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We consider the Category of Sheaves of Sets. The morphisms are chosen in such a way that a
change of the base space is allowed via continuous functions. Following M. M. Clementino, E.
Giuli and W. Tholen in “Topology in a Category: Compactness”, we define a proper (g, A)-
factorization system for morphisms and a closure operator with respect to M. The Stone-Cech
compactification is defined for any sheaf (E, p, T) of sets by adapting standard germination
processes to construct a sheaf over the Stone-Cech compactification B(T) of T. We prove that the
sheaf constructed satisfies a suitable universal property characterizing the Stone-Cech
compactification of a sheaf of sets.
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Resumen

Se considera la categoria de haces de conjuntos en la cual se han escogido los morfismos de tal
manera que se puedan realizar cambios del espacio base por via de funciones continuas. Siguiendo
la teoria de M.M. Clementino, E. Giuli y W. Tholen, expuesta en “Topology in a Category:
Compactness”, se define un sistema propio (€, M) de factorizacién de morfismos y un operador de
clausura con respecto a M. Se define el compactado de Stone-Cech de un haz arbitrario (E, p, T)
utilizando procesos clasicos de germinacién para construir un haz de conjuntos sobre el compactado
de Stone-Cech B(T) de T. Se demuestra que el haz construido satisface 1a propiedad universal que
caracteriza el compactado de Stone-Cech de un haz de conjuntos.
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1. Preliminaries

Let E and T be topological spaces, p: E — T be a
surjective function. The triple (E, p, T') is by definition a
sheaf of sets provided that p is a local homeomorphism,
that is each point @ € E has an open neighborhood
which is mapped homeamorphically by p onto an open
subset of T. Let t € T, the set

E,=p~'(t) ={a € E: pla) =1}

is called the fiber above t. Note that E = [[,cr E:. A
local selection for p is a function o : U — E such that
U C T is an open set and poo is the identity map of U. A
local section for p is by definition a continucus selection.
Denote by Ty(p) ={o: U — E| poo=1dy}. HU =T,
o is a global section and we write I'(p) instead of I'r(p).
A set T of local sections is called full if for every z € E
there exists a section o € ¥ such that o(p(z)) = =.

From the definitions it readily follows:

(1) If o and 7 are sections such that o{t) = 7(t), for
some t € Dom ¢ N Dom 7, then there exists an
open neighborhood V of ¢ such that ¢ [v= 7 [v.

(2) The collection of the ranges of the local sections
for p form a basis for the topology of E.

(3) The topology induced by E on each fiber is the
discrete topology.

Now we state a well known existence theorem for sheaves
of sets whose proof is elementary and direct.

Existence Theorem. Let T be a topological space,
p: E — T be a surjective function and ¥ a full set of
selections for p such that if o, 7 € £ and o(t) = 7(t)
then there exists a neighborhood V' of t such that o(s) =
t(s) for each s € V. Then the sets o(U) where o € &
and U is an open set contained in the domain of o, form
a basis for a topology on E such that (E,p,T) is a sheaf
of sets and each ¢ € T is a section for p.

A germination process with change of the base space
(via a continuous function) can be formulated now. By
means of this process, sheaves of sets will be constructed
in terms of data provided by two topological spaces T
and S, a set of global selections for a surjective function
p: E — T and a continuous function ¢ : T — S.

Theorem (Germination Process). Let T and S be
topological spaces. Suppose that ¢ : T — § is a con-
tinuous function, p: E — T is a surjective function and
T is a set of global selections for p. For each s € §
denote by R, the equivalence relation in X defined by
oR,7 if and only if there is a neighborhood V' of s such
that ¢ {,-1(vy= T lo-1(v) . Let E be the disjoint union

of the family {/R, : s € §}, 5: E — & the function
defined by B{[o],) = s and {o], the equivalent class of ¢
module R,. Then the triple (E, 7, S) is a sheaf of sets
and for each ¢ € T the function & : S — E defined by
&(s) = [o], is a section for p.

The proof of this theorem is straighforward and is
omitted. For a generalization of this result in the con-
text of uniform bundles we refer to [5]. The triple
(E,p,S) is called the sheaf constructed by germination
fromp, ¥ and .

Remark. In the set up of the precedent theorem if 5 ¢
@(T) then the fiber E, above s reduces to zero.

2. The Category of Sheaves of Sets

Denote by & the Category of Sheaves of Sets. The ob-
jects of &, are sheaves of sets containing a full set of
global sections. Let (E, p, T} and (F, g, S) be sheaves of
sets, consider a continuous function £ : T — § and let

Fe={(t,m)eT x F: {t) = q(m)}
=U{{t} b4 F:g(t) :tGT}

and m; be the first projection function. Endow F; with
the topology induced by the product topology of T x F.
It is apparent that the diagram

M2
Fg —_— K

ml iq

T £
is & pullback in the category of topological spaces and
continuous functions. Furthermore the triple (Fy, my, T)
is a sheaf of sets, in fact, if (t,m) € F; and o € ['(q)
is a global section such that a((t)) = m then Q =
(T x a(S)) N F; is an open neighborhood of (t,m) and
m [q is an homeomorphism of Q onto T.

A morphism (£,A) : (E,p,T) — (F,q,8) in S con-
sists of a pair of continuous functions £ : T' — S and
A : Fy — E such that pA = ;. Note that if o € I'(g)
then the function ay : T — E defined by ax(t} =
A(t,a(f(t))) is a global section for p. Let (E,p,T),
(F,q,5) and (G, p, R) be sheaves of sets and let (£,A) :
(E,p,T} — (F,q,S5) and (&1,A4) : (F,q,5) — (G,p, R)
be morphisms. Define the morphism

(ElvAl) e (E,A) : (E!PsT) - (ths R)

by (&1, A1) 0 {£,A) = (614, A), where A : Gyy — E is
given by A(t,a) = A(t, A1(£(t), a)) for each (t,a) € Ge,e.
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The continuity of A follows directly from the continuity
of the functions (¢,a) — (£(t},a) : G¢, 41— Gy, (t,a) —
A(E(t),a) : Gy — F, (t,a) — (£, A1(8(t),a)) : Geype
— Fy and from the continuity of A.

3. Product of sheaves of sets
Let (E;,p;, T;)iea be a not empty family of sheaves of
sets each one of them containing a full set of global sec-
tions. Without loss of generality it can be assumed that
the (T})ico are pairwise disjoint. Let T = [],coTi be
the product space of the family {T;}ieq and m; : T —
T; the i-proyection. For each t = (t;,)ijca € T con-
sider By = ][;cq(Ei):, the disjoint union of the family
{(Ei), : i € O}, where (E;);, denotes the fiber above t;
in the sheaf (E;,p;,T;), and let E = [[,.p E; the dis-
joint union of the family {F; : t € T}. Definep: E— T
by p(t,a) =t.

If i € @ and o4 is a global sectien for p; then the
function ¢* : T — E defined by

o' (t) = (t, (&, 0:i(t;))

is a global selection for p.

Let £ = {a': o; € [(p;) & i€ I}. Suppose that
o', PieL t=t)iea €T and o*(t) = F(t). Since
(i, as(t)) = (£, 85(2;)) then t; = t; and a(t;) = B5(2;),
this implies that ¢ = j, thus there exists a neighborhood
V of t; in T; such that a;(r;) = G;i(r;) foreachr; € V. If
s € T is such that s; € V then a*(s) = (s, (8;,:(8;))) =
(s, (s:,8i(s:))) = Bi(s). The Existence Theorem guar-
antees that the ranges of the restrictions of elements of
2. to open sets of T form a basis for a topology in E
such that (E, p, T is a sheaf of sets and each element of
¥ is a section.

Now consider i € ¥, the sheaf of sets (E;, p;, T;), the

continuous projection m; : T -+ T; and the function
II; : (E;)x, — E,where

(E)m, = U4t} % (B)mutty »

teT

defined by Hi(t)a') = (t: (ti,a))'

The function II; is continuous, in fact, a basic neigh-
borhood W of (t, (¢;,a)) is the range of the restriction to
an open neighborhood V of t, of a global section of € I
for p such that o;(t;) = a. If r € V and if b = a;(m;(7))
then II(r, b) = (r, (r;, b)) € W.

Hence the pa.ir (“Tis.ni) : (E,PvT) i (EiypisTi) isa
morphism in &. Furthermore if {F, g, §) is a sheaf of sets
with a full set of global sections and (4, A;) : (F,q,5) —

(Ei, pi, T;) is a morphism for each i € ¥ then there exists
a unique morphism (¢,A) : (F,¢,5) — (E,p,T) such
that the diagram

(F,q,S) _@‘A)" (E,p,T)
(£, As) (s, I1;)
(Ei!pi'lTi)

commutes.

The function £ is the only one of its kind because T is
the product of the family of topological spaces (T;);cq-
The function A is defined by A(s, (¢, (£, a))) = Ai(s,a).

Now we describe the monomorphisms and the epi-
morphisms in &.

4. Monomorphisms and epimorphisms

We characterize the monomorphisms of S as follows.
Proposition 1. Let (E,p,T) and (F,q,5) be sheaves
of sets with full sets of global sections. The morphism
(¢,A) : (E,p,T) — (F,q,5) is a monomorphism if and
only if £ is injective and A is surjective.

Proof. Let (£,A) : (E,p,T) — (F,q,5) be a morphism
such that £ is injective and A is surjective. Consider

(81,1\1) : (E’:P’aT’) — (E,p, T)

and
(£2= Az) . (Eiip'! T’) - (E,P, T)

two morphisms of G such that

(ffl,Al) = (E,A) o} (Zl,Al) = (f, A) o] (fg,Ag)
= (EE‘Z» A2):

then ££; = £{, and hence ¢, = £3 because £ is injective.
We have that A (¢, A(£1(t'),a)) = A2 (¥, A(&x(t'), a))

for each (t',a) € Fy, = Fue,. Let (t',b) € By, C T' x

E and (t,a) € F; such that A(t,a) = b Then ¢

p(A(t,a)) = p(b) = &4(t). Thus b = A(4(t'),a)

A(€3(t'),a), hence A((t',b) = Az(t',b), then A1 = Az

and it follows that (£, A) is a monomorphism.
Conversely, let

(E:A) : (E,P, T) — (F:QiS)

be a monomorphism. If 7” is a topological space and
idp: : T' — T' is the identity function then the triple
(T',idy+, T") is a sheaf of sets.

Let j1, j2 : T' — T be continuous functions such that
£4, = £ja. We claim that j; = j.
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The pairs (j1,A41) : (T",ide,T') — (E,p,T) and
(ja, A2) : (T, idr,T') — (E,p,T), where Ay (t',a) =t
and Ay(t',a) = ' are morphisms in &. Furthermore
(EsA) ° (jla AI) = (E,A) o (j?!AZ)! in faCtH if (EaA) o
(j1,A1) = (fjl,Ll) then

Li(t',a) = Ai(t', A(1(t), 0)) =¥/

for each (t',a) € Fj, and if (¢, A) o (j2, Ag) = (€32, L2)
then Lo{t',a) = Aa(t', A(ja(t'),a)) = t' for each (t',a) €
F;;,. The assumption that (£, A) is a monomorphism
implies that (71, A;) = (jz, Az). Then j; = j2 and con-
sequently £ is a monomorphism in the category of topo-
logical spaces and continuous functions. This proves
that £ is injective. .

Now suppose that A is not surjective. There exists
x € E such that = ¢ A(Fg). Consider the sheaf of sets
(E',p',T') where T’ = {t} where t = p(z), E' = {0,1},
p : E' — T is defined by p'(y) = 0 for y = 0, 1
and both TV and E' have the discrete topology. Let
£ : T' — T be the function defined by ¢'(t) =t = p(z)
and let A;, As; : Ep — E’ be the functions defined
by Ai{t,a) = 0 for each a € E;, Ao(t,a) =0ifa #
and A;(t,z) = 1. We have that (#,A1) and (¢, A;) are
morphisms defined from (E’,p’,T") into (E,p,T) such
that (£,A) o (£, A1) = (£,A) o (£, A3). Since (£,A)isa
monomorphism we have (¢,A;) = (#,Az). Thus A is
surjective. [

Proposition 2. Let (E,p,T) and (F,q,S) be sheaves
of sets each one with full sets of global sections. Let
(¢,A) : (E,p, T} — (F,q,S) be a morphism such that
¢ : T — 8 is surjective and A : Fy — FE Is injective.
Then (£, A) is an epimorphism.

Proof. Let (F',q',S’) be a sheaf of sets with a full set
of global sections. Consider

(elaAl) ) (£2iA2) : (F,Q,S) - (F!,ql,sl)
morphisms such that

(£2€,81) = (€1, A1) o (&, A) = (€2, A2) o (£, A)
= (EQ’Ea AZ)'

Since ¢ is surjective and £, = #£5£ then £y = £, We
claim that A; = As.

Taking into account that
At A (£(t), m") = Alt, Aa(£(2), m"))

and that A is injective it follows that A,(¢(t},m’) =
Aq(€(t), m’) for each (t,m’) € Fy ,.

Furthermore if (s, m’) € F; = F, , thereexistst € T
such that (£(t),m’) € Fj . Then (¢t,m’) € F;,, thus
Ay (8(t), m’) = Aa(£(t}, m'), therefore

A]_(s, m’) = Az(s, m').

This statement implies that A; = A;. We conclude that
(£, A) is an epimorphism. O

This proposition has the following partial converse.

Proposition 3. Let (E,p,T) and (F,q,S) be sheaves
of sets with a full set of local sections. Suppose that
(¢,A) : (E,p,T) — (F,q,S) is an epimorphism. Then
the function £ : T — § is surjective.

Proof. Let R be a topological space and j;, jfo: 5 —
R be continuous functions such that j;£ = jaf. Con-
sider the sheaf of sets (R,idg, R) where idp : R —
R is the identity function. Let ¢ be a global section
for ¢. Define the functions A, : R;; — F and Ag :
R;, — F by Ay(s,r) = o(s) and Ay(s,r) = o(s).
Then (j;,A1) : (F.q,58) — (R,idgr,R) and (j2,A2) :
(F,q,58) — (R,idg, R) are morphisms in &. Moreover
if (716, L1) = (1, A1) o (6, A) and (jaf, Lo) = (j2,D3) ©
(¢,A) then Ly(t,r) = A(t, A (&(t),7)) = Alt,a((t)))
for each (t,r) € Rj¢ and L(t,v) = A(t, Aa(£(t), 7))
= A(t,0(£(t))) for each (,r) € Rje. Then (j1,41) 0
(€, A) = (2, Az) o (£, A). On the other hand, since (£, A)
is an epimorphism, we have (71, A1) = (j2, A2), hence
h=j2.

We have proved that £ is an epimorphism in the category
of topological spaces and continuous functions. Then ¢
is surjective. [

The following example shows an epimorphism (¢, A) :
(E,p,T) — (F,q,8) such that A is not injective.

Example. Consider the Sierpinski space T = {0,1}
whose open sets are @, T and {1}, Eo = {a,b}, Ey = {c}
and let E be the disjoint union of Fq and Ei. Define
p: E — T by p(0,a) = p(0,b) = 0 and p(l,¢c) = 1.
Let o, 7 : T — E be the global selections for p de-
fined by ¢{0) = (0,a), a(1) = (1,¢), 7(0) = (0,b) and
r(1) = (1,¢). Existence Theorem guarantees that the
ranges of the restrictions of ¢ and 7 to open sets of T
form a basis for a topology for E such that (E,p,T) is
a sheaf of sets and ¢ and 7 are sections. Now consider
the sheaf (F,q,5) of sets where § = {0}, F = {a,b}
with the discrete topology and g{m} = 0 for m = q, b.
Let (£,A) : (E,p, T} — (F,q,5) be the morphism de-
fined by £(t) = O for each t € T, A(0,a) = (0,a),
A{0,b) = (0,b) and A(l,a) = A(1,8) = (1,c). Now
consider a sheaf (G,p, R) of sets and a pair (£1,A1),
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(£2,A2) : (F,q,5) — (G, p, R) of morphisms such that
(1, A1) © (£,A) = (€3, A2) o (£, A). Since £ is surjective
and £,£ = {3, we conclude that £, = {3. Consider
(t,m) € Gy¢,. From (£1,A1) 0 (£,A) = (€2, A2) o (£, A) we
have that A(0,A;(t,m)) = A0, Az2(f,m)), then either
Al(tam) = Az(t,?’ﬂ) =ador Al(tam) = A2(t,m) = b,
therefore A; = Az, thus (¢, A) is an epimorphism such
that A is not injective.

5. Factorization of morphisms

Let (E,p,T) and (F,q,5) be sheaves of sets each one
containing a full set of global sections, let

(&,A): (E,p,T) = (F.q,5)

be a morphism and consider the sub-space £(T) of 5.

Given a € I'(g) let ap be the section for p defined by
ap(t) = A(t,a(£(t))) for each € T and let ¥ be the set
{an : @ € T{q)} Denote by (E,p,£(T)) the sheaf of sets
that is constructed by germination with change of the
base space from the function p, the collection ¥ and the
co-restriction £ : T — £(T) of £ to £(T).

Define Ay, : Ey, — E by Al(t, [GA]!;(t)) = aplt).
Note that if [a]psy = [aleqe) then there exist a neigh-
borhood V' of £(t) such that ax(s) = Ba(s) for every
s € £~1(V). Thus aa(t) = Ba(t) and hence A is well
defined. Moreover A; is a continuous function because
if tg € T and o € I'(q) then the range of an [w, where
W is a neighborhood of tg, is a basic neighborhood of
O.'A(tn). Ift € W and if [ﬁ,\]g(t) is an element of the
range of &) [w then &x) [w (€(2)) = [Bale), there-
fore [Baleqy = [@a)eqr)- This implies that Sa(t) is in the
range of as w. Then A, is a continuous function.

In order to prove that (£, A,) is an epimorphism we
will use the following result that has a generalized ver-
sion in the context of bundles of uniform spaces (5].

Lema 1. Ify; and v, are two global sections for p such
that Ay (t, 71 (8(t))) = A1(t,v2(£(t))) for each t € T, then
T ="
Proof. Let 1, 12 € I'(P) and suppose that

Al (ta N (E(t))) = A1 (ta Y2 (E(t)))

for each t € T. Consider the sections (v1)a, and (¥2)a,
for p defined from v, and y2 by

(71)a. (t) = Av(t, m(£(2)))
and (y2)a,(t) = Ar(t,72(£(2))), then (v)a, = (v2)a,-

Let
£(t) € () ,-m(E(t)) = [aaler

and y2(£(t)) = [Balee). We claim that’[g,\]g(t) = [Ba)ge)-
Remark that & (£(8)) = v1(€(t)) and Ba(€(t)) = v2(€(2))
therefore there exists a /Eeighborhood V of £(t) such that
@a(s) = 11(£(s)) and Ba(s) = y2(s) for each s € V. Let
r € £71(V). We have that

an(r) = Ai(r [enlyr)) = Aar, &a(4(r))
= M1 (r,m(E(r))) = As(r,72(€(r)))

= Ay (r, Balt(r))) = AL (r, (Baler))
== ﬂA(T).

It fOllOWS that [QA]t(t) = [ﬁA]E(t)' Then ,Yl(e(t)) -
T2(€(t)). We conclude that y1 =72, [

Consider a sheaf of sets (G, p, R) and a pair of mor-
phisms

(1 A1) (G2, B2) : (B, B, 4(T)) — (G, p, R)

such that (ji, A1)o(€1, A1) = (j2, Dz)o(éy, Av). To prove
that (j1,4;) = (j2,Az), note that ji£; = j2¢; implies
§1 = jo because £, is surjective. On the other hand if
(£(to),a) € G;, then (to,a) € Gj¢,. Let T € T(p) be a
global section such that 7(j1£1(to)) = a. The functions
71, Y2 : £(T) — E defined by

(42} = L1 (€(t), (7161 (2)))

and
Y2(£(t)) = Da(€(t), 7(j161(t)))

are sections for § and Aj{t,v1(£(t))) = A1(t, ra(£(t)))
because

At A (£(t), (e (1)) = Aa(t, Da(€(E), 7(5161(1))))

for each t € T. Lema 1 allows us to conclude that
71 = 72. Then 1 (£(to)) = Y2(£(t0)), thus &1 (£(to),a) =
Aa{f(to),a) hence A; = Aj We have shown that
(%1, A1) is an epimorphism. 0O

It remains to be seen that there exists a monomor-
phism (f2,A3) : (E,p,&T)) — (F,q,S) such that
(3, A2) 0 (€1, A1) = (£, A).

Consider the inclusion function £3 : #T) — S. For
each @ € F choose a section a® for ¢ such that
o®(g{a)) = a. Define Ag : Fs, — E by Ay(£(t),a) =
[@} ]e(s). Suppose that a®(g(a)) = B(g(a)) = a. There
exists a neighborhood V of g(a} = £(t) such that a®(s) =
3(s) for each s € V. Let t' € £7'(V). We have that
af (') = A(t', a*(£())) = A, B(E(E))) = Ba(t). This
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implies that [ ]s:) = [Baeq) and consequently Az is a
well defined function. Now we prove that Az is a con-
tinuous function. Given (£(tp),a) € Fy,, the range of
Eﬁ I where U is an open neighborhood of £(2p) is a ba-
sic neighborhood of [a%]e(,) in E. Let (£(t),b) be a pair
such that g(b) = £(t), £(t) € U and b= a®(£(t)). Let o*
a section for g such that a®(g(b)) = b. Since a®(4(t)) =
a®(£(t)) there exists a neighborhood V' of £(t) such that
V c U and a®(s) = o®(s) forevery s€ V. If r € £~V
then a%(r) = of(r). Thus [0f)ese) = [Ciz\_]g(to). We
conclude that Ag(£(t),b) is in the range of o} [y. Then
A4 is continuous.

We have that (€2, A3) is 2 morphism in & that is a
monomorphism is due to the fact that £; is an injection
and Aj is a surjection,

On the other hand, #¢; = £ and if A : Fype, —+ E
is defined by (t,a) = Ai1(¢, Az(€1(t),a)) for each (¢,a) €
Fe,z, then

A(ts a) = Al(ti [ai]l(t)) = O‘R(t)
= A(t,a®(£(2)) = A(t, a).

We have proved that the morphism (¢, A) can be fac-
tored through an epimorphism and a monomorphism:
(e! A) = (3231, A) = (e2, Az) © (ela Al)

To apply the theory of M. M. Clementino, E.
Giuli and W. Tholen (3], we ought to define classes
M and € of monomorphisms and epimorphisms in a
suitable manner.

Let M be the set of all the monomorphisms (£,A) :
(E,p,T) — (F,q,S) of S such that £ is an embedding
(homeomorphism onto its image) and A is a surjection
and let £ be the set of all the epimorphisms (£,A) :
(E,p,T) = (F,q,5) of S such that, if (a,b) € FVVF
and a # b then for each V € V(g(a)) there is r € £~1(V)
such that o4 (r) # o (r) for some o® and some o in
I'{(q) with a®(€(t)) = a and a®(£(t)) = b.

Note that (¢1,A1) € £ and (£3,A3) € M. In this
case we say that the morphism (¢, A) has an (£, M)-
factorization.

Furthermore if (E,p,T), (F,q,5), (E*, p*,q*) and
(F*,q*,5*) are sheaves of sets, if

(el’Al) : (E,p,T) - (F,‘LS)
isin &, if

(eth;) . (E*!P.vT*) - (F‘vq*’st)

is in M and if (¢*;,A}) and (€3, A3) are morphisms such
that the diagram

(E,p,T) Gty (F\q,8)

(£, A7) 1(32, Az)
(E*,p", T*)— (F*,q",5")
(€72, A7)
commutes, then there exists a unique morphism
(&,A%): (F\q,8) — (E* 9", T")
such that the diagram

&,pT) LML (p 4 5)

(€1, A7) fb,A")j'(fz,Az)
(E*,p',T*)——'* (F-’qa’St)
(¢*2,A3)

commutes. Hence £(s) = £*1(t), where t is an element
of T such that £(t) = s and A° : E), — F is de-
fined by A’(s,m*} = Az(s,a*) where a* € F* is such
that m* = A}(£(s),a*} [5]. Note that 5(8(s)) =
£3(s) = g*(a). The property above shows that the
(€, M)-factorizations are essentially unique {1]. Then
the pair (£, M) is a proper system of factorization of
morphisms in S [1].

Definition. Consider a category X with a proper fac-
torization system for morphisms (£, M). For every ob-
ject X, the class sub(X) of all morphisms in M with
codomain X is preordered by the relation m < n if and
only if there is a morphism j such that noj =m. We
writtm 2nifm<nandn<m Iff: X — Aisa
morphism and m € sub(X) then we denote the M-part
in the (£, M)-factorization of f om by f(m).

Definition. A closure operator c of X with respect to
M [3] is given by a family of functions cx : sub(X) —
sub(X) (X € X) such that

(1) ¢ is extensive (m < cx(m) for all m esub(X});

(2) ¢ is monotone (If m < n then ex(m) < cx(n) for
all m, n €sub(X));

(3) every morphism f : X — Y is ¢-continuous, that
is: f{ex(m)) € cy(f(m)) for all m esub(X).

Consider again the Category & of Sheaves of Sets.
Take two sheaves of sets (E, p, T) and (F, ¢, S) and sup-
pose that

(ZaA) : (E,P,T) - (F,q,S)
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belongs to sub(F,q, S). Consider the sheaf (E,p, {(T))
obtained by germination over £(T") from the function p,
the set of all sections ay such that « is a global section
for q and the function £, and consider the morphism

(?,K) : (E’ﬁ’m) - (F;QH S)

defined by #(s) = s and A(s,a) = [ag], for a® € T(g)
such that a®{g{e)) = a. This is a monomorphism that
belongs to sub(F, ¢, S}.

Consider ¢(pq,5) : sSub(F,q,S) — sub(F,q,S) given
by c(rqs(LA) = (¢,A). The family of functions
C(F.q,5)» Where (F,q, S) is a sheaf of sets equipped with
a full set of global sections, defines a closure operator of
& with respect to M. Indeed:

(1) Let (¢,A) : (E,p,T) — (F,q,8) be an mono-
morphism in sub(F,q, S). Then c(r.q,5) (¢, A) (£, A).
Consider the morphism (E, f}) : (E,p, T} = (E,p,8T))
defined by f(t) = £(t) and A(t, [aalee)) = aA(t). It fol-
lows that (Z, X) o (2, A) = (£, A). Hence (¢,A) < ({,A) =
(&, A).

(2) Suppose that (£1,A1) : (Ey,p1,T1) — (F,q,5),
(€2, A3) : (Eq,p2,T2) — (F,q,S) belong to sub(F, ¢, S)
and (fl,Al) < (eg,Ag). Let

(&,A) : (E1,p, 11} — (E2, 2, T2)

be a morphism such that (£2,Az) o (£,A) = (€1, Ar).
Then #2€ = £, and therefore & (T1) = £(4(T1)) is a
subset of £3(73). Define the morphism

@K : (B1, 51, 0(T1)) = (B, 53, £2(T2))

by #(s) = s and A(s,[@p,)s) = [@a,]s. Note that if
Ba, € |aa,)s there is a nelghborhood V of s such that
BA, (r) = aa,(r) for each r € £51(V). In other words,
Ag(r, 8 Ez(r))) Aa(r, a(f2(r))) for each r € £ (V).
Let r € £} (V), then & (r) € V, thus Eg(l?(r)) eV
hence £(r) € £;1(V), therefore

Ag(€(r), B(€2(€(r))) = Aa(£(r), al£2(£(r)))-

This means that Az(£(r), B8(£1(r))) = Az(&(r), a(ly(7)).
We have that

Bar(r) = Ar(r, B(81(r))) = Alr, Aa(€(r), B(1(r)))
= A(r, Ag(€(r), e(£1(r))) = Ai(r, a(bs(r)))
= ap, ().

Then [ﬁ,\l]s = [al‘\l]-"

On the other hand a basic neighborhood of [a4,]s
contains the range of &, [v where V is a neighborhood
of s. If W is the range of &, [v then (V x W) N E‘;z
is a basic neighborhood of (s, [oa,]s) and if (r, [aa,]r) €
(V x W)ﬂEzz then A(r, [an,)r) =
of @y, v so A is continuous.

Furthermore, #2f = #; and if (s,a) € Fy; then

A(s, A2(€(5), a)) = A(s, Az(s,0)) = K(s, [0}, ]5)
= [am]s = Ai(s,a)
then (Ez,Ag) o (f A) = (£1,A1)
(&1, A1) < (82, 43).

{3) Let (8,A) : (F,q,5) — (G, p, R) be a morphism
and let (£,A) : (E,p, T) — (F,q, S) insub(F,q,S). Con-
sider the morphism

C(rq,5) (6 A) =

[@a,]r is in the range

We conclude that

@R): (E,p6D) -

where (E 7, £(T)) is the sheaf constructed by germina-
tion over £(T) from the function p, the set of all sections
ap, where o € T'(g), and the function £. Denote the ele-
ments of & by [as)s, where a € I'(g) and s € U(T). Let
(6,8) 0 €K) = (62, ®) : (E,p,€(T)) ~ (G,p,R) then
®:G5— E is defined by ®(s,m) = A(s, A(¥(s), m)).
Now let (8,8) : (Ef,'* 8(&(T))) — (G,p,R) be the
M-part of the (£, M)-factorization of (4Z,®), where
(Et,pt ,5(@)) is the sheaf constructed by germina-
tion over 8(Z(2(T))) = 6(4(T)) from the function 5, the
set of all sections 4¢ where 4 € T'(p) and the func-
tion 6Z. Denote the elements of ET by [ya]! where
v € T(p) and r € 8(£(T)). Therefore 8 : J(E(T)) — R
is defined by 6(r) = r and © : Gy — E' is defined
by ©(r,m) = [yZ]! where y™ is a global section for
p such that v"(p(m)) = m. Consider the morphism
(8,4) o (£, A) = (8¢,@1) : (E,p,T) — (G.p,R) and
let (61,01) : (ES,p5,6(4(T))) — (G,p,R) be the M-
part of the (£, M)-factorization of (8¢,®;). Therefore
(E8,p8,8(¢(T))) is the sheaf constructed by germina-
tion over 0{(£(T)) from the function p, the set of all
sections s, where v € T'(p) and the function §£. De-
note the elements of E% by [ys,]} where v € T'(p) and
T € 8(£(T)). We have that 8, : 6(¢(T)) — R is de-
fined by 8,(r) = r and ©, : Gy, — E! is defined by
B1(r,m) = [v§,] where ™ € I'(p} is a global section
such that y™{p(m)) = m. Now consider the morphism

(F.q,5)

¢@,5,r)(01,01) =

= (@1,87) : (E5*, 5™, 3E(T)) — (C,p, R)
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where (E§*, P8, 84(T)) is the sheaf constructed by ger-
mination over §¢(T") from the function p%, the set of all
sections ~vg, where v € I'(p) and the function 6,. De-

note the elements of ES” by e, where v € T'(p) and
r € 84(T). Then 91 : 8¢(T) — R is defined by 8;(r) =
and O, : G5z — ES" is defined by By(r,m) = by
where v™ € T'(p) is such that y™(p(m)) =m

In order to show that the morphism (4, A) is e-contin-
uous, we claim that exists a morphism

(0, ) : (E1,51,6(6(T))) — (B5,p*,86(T))
such that (8,,0,) o ) o (p,2) = (8,8). This would prove
that (8,8) < (d;,0,;).

Define ¢ : 8(£(T)) — 84(T) by @(r) = r and Q :
E : — Et by Q(r, [ve,)¥) = [ve]l. To show that 0
is well defined, consider a global section u for p such
that h’e]]r [”91]1' We claim that [’Tq’]‘r = [“‘I']t
There exists an open neighborhood W of r in §(£(T))
such that ve,(r'}) = pe,(r’) for each ' € 6~} (W) =
W N6(4(T)). Then O1(r', 7(6:())) = ©1(', u(6: ("))
for each r* € W N §(4(T)). Therefore [ys,)% = [us, ]
for each ' € W N 4(4(T)).

Let V' be an open neighborhood of r in R such that
V N&(€(T)) = W and take s € (66)~1(V). Then

Ta(s) = ®(5,7(6(¢(s)))) = As, A(E(s), ¥(8(£(s)))))
= A(s,7a(€(5))) = {(va)als
and
pa(s) = @(s, u(8(U(s)))) = K(s, AE(s), p(3(2(s)))))
= As, ua(€(s))) = lpa)als.
To verify that {(ya)als = [(#a)a]s consider
t € £ 1((58) (V).
We have that ¢ € 2‘1((2’)"'1(6‘1(1/’))) therefore
a(e(t)) € VN&(UT)) =

then [7;1]‘55(!(”) = [!“l’l]a(z(t))- This nnphes e, (t) =
te, (t}, then

B, (¢, (8(E(H)N) =

therefore

At A((), Y(8(E())))) = At A((t), p(8(£(E))))),

then

@, (t, p(8(£(2)))

Alt, 7a(8(2))) = AL, pale(?)))
and {7a)a(f) = (#a)a(t). This implies that [(ya)als =
[(sa)a]s then [ye)l = [us]l. We conclude that Q is
well defined. The continuity of 2 is straighforward and
the pair (i, Q) is a morphism in & such that (8;,8,) o
(¢,9) = (8,0). It follows that (6,8) < (61,01).

Definition. Let ¢ be a closure operator of a category
X with respect to M. An object A € X is ¢c-Hausdorff
ifuocex(m) =voex(m)forall u, v: X — 4 and all
m € sub(X) such that uom =vom.

Remark. In the Category of Topological Spaces and con-
tinuous functions with the usual closure ¢, the ¢e-Haus-
dorff objects are the Hausdorff spaces. Consider the
Category & of Sheaves of Sets with the closure operator
c defined above. If the sheaf of sets (E, p, T) is a c-Haus-
dorff object of & then T is a Hausdorff space, indeed,
if v, v : X — T are continuous functions and if m :
Z — X i3 an embedding such that um = vm, then take
the trivial sheaves of sets (X,idx,X) and (Z,idz, Z)
and the functions Ay : By, — X ,A; : E, — X and
A M,, — Z defined by Ai(z,a) = z, Ay(z,0) = z
and A(z,z) = z. It is apparent that (u, A}, (v,Az)
(X,idx,X) — (E,p,T) are morphisms of &, that

(X:idX,X)

belongs to sub{X,idx, X} and that (u,A;) o (m,A) =
{(v,A3) o (m, A). Therefore (u, A1) 0 ¢(x idx,x) (M A) =
(v,Ag) © e(x idx,x)(m, A), then umi = vMm, where 7 is
the injection of m(Z) into X. Thus T is a Hausdorfl
space. [

(m,A):(Z,idz,Z) —

Definition. Let ¢ be a closure operator of a category
X with respect to M. A morphism f: X — Y is ¢
preserving if f(cx(m)) = cy(f(m)) for all m € sub(X).

Definition. Let ¢ be a closure operator of a category
X with respect to M. An object X € & is c-compact if
the product proyection py : X x Y — Y is e-preserving
for every object Y € AX.

Remark. In the Category &S of Sheaves of Sets with the
closure operator ¢ defined above, if the sheaf of sets
(E,p, T} is a c-compact object of & then T is a com-
pact space in the Category of topological spaces and
continuous function with the usual closure [5}.

6. Stone-Cech compactification of a sheaf of sets

If F denotes the Forgetful Functor from the Category
C of Compact Hausdorff Spaces (and continuous maps)
to the Category T of Topological Spaces and if X de-
notes an arbitrary topological space, there exists a cel-
ebrated universal arrow (e, (X)) from X to F known
as the Stone-Cech compactification of X. To generalize
this universal arrow we take in place of F' the Forget-
ful Functor from the Category of Sheaves of Sets having
Compact Hausdorff Base Space {and appropriately de-
fined morphisms) to the Category of Sheaves of Sets and
in place of X we take an arbitrary sheaf of sets.
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Let {E, p, T) be a sheaf of sets with a full set of global
sections. Let e : T — B(T) be the canonical func-
tion and ¥ be the set of all the global sections for p.
Let (E,7,8(T)) be the sheaf of sets obtained by ger-
mination from the Mngtion p, the family ¥ and the
function e. The sheaf (E, b, 3(T)) is e-Hausdorff and c-
compact. Furthermore if (F, ¢, S} is a c-Hausdorff and ¢-
compact object of & and if (£,A) : (E,p,T) — (F,q,S)
is 2 morphism, then there exists a unique morphism
(.90 : (E, B, B(T)) — (F,q,8) such that the diagram

(E,pT) “L8h  (Fgs5)
@Af\\ /4Zm
(E,5, B(T))

commutes. Indeed, since (F,q,S) is c-Hausdorff and c-
compact, the topological space S is Hausdorff and com-
pact and since £ is continuous there exists a unique con-
tinuous function Z : 3(T) — S such that e = £. Con-
sider the set Fy = {(k,a) € 3(T) x F: {(k) = g(a)}. For
each (k,a) € Fjlet a® a global section for g such that
a%*{g(a)) = a and let o the section for p defined by

2 (t) = A(t,a®(£(t)). Define 2 : F;— E by Q(k,a) =
[a4]x. Consider (k,a) € F;and let 3% be another global
section for g such that 9%{g(a)}) = a. We claim that
[ ]k = [Ba]s- There exists a neighborhood V' of g(a)
such that a®(s) = §%(s) for each s € V and V) is
a neighborhood of k. Let t € e~ (£-1(V)), then t €
£71(V), thus £(t) € V, hence ag(t) = A(t,a®(£(t))) =
A(t, B2(£(t))) = B4 (t) and it follows that [a} )]s = [B4]k-
On the other hand 7(2(k,a)) = p([a%)k) = k for each
(k,a) € Fp To see that (£,2) o (e,A) = (£,A), let
(Ee, Al = (LT, () o (e, A) where A’ : F;, — E is defined
by A’(t,a) = A(t,§2(e(t),a)). We have

A(t,0) = AL, Ue(t), @) = Alt, [ehlee)
=l (1) = Alt e (1))
= A(t,a%(q(a))) = A(t.a)

and since fe = £ then (£,9) o (e,A) = (£, A). Now to
establish the uniquess of (E §1), suppose that {#;,(2;) :

(E ,8(T)) — (F,q,5) is a second morphism such that
(€,Q1) o (e,A) = (£, A). Then #, = 7 because fe = £.
For (k,a) € Fy, let 7 be a global section for p (depend-
ing on k and a) such that [r]y = Q:1(k,a). Note that
D{k,a) = Qlk a“(ﬂl k))) = af, (k). Then [r], =
ay (k). To show that Q(k,a) = Ql(k a) it suffices to

verify that [a% ¢ = [T]k. If t € T then
oA (t) = Al a®(€(t))) = A(t, i (eft),
= A2, Q(e(t), *(£(2)))),

o®(€(1))))

but
A(t, u(e(t), a®(£(1))) = Alt, Qu(e(t), a® (£ (et)))))

= A(t,of, (e(t)) = (@b, )a(t)
and

At Q(e(t), o (£(1)))) = Alt, Qeft), “(A( ( )))))

= A(t, ag(e(t)) = (eq)a(t),
therefore o (t) = (o Ja(t) = (ad)a(t), then af =
(e, )a = (@f)a. We claim that [(@f )alk = [7]&. Since
{r]e = 7(k) = oy, (k), there exists a neighborhood V of
k such that 7(r) = af (r) foreachr € V. If r € e~ (V)
then

(e )alr) = Ar, o, (e(r)) = A(r, T{e(r)))
= A(T‘, {T]e(,.)) = T(T).
This implies that [r]x = [(ad )a)s- Therefore [0} ]y =
[7]x and Q(k,a) = Q1 (k,a).
We have proven the following statement:

Theorem (Stone-Cech Compactification). If
(E,p,T) is an object of &, then there exist & c-Haus-
dorff and c-compact object (E, P, B8(T)) of S and a mor-
phism (e,A) : (E,p,T) — (E,5,8(T)) in & such that
if (F,q,8) is a e-Hausdorff and e-compact object of &
and if (¢, A) : (E,p, T) — (F,q,S) is a morphism of &,
then there exists a unique morphism (? Q):(E,5,8 B(T))
— (F,q,8) of & such that (£,9) o (e, A) = (£, A).

The pair ((e, A), (E, , 8(T))) is called the Stone-Cech
compactification of the sheaf of sets (E, p, T).

The first author has obtained a generalized version

of the above development for the Category of Uniform
Bundles [5].
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