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The structure of Hopf co-Poisson algebra on the universal enveloping algebra U(S7(2))
of Lie algebra S7(2) is determined with the help of a solution of the Yang-Baxter equation.
Using this solution, a bracket on the dual space of Lie algebra ST'(2) is also determined. This
cobracket on ST(2) induces a deformation of the universal enveloping algebra U(ST(2))
which has a Hopf algebra structure, as we shall verify. This Hopf algebra is called the
quantum group associated to a universal enveloping algebra.

Key words: Lie bialgebras, Hopf algebras, Poisson brackets, Lie Poisson group, Hopf
co-Poisson algebra, Universal enveloping algebra, r—matrix, Quantum group, Yang—Baxter
equation.

Resumen

Con ayuda de una solucién de la ecuacidn cldsica de Yang—Baxter determinamos la estruc-
tura de dlgebra de Hopf-co-Poisson del dlgebra envolvente universal U{ST (2)) del dlgebra de
Lie ST(2). Usando esta solucién determinamos un corchete en el espacio dual del 4lgebra de
Lie. Este co-corchete sobre $7(2) induce una deformacién del dlgebra envolvente universal
U((ST(2)) que tiene estructura de algebra de Hopf, como probaremos. Esta dlgebra de Hopf
es llamada el grupo cudntico asociado a un dlgebra envolvente universal.
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1. Introduction

Let G be a Lie Group and ¢ its Lie algebra; we can
obtain quantum groups as deformations of the algebra
of C* functions F(G) on G, or as quantizations of a
Lie bialgebra G. A quantization of a Lie bialgebra G is
a deformation of the universal enveloping algebra U(G)
equipped with the co-Poisson Hopf algebra structure,
such that the classical limit of this quantization is the
Lie bialgebra structure of G. To construct a deformation
of the universal enveloping algebra we need to describe
the co-Poisson Hopf algebra structure on U{G} or, equiv-
alently, we must build the bialgebra structure on the Lie
algebra G.

The purpose of this work is to describe a mathemati-
cal procedure to produce a quantum group structure as-
sociated to a universal enveloping algebra, the universal
enveloping algebra U(ST(2)) of Lie algebra S7(2). To
achieve this purpose we use a solution of the classical
Yang-Baxter equation (CYBE) on Lie algebra $7(2).
We build a cobracket in S7(2) connected with this so-
lution. This cobracket determines a bialgebra structure
in §T(2) and the co-Poisson-Hopf algebra structure in
the universal enveloping algebra U(S7(2)) as we shall
verify.

We will deform the comultiplication in 4(S7{2)) by
means of a parameter b in order to build the alge-
bra Up{ST(2)). We shall find appropriate expressions
for the coproduct Ay, the antipode application S, and
the bracket | ], on U,(ST(2)). We shall prove that
Un(ST(2)), with these applications, has a Hopf algebra
structure so that when A — 0 the coalgebra structure
of Up(5T(2)) coincides with the bialgebra structure of
ST(2). That is, we shall prove that this algebra is a
quantum group of the universal enveloping algebra type.

2. The group ST(2) and its algebra U{ST(2))
2.1. The Lie algebra S7(2}

Let ST'(2) be the Lie group of upper triangular ma-
trices 2 x 2 with determinant equal to 1 such that the

operation of the group is the multiplication between ma-
trices.

The Lie algebra ST(2) associated to ST(2) is the Lie
algebra of upper triangular matrices 2 x 2 with null trace

on R, where the matrices

X, = G) _01) X, = (g (1]) , 2.1)

form a basis with the Lie bracket given by
[X1, Xa] = —[X2, X1] = 2X3,
[X:, Xi]=0,i=1,2 (2.2)

2.2. The Lie bialgebra structure on S7(2)

A Lie bialgebra is a Lie algebra with a Lie co-algebra
structure § fulfilling the 1-cocycle condition (2.5) with
respect to the tensorial adjoint representation, (see [6]
p. 43).

The Lie bialgebra structures may be induced by the
adjoint aplication of Lie algebras

ad : 8T(2) = 8T(2) x 8§T(2)
defined by
adx(Y) =[X,Y], for X,Y € ST(2).

The adjoint representation of ST (2) is totally deter-
mined by its representation on the {X;, X3} basis of
Lie algebra, given by

adx, (Xi) = [X1,X1] =0

adx, (X2) = [X1, Xa] = 2X;

adx, (X1) = [X2, X1) = -2X;

adx, (X2} =0.
Any representation of a Lie algebra can be extended to
a unique representation on the tensorial product of Lie
algebras. Then we can extend the adjoint representa-
tion just defined to the adjoint tensorial representation
in the following way

(adx @ T+ IT®adx):
ST2)®S8T(2) - ST(2)®S8T(2)

(adx @ I+ I @ adx }(X: ® Xj)
=(adx ® I + I® adx)(X; ® X;)
= (adx (X:) ® IX; + IX; @ adx (X;))
=X, Xi) @ X; + X; ® [X, X;].



GUERRERO, B.: ON THE QUANTUM STRUCTURE OF THE UNIVERSAL ENVELOPING ALGEBRA OF THE LIE ALGEBRA 8T (2). 429

With this adjoint tensorial representation and with one
special r-tensor, r € 8§T(2) ® §T(2), we are able to
define a co-Lie algebra structure.

An element r € ST(2) ® ST(2) defines a Lie bial-
gebra structure if and only if r is skew-symmetric and
[[r,7]] = 0. The equation [[r,7]] = 0 is called the cla-
sical Yang-Baxter equation (CYBE). Moreover if r is a
skew-symmetric element, r is called an r-matrix.

We know that the Lie algebra $7T(2) has only one
r—matrix (see [9}), and that this r-matrix is the tensor

r=X; X3 - X5 ®Xj, (23)

X1, X2 being the basis elements of $7(2). Thus r is
skew-symmetric and satisfies the Yang Baxter equation,

[[r, 7]} = [r12 + ras] + [P12 + T3] + [r13 + rea] = 0.
where
re=X19Xo Q@I -Xo3X, 01
raa=IRX1Xe - I® X ® X
ra=X;R@IX:-X:010X;

Proposition 2.1. The r-matrix
r=X18X;- X8 X,

induces a cobracket on the Lie algebra ST(2) by the
application

d:87(2) = ST(2)®ST(2)
defined by
6(X)=(adx @ T+ IQadx)(r)= X - r,
for X € 8T(2).
Proof. We can show that & satisfies the properties of
a cobracket. For this purpose it is enough to prove that
d satisfies these properties on {X;, X5}, the basis of the
Lie algebra. In those elements, 4 is given by
8(X1) = Xy.r = (adx, @[ +I®adx, )( X190 X2 - X209 X1 )
= —[X1, X2] ® X1 + X1 ® [ X1, X,
=2(X1 ® X2 ~ X2 ® X1),
§(X2} = Xp.r = (adx, ®I+I®adx, )(X18 X2~ X2®X1)
= [X2, X1]® X2 — X, ® [ X2, X1] = 0. (2.4)

Then § satisfies the following cobracket properties over
{X1, X2}

(DIFSX) = X ® X, then
X,‘@Xj:—Xj@Xi for all i, j.

(2) 4 satisfies the associative property,
(id®d)od—(d@id)cd=0.

(3) 4 is one 1-cocycle, that is, & satisfies

([ X, X;1)
= (adx, ®I+I®adx, )d(X;)—(adx, R+ I®adx,)d(X;)
= X;.8(X;)~ X;.6(X;) (2.5)

with 4,5 = 1,2 and X;, X; € ST(2).

The proof of these properties is straightforward.
However, since § is defined by an r-matrix we can de-
duce, from Proposition 2.1.2 of (2], that § is a cobracket
on (§7(2}). Therefore (§7(2),4) is a Lie bialgebra.

The Lie bialgebra (ST(2), d) is called a quasitriangu-
lar bialgebra because it is generated by a solution of the
CYBE and triangular bialgebra because it arises from a
skew-symetric solution of the CYBE. This Lie bialgebra
is also called a coboundary Lie bialgebra because the
cobracket 4 is a 1-cocycle.

2.3. The universal enveloping algebra U(S577(2))

Let 8T(2) be the Lie algebra of ST(2) and let
T(ST(2)) be the tensorial algebra of ST(2),

T(ST(2)) = ®nx0T™(ST(2)) = Bno(ST(2))®"
where

TOST(2) =(ST(2))° =k, T'ST(2) = (ST(2)),

THST(2)=(ST2)) @ (ST(2)® -+ & (ST(2)).

The universal enveloping algebra 2/(S7(2)) of the Lie
algebra ST(2) is the associative algebra,

U(ST(2)) = T(ST(2)/Z,
where 7 is the ideal of 7(S7(2)) engendered by
18X —Xo® X, - 2X,, X1, X2 € 5T7(2).
with the product given by the recurrent operation,
(XTXINXTXS) = X7 X Xo X5 XD X
= X" 712Xy + X X)) X3 XP XS
=2XPIXPXT XS + XP T X X XPTIXP XS

Note 1. It is known that a universal enveloping alge-
bra U(G) of the Lie algebra G is a Hopf algebra (see [2],
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[11], [15], [16]) with the linear applications A, € and §
defined on the basis of G by

AX) =X @T+I0X;, i=12,...
(X)) =0, i=1,2,...
Sh=1I, S(X)=-X;, i=1,2.

Then U(ST(2)) is a Hopf algebra with the operations
just defined.

Note 2. It is known that a cocycle on G induces
a co-Poisson structure in the universal enveloping alge-
bra U(G), (see [3], [4], [6], and proposition 6.2.3 in [2]).
Then the cobracket induced by ¢ in (2.4) satisfles the
following cobracket properties on U(ST(2))

(1) Compatibility between 6 and A,
6(X: X;) = 6(Xi)A(X;) + A(X,)6(X;).
(2) Co-Jacobi identity, that is 4 satisfies the co-chain

65000 ge0as 560606

where ¥ means the sum over permutations of the
factors in the triple tensor product.
{3) Co-Leibniz identity,

(A®id)§ = (id ® §)A + 033(d @ id)A

where o33 means the permutations of the last two
elements in ST(2) @ ST(2) @ ST(2).

Thus, from Note 1 and Note 2, we can infer that the uni-
versal enveloping algebra U(ST(2)) of the Lie algebra
8T(2) is a Hopf co-Poisson algebra with the coproduct
A, the counit £, the antipode S and the cobracket 4.

These applications are defined on the generators X, X
by

AX)=Xi@T+I®X;, i=1,2;
E(Xl')=01 i=12;

S(X)=-X;, i=1,2; (2.6)
5(X1) = 2(X1 X —Xo® Xl)
J(XQ) =0 )

which are extended to the elements of the algebra
U(ST(2)) by the following commutative diagram

G ——T(9)

U(g)

2.4, The Quantum algebra U,(ST(2))

The quantum enveloping algebra Up(S7(2)) of the
Lie bialgebra (87(2)) is a quantization of U(ST(2))
when (57 (2)) is considered as a co-Poisson-Hopf alge-
bra. It means that (§7(2)) has a quasitriangular struc-
ture(see {4]). Since the bialgebra (§7(2)) has a qua-
sitriangular structure we need work with exponential
functions, it means that we should work over the ring
R[[k]] of the formal series in h.

In order to build a quantization of U{S7(2)) we con-
sider the Lie algebra U(ST(2))[[A]] = Un(ST(2)) of for-
mal power series in R[[A]] with coefficients in U(ST(2)),
generated by X1, Xo, I with the defining relation

thz _ e—th
[X1, Xoln =2 P Sp——
and

(X, Xi]ln=0, for ¢ =1,2.

We must prove that U(ST(2))[[h]] with this new
product, has a Hopf *-algebra structure, so that when
h — 0 the coalgebra structure of U, (ST(2)) coincides
with the bialgebra structure of S7(2).

- We shall find appropriate expressions for the co-
product Ay, the counit ¢, and the antipode ‘applica-
tion Sy defined on U(ST(2))[[h]]. For this purpose we
take Ay as the deformation of co-proctuct A defined on
U(ST(2)). Let be A, the linear aplication

Ap :UR(ST(2)) — Un(ST(2)) ® Un(ST(2))
defined hy

A=A+ ga + O(h?) (2.7)

such that lim,_yq Ay — A. Here § is the cobracket
(2.4) and h is the parameter of the deformation. The
map Ay in X;, X; is given by

Ap(X1)=X1 @I +hX2)+ (I - hX2) @ X,

Ap(X2) =X, I+ I®X,. (2.8)
Since (I + hX;) and (I — hX,) are functions in
U(ST(2)}{[h]] we can write more generally,

An(X1) = X1 ® f(h) + g(h) ® Xy

Ar{X2) = X2 ® f(h) + g(h) ® X;. (2.9)

and since we must have limy—9 Ay = A, f and g must
satisfy

hlgl))o flhy=1, hlﬂlog(h) =1
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For these two functions we have:
Lemma 2.1. For any choice of f and g, the application
Ap : Un(8T(2)) — Un(ST(2)) ® Un(ST(2))

whereas

[AR(X1), Ar(Xa)] = An(X1)Dr(X2) — An(X2)An(X1)

defined by (2.9) is an homomorphism of Lie algebras.
Proof. In fact A, satisfies
An([X1, X2]) = [Ar(X1), Ar(X2)] (2.10)

= (X1 @ f(h) + g(h) ® X1)(Xa2 ® f(h) + g(h) ® Xz2) — (X2 ® f(h) + g(h) ® X3)(X1 ® f(h) + g(h) ® X1}
= (X1 Xz ® f(h) + g(h) ® X1 X2 + X1 @ f(R) X2 + g(h) X2 ® X;)

— (X2X1 ® f(h) + g(h) ® Xa X1 + Xog(h) ® X1+ X; ® X2f(h))

= (X1X3 — X2X1) ® f(h) + g(h) ® (X1X2 — X2X4)

= [X1, X2] ® f(h) + g(h) ® [ X1, X3] = Aa([X1, X3]).

Lemma 2.2. The application Ay, defined by (2.9} is
coassociative if and only if f and g satisfy

An(f)=Ff®F Anlg)=9®9g

Proof. We must proof that A, satisfies

(Ap @ 1d)AL(X) = (id @ Ap)AR(X) (2.11)
if and only if, f and g satisfy
An(f)=f®f, Anlg) =90y (2.12)

In fact, the right-hand side of (2.11) takes the form
(Br ®id)An(X;) = (Ap ®@1d)(X: ® f(h) + g(h) @ X)
= An{X:) ® f(R) + An(g(R)) ® X;
=X; ® f(h) ® f(h) + g(h) ® X; ® f(h)

+8n(gh))®X; (i=1,2)
and the left-hand side of (2.11) takes the form
(id ® Ap)AR(X:) = (id ® Ap)(X: ® F(R) + g(h) ® Xi)
= Xi ® An{f(R)) + g(h) ® An(X;)
= Xi ® Ba(f(h)) + 9(h) ® (X: ® f(R) + g(h) ® X;)
= Xi @ Oa(f(h]) + g(h) & X ® f(h)
+g(h) @ g(h) @ X;

We see that this two expressions are equal if, and only

if,

An(f(h)) = f(h) ® f(h) and Ax(g(h)) = g(h) ® g(h)

If we take the application

Ep tU(ST(2)) = R,
defined by

en(X1) =en(Xa2) =0, (2.13)

then gy, is a counit for the application A, in (2.9), that
is, Ay and &5 satisfy

Ap(id®@e) = Ap(e @id)
trivially. We can infer from Lemmas (2.1} and (2.2) that

the map Ap in (2.9), with gy, in (2.13), is a co-product
on the space U (ST'(2)). Besides, if we consider the map
4 in (2.4) extended on U, {ST(2)) we have the following
assertion:

Proposition 2.2. The space Un{ST(2)) generate by
X1,X2 is a Lie bialgebra, with the coproduct Ay the
counit £, and the cobracket § define by

Ap(X1) = X1 © f(h) +9(h) ® X,

Ap(X2) = X2 ® f(h) + g(h) @ X»

Eh(Xl) = Eh(Xz) =0 (2.14)
§X1)=2(X1 ® X2 - X2 ® X))
§(Xz) =0

where f and g are functions that satisfy the following
properties:

hli_r}nof(h) =T, hli_r)nog(h) =1
Anlf)=Ff@flnlg)=g®yg.

Proof. Since that U),{ST(2}) is a co-algebra with Ay, €,
to prove that it is a Lie bialgebra it is enough to show
that & is the cobracket on U, (S7(2)). That is, we must
prove that 4 satisfies cobracket properties (see Note 2).
In fact, since 6{X3) = 0 we have that § and A, are
compatible, that is, they satisfy trivially

(X X;) = 8( X)) An(X;) + An(Xi)o(X;) . (2.18)
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Since the co-Jacobi identity,

¢6-cec®og080 Sgngeg

does not depend of Ay, when we extend & over
Un(ST(2)), & satisfies this property.

Likewise, § satisfies the co-Leibniz identity ,
(Ah ® id)& = (’id@ 5)Ah + 0’23(6 & id)Ah s (2.16 )

where 093 means the permutations of the last two el-
ements. Since §(X2) = 0 the identity is zero for Xj.
While for X, the left side of (2.16) becomes

(An ®id)6(X1) = (An ®id)2(X1 © X3 — Xa ® X3)
= 2An(X1) ®1d(Xz) — An(Xa) ®id(X1))
=2(X1® f(h) + g(h) ® X1) ® X2 — (X2 ® f(h) + g(h) ® X3) ® Xi)
=2X10f(h@Xa+9h)@ X1 98X, - X ® f(R)® X1 — g(h) ® X; ® X3)

and the right expression becomes

(id ® 8)An(X1)+0o23(8 ® id) An(X1) = (id ® 6)(X1 & f(R) + g(h) ® X1} + 023(0 @ id)(X1 ® F(h) + g(h) @ X1)
= X1 ® f(R)6(I) + g(h) ® 6(X1) + 023(8(X1) @ f(h) + g(R)S(I) ® X1)
=29A) @ (X1 @ X2 - Xa®@ X1) 4+ 023(X1 @ Xy — X2 ® X)) ® f(R))
=2(g(h) ® X1 @ Xz — g(h) ® X2 ® X1) + 023(X1 ® X2 ® f(h) — X2 ® X; ® £(h))
=2(gh) @ X1 ® X2 —g(h) ® Xa ® X1+ X1 ® f(h) ® X2 — X2 @ f(h) @ X1).

Therefore U, (ST (2)) has a Lie bialgebra structure with
the bracket [,] in (2.2}, the cobracket § and the coprod-
uct {Ap,e1}.

Since the quantum enveloping algebra is an algebra
over formal power series in k, we can describe it by ex-
ponential expressions such as e"¥X:. To perform this de-
scription we need the following lemma:

Lemma 2.3. The functions on Un(ST(2))
F(h) = %3 y g(h) = X2
satisfy
Ap(ehX2) = ehXz @ ehXz A (¢=hX3) o g=hX2 g =hX2|

Proof. Since A, is linear we can calculate Ay on the
exponential function

to obtain

Ah (th’ ) =

[™]s
2%

Il
o

!(X2®I+I®X2)"

b3

o n n\ b ~
>y (k)gxg‘-:gxg k
n=0 k=0 '
e hk+m
55 T g xp e g i,

k=0m=0

8

In a similar fashion we can prove the lemma for the
function e="Xz_

Thus we can take in (2.14) f(h) = e"¥2 and g(h) =
e~hX2, Therefore, A, is given by

Ap(X)) =X, ®eMX2 42 g X,
Ap(Xy) = Xy @M 4 e X2 g x,
ABn([X1, X3]) = [X1, Xa] @ e"¥2 4 e7X2 @ [ X, X,

Note 3. Since §(X3) = 0 we must take the special
expression for Ap(Xs,). That is

Ap(X1) = X, @eX2 p o7 X2 g X,
Ap(Xz) =X;0I+1® X, (2.17)
A([X1, Xa]) = [X1, Xp] @ e"X2 4 e 77X g [ X, Xy]
In this case d in (2.4) is a cobracket on the U, (ST (2)
that does not satisfy the co-Leibniz identity (2.16).

However, (U, (ST(2), Ap,6,¢,[,]) is still a Lie bialgebra
with Ay, in (2.17).

With Ay, defined in (2.17) we can find an antipode
application on Up(ST(2). Let

Sh : Un(ST(2)) — Un(ST(2))

be this application. Since S5 must satisfy the properties
of the antipode application, it satisfies in particular the
identity

m(Sh ® I)Ah = m(I® Sh)Ah =0

where m is the multiplication on Uy (ST(2)). Thus S,
satisfies the following lemma:
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Lemma 2.4. The application
Sp : Un(ST(2)) — U, (ST(2))

defined on the Lie bialgebra (Uy(ST(2)}, An, &, 8) sat-
isfies

m(Sy, @ 1Ay = m{I ® 5,)A, =0, (2.18)
if, and only if,
Sh(Xy) = —ef X2 Xe7?X2 | G (Xy) = —X, . (2.19)
Proof. The left-hand of (2.18) in X, takes the form

m(Sh®I)An(X1) = m(Sp®I)(X1®e ¥ +e " X20 X))
=m{Sp(X1) ® e"¥2 + Sy (e X2) © X;)
= Sa(X1)e" 2 + M X2 X =0

Thus
Sh (Xl) — _th2Xle—hX2
In the same way we can obtain Sy(X,) = —X;

Now we must prove that S, defined in (2.19) is the
antipode application on U, (ST (2)).

Lemma 2.5, The application S
S Un(ST(2)) — U(ST(2))
defined on {X;, Xz} by

Su(X1) = M Xie M2 L 8,(X) = — X,

is an antipode application on Un(ST(2)).
Proof. In fact, S, satisfies the following properties

m(S, @ I)Ap =m(I® Sp)AL =0,
SnlX1, Xaln = —[Sh(X1), Sa(X2)]n ,
[Xi, Su(Xi)lp = [Sa(X:), Xiln, for i=1,2.

The first property is the property (2.18), which we used
to find 5, (X1) and Sp(X3); thus S, satisfies this prop-
erty for X;,X3. The second property is obtained as a
result of the following two expressions

hX —hXq

?—e

(X, Xaln = $ (2 "
e-hxz _ thz

ehXz _ g—hX3

eh — e—k :

=2

= -2

[Sh(X1), Se(Xo))h = [-"¥2 X e™%2, — Xy,

hX —hX
=€ 2[X1, Xg]he z
hXy _ e—th

hX2p5E ~hX3
=e 2 €
( eh — e~k )
2th2 _ e-hX2
TET R ek
where we have used that S(e"*2) = ¢ hX2 apnd

S(e~"X2) = "X from the definition of the exponential
function. In the same form we prove the last property
of antipode,

[X1, Sn(X)ln = [X1, —eM¥2 X e 0X2),
= __th2 [XI,XI]h e—-th =0.
[Sh(X1), Xi]n = [-e*¥2 X167 "% X1],

=—e"X2 (X, X)) e * X2 =0 .

The Lemmas (2.4) and (2.5) complete the proof of
the following proposition:

Proposition 2.3. The algebra Uy,(ST(2)) generated by
X1, X5, I with the operations defined by

ohXz
B, Xaln =25 =5
Ap(X1) = X) @ e 4 e X2 g X
Ap(X2)=Xa01+1I® X,
Ap(IX1, Xo]) = [X1, Xp] @ "2 3 @[ Xy, Xy
en{Xh1) =en(X3) =0
Sh(X)) = —e" X2 X e~ X2
Sn(X2) = 8(X3) = - X,.

has the structure of a Hopf algebra.

Since when h — 0, the coalgebra structure of
Un(ST(2)) coincides with the bialgebra $77(2).

Finally, we verify the *x—algebra structure.

Proposition 2.4. The algebra Uy, (ST(2)) is a Hopf
*—algebra with X; = X}, X, = X3 .

Proof. Let ¥ : X; — X}, i = 1,2 be the involution.
Then the operations defined in the proposition (2.3) are
*—algebra maps. In fact, we have

(thQ)* — thz

¥

(e—hxzjm — e—th
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then
hXz _ e—hX:

* b €
IX]_aXQ]h e [XlaX2]h =2 —?;—_—e_h—

Xz _ g—hXa\* .
=2 (_e’:?) = [X1, Xal}

Similary we can see that A and € are »-algebra maps.

Because of propositions (2.4) and (2.3) we can affirm
that the Hopf algebra U, (ST (2)) is the quantum group
of the universal enveloping algebra U{ST(2}).
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