation W = 2Y — 1 has uniform distribution
between -1 and 1. If we consider the polynomials z*,

1k=1121"'

with £ = 1,2,.--, we have that the sequence of poly-
nomials goes to zero everywhere except at -1 and 1 as
k — oo in the interval [—1,1]. Thus they give weights
to the tails in a systematic way. The central part of the
support receives less weight when the grade of the poly-
nomial increases. In a practical situation what we do is
the following: We have our sample z1,%2, -+ ,Tn. Let

T(1),T(2), " »ZL(n) be the order statistics. Then define
) — I
(5) yi=2(—)—1-
(#) Zim)

Then the data will be in the range -1 to 1.
3. The bivariate case

Let f(z,y) be a two-dimensional pdf with support
given by R. The (m,n)-moment will be defined by

(6) Mun // z™y" f(z,y) dz dy

m and n are non-negative integers. The sum m + n de-
termines the order of the moment. There are m+n+1
moments of order m + n. It is well known that the first
order moments My, and Mjg specify the position of the
center of mass of the distribution. Let us assume that
the condition My = My = 0 holds, i.e. the origin of
the coordinates will be attached at the center of mass of
the distribution. In practical situations R is a rectan-
gular area, say 4AB, centered at the center of mass of
the distribution. We introduce the reduced coordinates
7) z=Z =2
( A’ A
to scale the region R onto the interval (—1,1) x (—1,1)
and define the centered reduced moments of the distri-
bution by

(8)

Hmn = Am+1 +Bn+1 / / 2Mw ‘p z, w)dzdw

The reduced centered moments are dimensionless and
they become comparable with each other. Note that
2™ > 2™, Jw|? > |w[™Y in (~1,1) x {-1,1). As
a consequence the polynomials 2™ and w™ will enhance
certain portions of the distribution depending on m and
n.

Let us define the associated density functions by
(2 + )

= —>p(z,w) ,
j=0 H2(k—1),2j

(9) Vk(z’w) =

where k = 1,2, -+ denotes the order of the function and
2% + w? = r? is the squared distance between the cen-
ter of mass of the distribution and an arbitrary point
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(z,w) in its domain. Note that Vp(z,w) = p{z, w) but
for k > 0 the coefficient of Vi(z,w) weights the values
of the distribution radially, in such a way that the val-
ues of the distribution around the center will be nullified
whereas the values far form it will be enhanced. Thus,
each associated density function refers to a specific zone
of the original distribution. It allows to perform a pre-
cise evaluation of the distribution by segmentation.

The geometrical parameters of each associated pdf
(i.e position of the center of mass, length and orienta-
tion of semiaxis, eccentricity) are used as quantitative
descriptors of the structure of the respective zone. The
moments, denoted by pf,’f,),, are determined through the
following combinations of the centered reduced moments

of the original distribution,
ko ok
Y=o (5)Hage—g) 2541
k(K
Zj=0 (J) H2(k—5),25

ko (k
11 k) _ Zj=0 (j)n”l+2(k—j),2j
( ) Hip = k k
Ej=o (j)lu’2(k-j),2.'i

(10) uy =

system with the origin at its center of mass and the
axis parallel to its semiaxis respectively, i.e. the proper
coordinate system of Vi(z,w) . First we calculate the
moments with respect to the proper coordinate origin
by means of the formula

k n k
?h(n) = Z Z )kﬂ( ) ( )zknwkof-"i(nl)n -5
=0 7=0 ‘7
So we obtain
(k)
0

T T " (#)\?
] (] | )
(17) 1 =1 Hn | Hp #‘10

(k)
(ﬂw )
Note that n(u) ,ug),l. = lnm, Withn +m =1, 2.
Now, the new second order moments are calculated in

the proper coordinate system, whose axis are rotated an
angle

k ( ) B2e—g) 2+1) (k)
(12) ufy = = (18) Ok = L arctan *"(,;?TL;—
—o () 2.5 2 M — Mg
ke with respect to the original ones. There is an ambiguity
H2(1+k—j5),2i
(13) ugﬁ) = E 0 (’ JHata+isas in the tilt angle @g which could be solved in the same
( ) o (k—3},24 way as Teague {1980), by choosing 3 always to be the
angle between the z-axis and the semimajor axis ay, i.e.
(14) ”(k) EJ—O ( ) (k—3)+1,27+1 ay = by, and taking into account that
1= 2
350 (§)Hace—s).25 *)
(k) ) _J (19) —Egarctanmgz,x:—zml—
s and p{*) specify the position of the center of mass of 2 2 e ne)

Vie(2,w) respective to the center of mass of the original
distribution. However, to determine the other geomet-
rical parameters of Vi (z,w) we define a new coordinate

With these conventions we arrive at the results for
the tilt angle that are given in Table I

TABLE 1
e A Pk
Zero Zero o
Zero Positive +45°
Zero Negative —45°
Positive Zero 09
Negative  Zero --90°
Positive  Positive larctanz 00 < i < 45°
Positive  Negative %arctanm —45% < ¢ < 0°
Negative  Positive 1 arctanz + 90° 459 < o < 90°
Negative  Negative -z- arctan z + 90° —90° < . < —45°
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Introducing the usual rotation of coordinates by p, we
obtain

'(k)

@\ ]
oo cos? g 2 cos py, sin g sin® ok (,u. 01 )
(20) 0 = | —cosgsin g cos? oy COS Py 8in Yy ﬂ((ng}ﬂﬁ)
n’zgc) sin? oy —2 cos g sin g co8° g (ng;))2

4. Examples

To illustrate the above ideas we present several exam-
ples. Let us consider the data about the cost of health
services provided by the university health department

The most of the services required by users at the health
department are nonexpensive check-outs for well-known
diseases such as colds, simple headaches, and so on, or
small accidents. However a small fraction of the require-

to its employees. The distribution is highly skewed as is
shown by its estimate in Figure la. The first moment
distribution is shown in Figure 1b. The first-moment-

with-respect-to-the-mode density estimate is shown in
Figure lc.

ments are related with more expensive problems: heart
problenis, etc.
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The next univariate example shows a normal distri-
Figure 1 (a)

bution. The associated distributions are bimodal. The
higher the grade of the associated distribution, the fur-

ther apart the modes are. The relations between the
We can see how the high-density part has disappeared

and others parts start appearing showing multimodality.
This behavior has a logical explanation for this problem.

main distribution and its associated distributions give
us new measures of skewness, for example the difference
between the means of the main and the first associated
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distributions (Figs. 2a-2d). In Figure 2b we observe a
third mode on the right. The explanation for this mode
is that the random generator mechanism for the nor-
mal distribution has problems generating values from
the tails. This is a common problem with random num-
ber generators.
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Figure 1 (c)

The next example is important in optics. It is well
known that PSFs (Point Spread Functions) have com-
plete information of the imaging properties of optical
systems. They are defined as the intensity distribution
in the image plane of the system when the object is
deltalike (Teague, 1980). PSFs of diffraction limited
systems are rotation symmetric and about 84% of the
energy is concentrated in the Airy disc. System aberra-
tions change this symmetry and/or this energy distrib-
ution. Therefore a precise evaluation of image quality
can be obtained from the quantitative analysis of both
the symmetry and the energy distribution of the PSFs.
Associated density functions are introduced to perform
the analysis of the central disc and the ring structure
of the PSF separately. The geometrical paratmeters of
those functions are determined from the centred reduced
moments of the PSF and are used as symmetry descrip-
tors. Thus, aberration types can be characterized using

descriptors, which are determined directly from experi-
mental data.
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Figure 2 (a)

Measured PSFs of many systems of interest, such
as microscope lenses, consist in an intensity peak sur-
rounded by a ring structure. Up a finite distance from
the peak their intensity values will be immersed into the
background noise of the detector and can be neglected.
In this work we only concern on this class of PSFs.

Let us assume that the energy content of the PSF
into the region R arround its intensity peak determined
by such a distance is equal one. Thus, the PSF can
be interpreted as a real density function, whose symme-
try and energy distribution can be described using their
moments (Marathay, 1982), which are defined as (6).

We will introduce reduced coordinates to scale the
region R onto the interval (—1,1) and to obtain dimen-
sionless centred reduced moments (8} Furthermore, to
evaluate the symmetry and the energy content of the
PSF it is useful to introduce associated density functions
(9). If the system is diffraction limited, the associated
density functions will determine two concentric isotropic
zones. Figs. 3a-3b show these zones for the on-axis PSF
of a microscope lens 60 x /0.80 at wavelength of 589nm.
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But aberrations introduce geometrical variations of
the zones. Fig. 5 shows the zones for an off-axis PSF
of a microscope lens 40 = /0.65 at wavelength of 486nm.
The geometrical parameters of the associated density
functions (i.e. position of centers of mass, length and
orientation of the semi-axis, eccentricity) will be used
as quantitative descriptors of the symmetry and energy
distribution of the zones.
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Figure 2 (h)

If the system is @iffraction limited, the associated
density functions will determine two concentric isotropic
zones. Figs. 3a-3b show these zones for the on-axis PSF
of a microscope lens 60 x /0.80 at wavelength of 539nm.

But aberrations introduce geometrical variations of
the zones. Fig. 5 shows the zones for an off-axis PSF
of a microscope lens 40 = /0.65 at wavelength of 486nm.
The geometrical parameters of the associated density
functions (i.e. position of centers of mass, length and
orientation of the semi-axis, eccentricity) will be used
as quantitative descriptors of the symmetry and energy
distribution of the zones,

Using ¥y we analyze the central disc of the PSF prin-
cipally, i.e. a zone that includes the center of mass of

the PSF and its surroundings but does not coincide with
the Airy disc of the PSF in general (Figs. 3a and 4a
inside the rectangle). Its geometrical parameters are
determined by the centred reduced moments up to the
gecond order,

Figure 2 (c)

The semiaxis of V5 are oriented at an angle @q (18).
Introducing the vsual rotation of coordinates by this
angle for m + n = 2 in eq.(20), we obtain new centred
reduced moments of second order. The length of the
semiaxis and the eccentricity of V¥ can be expressed by

(21) ag = [E20 by =, [EE2
Hop Hog
bo \ Fiog
e )R

respectively. We assume that ag > by, so that 0 < Ey <
1. For rotation symmetrical V5 we have wp = 0,Ep =
0,49 = by = Ry. Rp denotes the reduced radius of the
central disc of the PSF, which takes its minimum value
for diffraction limited systems.
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Rotation symmetrical aberrations (i.e. spherical ab-
erration, defocus, cuvature of field) increase the value of
Ry but do not change the symmetry of V5. In presence of
non rotation symmetrical aberrations (i.e. astigmatism,
coma) the central disc will be not rotation symmetric
but its mean-square radius will be

1
2

2 2 2
(23) €5 = 5 (ap+by) -
If we regard by = 0.9ay as permissible for rotation sym-

metry, we obtain Fy > 0.44 as a tolerance.

Using V) we concern with the zone that excludes the
center of mass of the PSF and its neighborhood and in-
cludes the ring structure of the PSF near the central
disc (Figs. 3b and 4b right). Its geometrical parameters
will be determined by the centred reduced moments of
third and fourth orders. The semiaxis of are oriented at
an angle v, which is given by (18) for k = 1.

Let us introduce the rotation of coordinates by for
m+n=3,4 in eq. (8) to obtain new centred reduced
moments of third and fourth orders (with primes). As
expected, we obtain py, = pi; = 0. The coordinates

Figure 3

(21, W1) of the center of mass, the length of the semi-
axis and the eccentricity are given by

(24) z, = Yot g W, = Hos + B2y
| Hoa + Mo Hoa + o
(25) @y = | M + Moz e [ 1a + 13
V Moz + Hao ‘\I' bpn + oy
rﬁ 1+ f gt
(26) f::1=/|—(_') = f1 = Lty
1|'| ot 1+ pao/ Bas
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Figure 4

Centers of mass, lengths of semiaxis and eccentrici-
ties are rotation invariants. Thus, the geometrical pa-
rameters of and are independent in the sense that they
are functions of centred reduced moments of different
orders.
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The vector {_j = 51 + ﬁ:’l represents the shift of the
center of mass of V1 with respect to the center of mass
of ¥y and thus, it constitutes a descriptor for coma. In-
deed, we will call the ratio ||/ /ey coma factor.

Figure 5

If ¥} is rotation symmetric we have "= 0, @1 =
0, a1 = = Ry, E; =0. In this case the zone relative
to 17 will be a circular ring centred in the center of mass
of the PSF. Its minor and major reduced radii will be
Ry and R; respectively. In presence of rotation symmet-
rical aberrations this zone remains concentric with the

central disc but the value of B, will increase. For non ro-
tation symmetrical aberrations the geometry of the PSF
can be very complicated because the centers of mass, the
eccentricities and the axis orientation of V5 and V) can
be different. However, if we regard |Q|/eo < 0.2 as per-
missible for coma free systems, we can define a mean
circular ring of minor radius ¢; and major radius

er =4/ 5 (ag + b5) .

Bud | =
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