EcoLocGia

DESIGN OF A SAMPLING NETWORK FOR AN
ESTUARY IN THE COLOMBIAN CARIBBEAN

por
Ramén Giraldo Henao*, Néstor Méndez** & David Ospina***

Resumen
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Se disefi6 una red de muestreo para el monitoreo de variables fisicoquimicas y bioldgicas en el
estuario Ciénaga Grande de Santa Marta, ubicado en la costa norte de Colombia. Inicialmente, a través
de muestreo sistemdtico de cuadriculas, se escogieron 115 puntos para medir las variables considera-
das. Con base en los datos observados se estimd, para cada variable, la estructura de autocorrelacion
espacial por medio de la funcién de semivarianza. Posteriormente, para redes de diferente tamafio, se
calcularon las correspondientes varianzas de prediccién, tomando como base los modelos de
semivarianza ajustados. La comparacién de las varianzas de predicci6n para las diferentes redes y de
los costos asociados con cada una de ellas, permitié establecer un conjunto de sitios de muestreo que
aun costo razonable disminuyen el error de prediccién para las variables de interés.

Palabras clave: Estuario, geoestadistica, redes de muestreo.
Abstract

A network for monitoring physical chemistry and biological variables in the Ciénaga Grande de
Santa Marta estuary. in the Caribbean coast of Colombia, was designed. Initially, through systematic
sampling on a square grid, a set of 115 sampling points was chosen to measure the variables
considered. Based on the data provided, a spatial auto-correlation structure for each variable was
estimated through the semivariance function. Later, for different size networks, the kriging prediction
variances were calculated, taking the adjusted semivariogram models as a basis. The comparison
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among the prediction variances for the different networks and their associated costs allowed
establishing a set of sampling sites, that at a reasonable cost, substantially diminishes the prediction

error for the variables of interest,

Key Words: Estuary, geostatistics, sampling networks.

Introduction

In most environmental studies, obtaining and analyzing
the data is often a slow and costly process that produces
skepticism among the decision making entities. Because
of this, it is of maximum importance to put sampling
systems that provide the best possible information quickly
and at low cost.

When a study requires following up the principal factors
that control the processes of productivity in estuaries and
other aquatic ecosystems, one must frequently recur to
biological and ecological type criteria to select the
sampling points. This procedure, although it is valid to
satisfy very specific objectives, in many cases it is not
sufficient and does not allow to have an integrated view of
the ecosystem. In the best case, it makes the information
that is taken redundant, and in this way increases the cost
of the research. Because of this, it is necessary to establish
a set of sampling sites that not only identify the conditions
of the ecosystem in very strategic regions, but that also
supplies general information on the set.

In environmental statistics, there are different
approaches for solving the problem of estimating the size
of the sample and the location of the sampling sites. Some
classical approaches suppose taking independent random
samples based on some adaptations of traditional
sampling, carrying out the corresponding estimates. This
is the case, among others, of the sampling of squares,
transects or intercepts. Under these studies, the estimation
of the parameters of interest are carried out assuming some
probabilistic models (Dale et al., 1991) or through some
of the mathematical expressions proper of the sampling
design used (Thompson, 1992; Seber 1986). Caselton &
Zidek (1984) proposed selecting a monitoring network
that is formulated as a decision problem whose solutions
may be optimized. This theory assumed a multivariate
normal structure in the data.

On the other hand, the problem has been treated
assuming that the phenomenon to be studied represents a
stochastic process. In this case, it is treated with
regionalized variables (variables measured in a region)
and it is supposed that they have structures of spatial auto-

correlation. In this respect Russo (1984) and Bresler &
Green (1982), proposed procedures that are based in some
of the criteria associated with the distance between the
pairs of points or with the number of pairs of points by
lag, respectively. The fundamental goal of both methods
1s to find the suitable configuration of points to calculate
the semivariogram. The advantage is that it does not
require any initial information about the characteristic of
interest. Nevertheless, problems can come up when point
distributions are proposed that let large zones of the region
to be studied with no observation point at all. McBratney
etal. (1981) and McBratney & Webster (198 1), presented
a procedure that consists of selecting a sampling network
that minimizes the standard prediction of kriging error.
This methed differs from the two foregoing ones in that it
requires initial information of the variable, allowing an
estimation of the semivariance function.

In this study, the methodology proposed by Me-
Bratney ef al. (1981) was applied with the goal of
designing a sampling network for the estuary called Cié-
naga Grande de Santa Marta (CGSM) located on the
northern coast of Colombia (Figure 1; IGAC, 1973). The
CGSM, because of its large area (450 km?) and its
ecological and economic importance (more than 5
lakeside towns living off the ecosystem), has been the
center of different kinds of studies. Over the last two
decades, it has been showing signs of deterioration, and
some civil works trying to recover it, have been carried
out. For the monitoring of the changes that have been
taking place in the ecosystem, it became necessary to have
a set of sampling sites that allow an integrated overview
of the behavior of the principal variables that govern its
productivity processes.

Method

This study is developed using geostatistical methods.
The Geostatistics is a branch of statistics that treats spatial
phenomena (Journel & Huijbregts, 1978). Its primordial
interest is the estimation, prediction and simulation of
such phenomena (Myers, 1987).

Geostatistics provides a way of describing spatial
continuity, which is an essential distinctive feature of
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many natural phenomena and provides adaptation of
classical regression techniques to take advantage of this
continuity (Isaaks & Srivastava, 1987). Petitgas (1996),
defines it as an application of probability theory to the
statistical prediction of regionalized variables. The results
of the prediction process may be applied with diverse
objectives, among others, in the design of sampling
networks (Cressie, 1989). The geostatistical analysis is a
two-step procedure. First, the spatial structure of the va-
riable is examined with the semivariance analysis. Once a
spatial structure has been identified and accurately
described by a suitable model, the kriging procedure
provides optimal interpolation of the variable at
unsampled sites (Rossi et al., 1995).

The difference between kriging and deterministic
methods is that in kriging there is estimation of the
prediction variance in each point of prediction and
consequently a measure of the prediction error. The
prediction variance of each point is calculated by (Cressie,
1991):

2 n
U = Exi Yiot U (1
i=1

Yio is equal to the semivariance function calculated
for the distance between the ;"-sampling observation and
the point where the prediction is desired. The kiare
calculated by finding the minimum values of the variance
of prediction function subject to the restriction that the
predictor will be unbiased, for which the Lagrange
multipliers m are used. In Giraldo et al. (2000) is
summarized both the theory of estimation of the spatial
structure and prediction method by Kriging.

From equation (1) it is evident that the prediction
variance is not constant as in the classic case, as it depends
on the semivariance function, which is a monotone
function which increases with the distance between the
observation and the points where the prediction is made.
McBratney ef al. (1981) shows that, for any sample
density, the maximum distance between one point of
observation and an interpolation point is minimum when
the configuration of the observed points is made in a trian-
gular grid. Under this point, smaller prediction variances
will be obtained. Nevertheless, this same author and
Warrick et al. (1986) indicate that for logistic reasons
referent to the location of the field sites and to minimize
travelling from point to point, a square grid may be
preferable.

Accordingly, the problem of design sampling networks
is limited to establishing for different sampling networks,
with either an equilateral triangular grid or a square one,
the relationship between the maximum prediction
variances (those obtained at the center of the triangle or
square) and their associated costs. In this way, the
necessary cost to reach a certain degree of security can be
deduced immediately or, on the contrary, the prediction
variance if the cost is prefixed.

Data and procedure

The information used for the analysis was taken during
the intensive sampling campaign carried in March 1997,
at the CGSM (Figure 1). The area is particularly arid,
with a dry season from December to August (interrupted
by a short rainy season from May to June) and a major
rainy season from September to November (Wiedemann,
1973). Water samples from the surface of the water column
were analyzed for the following variables: temperature
(C*), salinity, total suspended solids (mg I'"), depth (m),
silicates (umol 1), chlorophyll “a” (ug 1), dissolved
oxygen (mg 1"}, nitrites (umol I'') and chlorophyll “c” (ug
1'"). These variables are considered to be of great influence
in the primary productivity processes and in the bio-
diversity of aquatic ecosystems like the one being
considered (Vidal, 1995). Between 103 and 114
observations were obtained for each variable. The data
was taken throughout the system by systematic samples
of squares of 4 km? (Figure 2). The location of each
sampling point was carried out using a geo-positioning
device.

Once the data were obtained, descriptive measures were
calculated to summarize the information. Through
dispersion charts (that are not included in the text) the
spatial stationarity assumption (Giraldo et al., 2000) was
evaluated. For each variable, the spatial auto-correlation
structure was estimated through the experimental
semivariogram. In the same way, the theoretical models
were adjusted using the GeoEAS software (Englund &
Sparks, 1988) and sampling networks were simulated with
square grids of 4 (the observed), 9, 16, 25 and 36 km?,
respectively (Figure 3). The corresponding prediction
variances of each variable were estimated taking as the
basis the estimated spatial correlation models.

The prediction variances that were obtained were
related to the associated costs of measuring each variable
in each sampling density. The final decision on the
proposed sampling network was based on practical criteria
founded on the prediction variance-cost relationship.
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Figure 3. The sampling networks under which the estimation of the

assuming the estimated semivariance models.

prediction variances were made for each one of the variables considered

The distances between the sampling points: a) 2000 m; b) 3000 m: c) 4000 m; d) 5000 m and ¢)

6000 m.
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Results and discussion

In general, according to the mean, minimum, and
maximum values calculated and observed (Table 1), the
variables considered have atypical magnitudes compared
to those historically observed for the same time of the
year (Giraldo ef al., 1995). The mean value for salinity
was “low” compared to that registered for the same time
of the year in other studies (about 25 ). The opposite
happened in variables like nitrites, silicates, and
chlorophyll, in which the observed magnitudes were si-
milar to those reported in other studies (Vidal, 1995) for
the rainiest months of the year, in which it is reasonable
to find them in high concentrations, due to the larger
supply of water from the rivers that run into the ecosystem.
The above may be due to a possible increase in the flow of
the rivers that run into the estuary during the rainy month
preceding the sampling, as a consequence of the el nisio
phenomenon in the area at the end of 1996.

However, for the purpose of this study these differences
are not an obstacle, since in fact it is assumed that the
establishment of an optimum set of sampling points does
not depend on the magnitude of the variables, but on the
spatial correlation structure.

The values calculated for the coefficient of variation
(Table 1) indicate that, with the exception of nitrite and
chlorophyll “c”, the variables are in general homogeneous
(variation coefficients less than 40%). This would imply,
from at least one classical point of view, that relatively
small sampling sizes can be established for the follow-up
of the variables.

The adjusted semivariance models (Table 2) show
strong spatial association patterns of the variables in the
area. The ranges that arc reached, up to 30 km, are
relatively high if one takes into account that the distance
between the extreme north and south of the system (the

Table 1. Descriptive statistics of the physical-chemical and biological variables measured in Ciénaga Grande de Santa Marta, Colom-
bia. Sampling carried out in March, 1997. Calculations based on data of n sites. §.D. = Standard Deviation; C.V. = Coefficient of

Variation
Variable n Mean S.D Minimum Maximun V.C (%)
Depht 114 1.47 0.35 0.25 2.50 24.1
Temperature 114 2043 2.12 26.00 33.20 7.2
Salinity 114 17.62 2.85 13.02 34.95 16.1
Dissolved oxygen 114 8.80 3.25 3.03 16.29 36.9
Total Suspended Solids 103 218.20 41.18 103.00 318.00 18.8
Nitrites 112 0.43 0.30 0.01 1.61 70.8
Silicates 112 245.29 61.51 10.99 358.74 25.1
Chlorophyll a 107 132.44 31.58 291 198.35 23.8
Chlorophyll ¢ 107 8.94 7.76 0.00 31.41 86.8

Table 2. Theoretical semivariance models adjusted to experimental semivariograms calculated from information on physical-
chemical and biological variables measured in two sampling expeditions carried out in March and in October 1997 in the Ciénaga
Grande de Santa Marta, Colombia

Variable Type Nugget Sill Range (m) rk

Depht Gaussian 0.07 0.12 24850 0.993
Temperature Gaussian 0.32 6.45 15230 0.999
Salinity Lineal 0.18 12.30 20000 0.897
Dissolved oxygen Gaussian 1.83 14.32 12940 0.998
Total suspended solids Linear 1087.10 1138.20 22000 0.907
Nitrites Linear 0.07 0.04 22000 0.876
Silicates Gaussian 1810.00 2089.00 7240 0.999
Chlorophyll a Spherical 116.68 597.40 6940 0.980
Chlorophyll ¢ Linear 29.95 81.68 30000 0.944
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longest distance) is not more than 30 km. The above gives
rise to a reduction in the kriging prediction variance
suggesting a smaller number of sampling sites. This
underlines the fact that, with respect to the other two
parameters, in no case the value of the nugget was greater
than 50% of the value of the sill (Table 2). This, according
to Diaz-Francés (1993), is recommendable for the spatial
correlation model to adequately describe reality.

Given that the goal of the study is not to make a
description of the distribution of the variables in the
system, there is no summary of the results that were
obtained in the prediction process in the text.
Nevertheless, it is valid to mention that the prediction
errors (Table 3) in almost all cases were less than 5% of

the predicted values, which indicates that if any specific
probability distribution is assumed, low confidence
intervals would be obtained.

As it was expected, the estimated standard prediction
errors grow as a function of the distance between the
sampling points (Table 3). Salinity is the variable with
which the greatest gain in precision was attained (35%)
when changing to the less dense network (Figure 3 (e)), to
the densest (Figure 3(a)), (Table 4). Other variables such
as temperature, dissolved oxygen, silicates, and
chlorophyll “a” had precision increases that varied
between 15.9% and 23.8% (Table 4). Finally, for depth,
nitrites, total suspended solids and chlorophyll *“c”, the
increase in precision was only in percentages between

Table 3. Maximum standard prediction error (square root of the variance) of each variable for sampling networks with grids of 4,
9, 16, 25, and 36 km?

Network Size
(Distance in meters between sampling points)
Variables 2000 3000 4000 5000 6000
Depht 0.2825 0.2874 0.2930 0.3002 0.3070
Temperature 0.6380 0.6690 0.7046 0.7632 0.8373
Salinity 0.9096 1.0511 1.1676 1.2965 1.4075
Dissolved oxygen 1.5145 1.5917 1.6752 1.7977 1.9431
Total suspended solids 35.6363 36.4021 37.0459 37.8076 38.5197
Nitrites 0.2832 0.2875 0.2913 0.2958 0.3003
Silicates 47.6524 50.2070 52.3806 54.6797 56.6932
Chlorophyll a 19.4634 21.2041 22.5233 23.5582 24.2163
Chlorophyll ¢ 6.1071 6.2977 6.4536 6.6336 6.7967

Table 4. Increase in precision (percentage reduction of the standard prediction error) of each sampling network (observed and
simulated) with respect to the 6000 meter network (the least dense)

Network Size
(Distance in meters between sampling points)

Variables 2000 3000 4000 5000 6000
Depht 8.0 6.4 4.6 22 0
Temperature 23.8 20.1 15.8 8.8 0
Salinity 354 25.3 17.0 7.9 0
Dissolved oxygen 22.1 18.1 13.8 1.5 0
Total suspended solids 7.5 5.5 38 1.8 0
Nitrites 5.7 43 3.0 1.5 0
Silicates 15.9 11.4 7.6 3.6 0
Chlorophyll a 19.6 12.4 7.0 2.7 0
Chlorophyll ¢ 10.1 7.3 5.0 24 0




GIRALDO HENAO R., MENDEZ, N., & OSPINA D.: DESIGN OF A SAMPLING NETWORK FOR AN ESTUARY IN THE. . . 517

5.7% and 10.1% (Table 4). Obviously, when comparing
the intermediate networks, those with grid distances
between 3000, 4000, and 5000 m. (Figure 3 (b), 3(c), and
3(d)), with the 6000 m network (Figure 3(e)), the relative
increase in precision was much less (Table 4).

The sampling costs associated with each variable
under each sampling density were different, with the
exception of the variables of temperature, depth, and
salinity, whose cost for the 2000 m network was much
lower than the other variables (Figure 4). For some of the
variables (dissolved oxygen, silicates, and chlorophyll)
going from a 3000 m network to a 2000 m the sampling
cost increased in more than Colombian $500.000 (about
US $240).

Hence, for temperature and salinity, it would be much
more convenient to make an intense sampling (the densest
network) as this would increase the efficiency in a consi-
derable percentage (23% and 35%, respectively, with net
costs increased in only about Colombian $190.000 (about
US $90) (Figure 4). For depth, even if the sampling costs
are not significantly increased (Figure 4), is more
recommendable to sample it in the less dense network,
given that the efficiency is increased by a maximum of
7% in comparison with the other networks (Table 4). For
nitrite, total suspended solids and chlorophyll *“c”, there
is only a little increase in the efficiency with increasing
network density (Table 3); on the contrary, the costs,
especially in the 2000 m network, increase considerably.
Hence the less dense networks (5000 m and 6000 m
between sampling points) are the most adequate for the
follow-up of these variables. In the remaining variables
(dissolved oxygen, silicates and chlorophyll “a”), the
decision is complex given that there are considerable
increases in the costs (Figure 4) and the efficiences with
increasing density (Table 4).

A global analysis of the increases in cost and in
efficiency (Table 5) clearly show that the 2000 m network
is the least recommendable given that, compared to the

Cost (colombian $)
&

Total susp. Solids
Diss.Oxygen.
Chlorophyil "a"
Chiorophyil “c*

Figure 4. The estimates sampling costs for each variable under five
sampling networks, in which the prediction variances were
calculated.

3000 m one, there is a high increase in costs (more that
200%) but the relative efficiency increases in only 4.9%.
While in relative terms, the change in efficiency and the
costs going from one network to another with a greater
number of points is similar (with the exception of the 2000
m one), the networks with distances between sampling
points of 4000 m and 5000 m should be considered [(Fi-
gure 3(b) and 3 (c)] to be the most advisable, given that
they produce a greater efficiency that the one obtained in
the 6000 m, with slightly higher costs (Figure 4).

The suggestion given in the foregoing paragraph about
the optimum sampling arrangement to monitor the varia-
bles considered in the ecosystem under study, are not in
any way absolute. In the final analysis, while comparing
the functions of cost and of statistical efficiency, many
purely empirical criteria have been used. Nevertheless it
is considered that the agencies that make the final decision
should have a tool that allows'them to plan the most
adequate monitoring strategy for the future.

Table 5. Costs increases (net and relative) and efficiency (average of the nine variables) with increasing network density

Networks Increase Relative increase in Relative increase in
From - To (Colombian $) cost (%) efficiency (%)
6000 m - 5000 m 332.900 140 4.27
5000 m - 4000 m 611.150 152 4.63
4000 m - 3000 m 17112.000 162 4.15
3000 m - 2000 m 37282.350 213 4.90
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