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Se propone una rápida estrategia práctica para estimar datos faltantes en series tempo­
rales que obedecen a modelos ARIMA de orden bajo y cuya longitud es mayor que la que 
soportan programas de cómputo estadístico. La metodología propuesta se basa en la idea 
de identificar el modelo para la serie a partir de sus subseries. Para obtener estas subseries, 
un número mínimo de datos después de una observación faltante se deduce para lograr una 
estabilización numérica de su predicción recurrente. 
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Abstract 

A quick practica) strategy is proposed for estimating missing data in time series that obey 
low-order ARIMA models and whose length is greater than that supported by current sta­
tistical computer programs. The proposed methodology is based on the idea of identifying 
the series model from subseries of it. For obtaining the subseries, a minimal number of data 
after a missing observation is deducted for achieving numerical stabilization in its recursive 
prediction. 
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1 Departamento de Estadística, Universidad Nacional de Colombia, Bogotá. e- mail: fnietomatematicas.unal.edu.co 
2 IDEAM, Bogotá, Colombia. 



412 REY. ACAD. COLOMB. CIENC.: VOLUMEN XXVI, NÚMERO 100-SEPTIEMBRE DE 2002 

l. Introduction 

Sometimes, we are faced with the problem of estimat­
ing missing observations in very long t ime series. This is 
the ca.se for example of the daily flow of a river in which 
we can have more than 10,000 observed data (more than 
30 years) with many missing observations. Efficient sta­
tistical estimation of these missing data is important 
because, in doing so, we can get official complete data 
bases and then users in the agricultura!, environmen­
tal, and natural resources fields can fit statistical models 
with severa! related variables without losing information 
in these variables. 

At present, we do not have a commercial statistical 
computer program for solving numerically the problem 
quoted above using, for example, Gomez and Maravall 's 
[6] efficient methodology. This is due basically to mem­
OJ:y restrictions for handling simultaneously ( 1) model 
identification in the presence of missing data, (2) exact 
maximum-likelihood estimation of the model parame­
ters taking into account the missing observations, and 
(3) interpolation of the missing data using additive­
outlier-model ba.sed approaches. One of the most ap­
pealing programs for doing this task with time series 
data is TMMO (Gomez and Maravall, [7]) but the 
program only permits a length of at most 2000 data. 
In terms of daily data this represents about 5.5 years 
and, for instance, this cannot be enough information in 
hydrological contexts. In what follows, the word long 
will be used in the sense that the time series length is 
greater than the maximum permitted by ali the current 
programs for analyzing time series with missing obser­
vations. 

Of course, this computing problem does not exist if 
one has at hand a powerful computer where whatev­
er computer program that estimates missing data can 
run with long time series without memory restrictions. 
Thus, at lea.st two ways for solving this problem are: 
(1) to find an appropiate machine and develop the actu­
al programs for it, or (2) to develop a prompt rea.sonable 
solution ba.sed on the actual programs. At agencies or 
institutions that everyday have to deal with data analy­
sis and need quick strategies, the second alternative is 
appealing. 

Recently, Delicado and Juste! [4] solved the aforemen­
tioned long-time-series problem using essentially (1) a 
"natural" interpolation approach for completing the se­
ries in order to identify and estimate an ARIMA model 
and (2) the dual autocorrelation function of this model 

for interpolating the time series. Sorne eventual draw­
backs could appear in Delicado and Justel's work. Since 
the "natural" interpolation consists in using means as 
preliminary estimated values for missing data, the iden­
tified model could be not appropriate if each subseries 
of the true one is nonstationary. As a consequence, one 
could obtain inefficient model parameter estimates using 
the "complete" series in place of the uncompleted one. 
For this last ca.se, the appropriate procedure is that of 
Gomez and Maravall [6]. Since the dual autocorrelation 
function needs to be truncated when the model contains 
an MA factor, the interpolations obtained with this too! 
could be suboptimal as indicated by Nieto [8], especially 
if one has missing observations at the ends of the series. 
The appropriate way is using smoothing as indica ted 
by Gomez and Maravall [6]. Obviously, with relatively 
few missing data, no missing observations at t he ends, 
and a computer package that handles long t ime series, 
Delicado and Justel's approach is appealing. 

In this paper, we propose a practica[ strategy for an 
adequate use of Gomez and Maravall's [6] methodolo­
gy for estimating missing data in long time series which 
obey low-order nonseasonal ARIMA models, as is the 
case for hydrologicaljmeteorological daily data. Essen­
tially, the strategy consists in splitting t he long series 
into subseries for (1) identifying the model, (2) estimat­
ing its unknown parameters, and (3) interpolating the 
missing observations. This is an idea that was also used 
by Po litis et al. [11] in the solution of an economet­
ric problem and by Tong and Lim [12] for identifying a 
threshold a utoregressive model. 

In Section 2 we present sorne basic theoretical and 
numerical results that are the basis for the practica! 
methodology developed in Section 3. Section 4 includes 
simulated and empirical examples for illustrating the 
proposed practica! approach. Finally, Section 5 con­
cludes. 

2. Sorne theoretical and numerical results 

2.1 Theoretical background. Let us assume that the 
stochastic process { Zt} follows the ARIMA model 

</)(B)o(B)Z1. = B(B)at , 

where </J(B) , o(B), and B(B) are finite polynomials in 
the lag operator B, and { at} is a zero-mean Gaussian 
white noise process with variance a 2

. </)(B) conta ins the 
stationary roots, and o(B) = 1 - 81B - ... - ódBd con­
ta ins the possible unit roots so that {Wt} = {o(B )Zt} 
is a stationary process. 
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Suppose now that { Zt} has been observed from t = 1 
up to t = T and that there are k missing data in the 
sample at time points m(l), ... , m(k) with d < m( l ) < 
... < m(k). Let us label the t ime points after t = d 
where there are observed data as t(l), ... , t(r) = T with 
r = T - d - k. Let P 1Zm(l), l = l, ... , k, be the best 
linear predictor (BLP) of Zm(l), in the sense of mini­
mum mean square error (MMSE), given the variables 
Z 1, .. . ,Zd,Zt( i),···,Zt(j), where j = l , ... , r [see Catlin [3] 
or Brockwell and Davis [2] for a formal definition of 
BLP]. Gomez and Maravall [6] and Nieto [9] have ob­
tained exact recursive formulas for computing P1 Zm(l) 

which are based only on the finite observed sample. We 
shall a lso use this finite-sample context here. 

In the Appendix, we show that the sequence 
{ Pj Zm(l)} is mean-square convergent where l is fixed 
and j varies in such a way that t(j) > m(k) + d. Conse­
quently, {PjZm(l) - Pj-1Zm(l)} converges to O in mean 
square as j ----, oo. This is an important result for set­
ting numerical stopping criteria in practice. That is, for 
establishing a minimal number of data after m(k) + d 
for which { Pj Zm(l)} stabilizes. 

The rate of convergence towards zero of { Pi Zm(l) -

Pj-iZm(l)} depends on the autocorrelation structure of 
{Wt} (see Nieto, [9]) or, equivalently, on the ARMA pa­
rameters of { Wt}. Sin ce it is very difficult to determine 
this dependence by analytical means, we concentrate on­
ly on nonseasonal invertible ARIMA(p, d, q) models with 
p, q s; l and d s; 2, to analyze this kind of problem and 
we shall proceed vía simulation. For future reference, 
these ARIMAs will be called low-order models. 

Remark. The difficulty of finding the dependence of 
the predicted missing value on the autocorrelation struc­
ture of {Wt} is due to the finiteness characteristic of 
the time series. In the case of infinite samples, an ideal 
theoretical situation, it is known that this dependence 
is determined by the Dual Autocorrelation Function of 
the process { Wt} [Peña and Maravall [10])]. 

The reasonableness of using low-order models comes 
from the facts that ( 1) it is very difficult to have the usu­
al assumptions behind seasonal models (Brockwell and 
Davis [2]) fulfilled by daily data, especially hydrological 
data, (2) practice indicates that, for example, daily hy­
drological or meteorological series are well described by 
ARMA(p, q) models where p, q are not very large, (3) 
practice also shows that for interpretation~l purposes, d 
must be less or equal than 2 , and (4) the simulation 
study carried out in the next subsection can be easily 
imitated for more general models, if necessary. 

2.2 Simulation results. The interest now is in deter­
mining a minimum value of j for which t he sequence 
{ Pj Zm(l)} stabilizes quickly, independent of the auto­
correlation structure of the process { W t}. That is, 
given é > O small enough, determine j,: such t hat 
IPjZm(l) - P j -1Zm(l)I < € for ali j > ],: . Without loss 
of generality, we consider only the case k = 1. This 
task will be done via simulation and, with that end, we 
design the experiment in the following way: 

Following the survey-sampling idea of obtaining a 
maximum sample size for estimating a population pro­
portion given a pre-established margin of error, we put 
d = 2 and m(l) = 3 (the extreme case) . Taking in­
to the account the dependence between the missing­
value predictor and the autocorrela tion structure of 
{ Wt}, we consider the following ARl\!IA parameter 
values: (i) if p = 1 and q = O, we take 1> = 
0.1 , 0.2 , 0.4, 0.6, 0.8, 0.9; (ii) if p = O and q = 1, we 
put 0 = 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99; and (iii) for 
p = q = 1, we use pairs ( 1>, 0) with 1> in the set of (i) 
and 0 in the set of (ii). 

Of course, a more refined partition of the parameters 
space could be considered, but, as was indicated by t he 
simulation results, this is not necessary. 

Since in computing PjZm(I) the white noise variance 
a 2 is dropped out and in calculating its MSE it becomes 
a scale factor (Nieto, [9]), we set a 2 = 1.0 in the sim­
ulation process. The basic results for the MA(l ) and 
ARMA(l ,l ) models are presented in Tables 1, 2, and 
3 where the entries are the minimal values ]€ for cor­
responding val u es of é and 1> or 0. In t he AR( 1) case, 
we found that if é = 10- 6 , j ,: = 3 for a li 1> in the set 
considered, and for é E {lo- 3 , 10- 4, 10- 5 }, we obtained 
]€ = 2 for a li q>. Ali the nurnerical results were obtained 
using the Fixed Point Smoother algorithm developed by 
Gomez and Maravall [6], which is theoretically equiva­
lent to Nieto's [9] procedure. 

The interpretation of the results for the MA(l) and 
ARMA(l , 1) models is the following. In Table 1, if we 
fix é , j 0 increases when 0 increases and la rge val u es are 
obtained for 0 very close to l. Similarly, if we fix 0 and 
let é decrease, j€ increases, as expected, a lso with la rge 
values when 0 is close to l. Although we only include 
values of 0 ~ 0.5, the previous observation is valid for 
ali 0 in the set considered. 

For the ARMA (l ,l) model, Table 2, we found that 
relatively few data are needed for achieving numerical 
convergence in the sense that 9 s; j 0 s; 17 for é in the 
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set { 10- 3 , 10- 4 , 10- 5 , 10-6 } and for ( </>, 0) in the range 
considered. 

The dependence of ji'. on </> is stronger than on 0 and 
this parameter has influence on ji'. when this value is 
compared to the corresponding one for the AR(l) mod­
el. We note that, for space limitations, a li the values of 
0 were not included; however, the pattern observed in 
the table is the same that we found for a li 0 considered 
in the simulation. Additionally, we can see that curious­
ly there are "discontinuities" in ji'. at points (0.1, 0.4), 
(0.6, 0.8), and (0.9, 0.4) where its values are respectively 
3, 1, and l. In Table 3 we summarize the results pre­
sented in Table 2 where each entry is tbe maximum of 
ji'. over 0 fixing </> and é . 

In general terms: (i) If the true low-order model for 
the process {Wt} contains an AR factor , we need a num­
ber of data between 9 and 17, after point m(k) + d, to 
get a precision greater or equal than 10- 6 . (ii) In a 
drastically contrary way, if the model is MA(l) with 0 
very close to 1, we need about 868 observations after 
m(k) + d to get a precision of about 10-5 in the missing 
data predictions. For a reasonable 0 S 0.9 and toler­
ance 2': 10- 6 , this figure decreases severely to about 104 
data. Of course, true values of 0 near to 1 can induce 
invertibility problems in practice or possible overdiffer­
entiation of an observed series. 

The practicétlly important point deduced from these 
results is this: in the absence of any kind of knowledge 

about the mathematical form of the model, except that 
it is low-order with 0 S 0.9, we should take the number 
of data ji'. between 39 and 104, after the point m(k) + d, 
for obtaining numerical convergence of the sequence of 
missing data predictions with a precision é between 10- 5 

and 10- 3 . For example, for a precision of about 10- 4 , 

60 data is a reasonable value. 

3. The proposed practical methodology 

Let n be the maximum number of data that a statis­
tical package for estimating missing data in a t ime series 
supports. Let { z1 , ... , zr}, T > n, be the observed time 
series from the stochastic process { Z1} which obeys the 
low-order ARIMA model given in Section 2. 

Now, we divide the given time series into the subseries 

where 1 < T1 < ... < TK- 1 < TK = T. The cut 
points T1, ... , TK - l are chosen in such a way that (i) 
T - Tj-l S n for ali j = 1, ... , K , with To = 1, and (ii) 

• the numerical result obtained in the last section is sat­
isfied in the sense that if there exists Ji E {1 , 2, ... , K} 
for some i E {1,2, ... , k} such that m(i) < T1;, then 
Tf; 2: m( i) + d + ji'. for sorne pre-established ji'.. The 
purpose is to identify the ARIMA model from these K 
subseries, taking into account that, in practice, d ifferent 
subseries can lead to different identified models. 

Table l. Simulation results for the MA(l) model; the values of ji'. in the entries 

0 

é 0.5 0.8 0.9 0.95 0.99 Marginal maximum 

10- 3 8 21 39 66 183 183 

10- 4 11 31 60 111 409 409 

10- 5 15 42 82 156 638 638 

10- 6 18 52 104 201 868 868 
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Table 2. R esults of the ARMA( l ,1) model, with values of jé in the entries 

€ 

<P 0 10- 3 10- 4 

0.1 0.2 9 11 
0.4 3 11 
0.6 9 11 
0.9 9 11 
0.99 9 11 

0.2 0.4 7 11 
0.6 8 11 
0.9 8 11 
0.99 8 11 

0.4 0.2 7 9 
0.6 7 9 
0.8 7 9 
0.9 7 9 
0.99 7 9 

0.6 0.2 7 9 
0.7 7 9 
0.8 1 9 
0.9 6 8 
0.99 6 8 

0.8 0.2 7 9 
0.4 7 9 
0.6 6 8 
0.9 6 8 
0.99 6 8 

0.9 0.2 7 9 
0.4 1 9 
0.6 6 8 
0.8 6 8 
0.99 6 8 

Marginal maximum 9 11 

Since each subseries contains information, in the 
Kullback-Leibler sense [see Brockwell and Davis [2] for 
the meaning of this concept], about the true underly­
ing probability mechanism, it seems reasonable to hope 
that one can gain information about a global statistic 
by evaluating it on ali the subseries (or "subsamples") 
and then combining optimally the marginal statistics to 

10-s 10-6 

15 
15 
15 
14 
14 
13 
13 
13 
13 
11 
12 
12 
12 
12 
11 
11 
11 
11 
11 
11 
10 
10 
10 
10 
11 
10 
10 
10 
10 

15 

17 
17 
17 
17 
17 
16 
16 
16 
16 
14 
14 
14 
14 
14 
13 
13 
13 
13 
13 
12 
12 
12 
12 
12 
13 
12 
12 
12 
11 

17 

obtain the global one. This is the philosophical princi­
pie under which Politis et al. developed their paper and 
the combining-forecasts practice is performed. A similar 
idea was also used by Tong and Lim [12] for identifying 
threshold autoregressive models. Nevertheless, the the­
oretical formality of our approach will be investigated 
in future work. 
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Table 3. ARMA(l,l)model summary; values of jó in the entries 

</> 

€ 0.1 0.2 0.4 0.6 0.8 0.9 

10-3 9 8 7 7 7 

10- 4 11 11 9 9 9 

10- s 15 13 12 11 11 

10-6 17 16 14 13 13 

The strategy is the following: 

Stage l . Model Identification. 

We firstly examine the assumption that { Zt} obeys a 
low-order ARJMA process proceeding as follows: 

A. With an automatic identification procedure ap­
plied to each subseries we obtain its respective model 
and its Bayesian Information Criteria (BIC). 

B. If low-order models are the most frequent ones, 
then we accept our assumption a nd continue with step 
C. Otherwise we stop the proced ure because our method 
is not applicable. 

C. Among the low-order models, select the most fre­
quent one as the appropriate model for the whole process 
{ Zt}. If there are two or more models that have the 
same high frequency of occurrence, choose among them 
the model with the lowest number of missing data. If 
this number of minimal missing data is shared by sever­
a! of these models, choose the model with the mínimum 
BIC. 

Stage 11. Interpolation of the series. 

D. Interpolate each of the K subseries with the mod­
el identified in STAGE I, reestimating firstly the model 
parameters in each case. Now, if there exists a subseries 
for which was impossible to choose a cut point with the 
condition indicated above, the last missing data in that 
subseries must be reest imated using step E below. 

E. From the whole series { z1, ... , zr} , obtain n-data 
subseries centered a t the points T;, for which the corre­
sponding is are such t hat T;.; < m(i) + d + j ó. Within 
these subser ies make the interpolation as in D. 

7 

9 

11 

13 

Marginal maximum 

9 

11 

15 

17 

R emark. Step E is justified by the following. Predic­
t ion of a missing observation before sorne T;, far which 
the numerical-convergence criterion is not satisfied , is 
suboptimal because its predictor is not using the mini­
mal number of data deduced for such purpose. In using 
Step E, we are including addit ional data in the t ime pe­
riod [T; + 1, T;+1l, although it can happen that they are 
not still enough for satisfying the minimal requirement 
for convergence. Nevertheless, this last estímate is more 
efficient than that obtained in Step D. 

4. Sorne examples 

Example l. We simulate an ARJMA(l ,1,1) model with 
parameters </> = 0.5, B = 0.8, a 2 = 100, and without 
constant. Program RATS (Doan, [5]) was used with 
seed 14600 and the initial condition z1 was generated 
with a N(0,1) d istribut ion. To obtain z2 we used Bell's 
[1, Theorem l ]. The length of the simulated series was 
T = 14600, that is, approximately 40 years in terms of 
daily data. 

With n = 600 and € = 10-4 (jó = 60) we obtained 
24 subseries from the simulated series and the results 
obtained from STAGE I, using TRAMO, were the fol­
lowing: (i) transformation of data was not identified, 
(ii) except in a subseries, we do not identified constant 
for the model, and (iii) the simulated model was identi­
fied with a frequency of 66. 7%. Ali the identified models 
were low-order. 

To illustrate the adequateness of the methodology in 
the missing data case, we take out sorne data in 13 sub­
series. T he mínimum number of missing data considered 
was 5 and the maximum 17. The identified model was 
again the simulated one although less frequent than in 
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the complete data ca.se. Again, ali the ARIMA identified 
models were low-order. 

Example 2. Here we consider a real data application. 
The series consists of 7639 daily observations of the Mag­
dalena river flow in Colombia made at El Contento sta­
tion. This type of data is assembled by IDEAM, the 
Colombian official agency for hydrological and meteo­
rological studies and can be obtained from the authors 
upon request. The series contains 1439 missing data 
(about 19% of the sample size) which are spread on ali 
the series. Actually, it is known in the literature that hy­
drological/meteorological time series are well described 
by stationary nonlinear models (Tong, [13]). However, 
in this example we are going to transform the data to 

get sorne degree of linearity in arder to use the proposed 
methodology. 

Using the automatic model identification procedure 
implemented in TRAMO, a log transformation and a 
differentiation were suggested by the data. Here, we 
must be cautious in intei:preting these transformations. 
What they are meaning is tllat the relative changes of 
the series are approximately linear; hence, this is the 
objective series to be analyzed. Since the data are orig­
inally stationary, we obtain an overdifferentiation of the 
time series, which, in terms of parameter estimation, is 
not a serious problem when the process is ergodic. It 
is not the case that this differentiation indicates a unit 
root in the original data, which would not make sense 
in a hydrological flow time series. 

Table 4. ldentified models for the subseries in the real- life example 

Subseries No. Size Model BIC 

1 600 (1,0) 9.13 
2 600 (1,2) 9.03 
3 533 (1, O) 9.30 
4 600 (1, O) 9.50 
5 527 (1, 1) 9.15 
6 578 (1, 1) 9.70 
7 488 (1, O) 10.20 
8 600 (4, O) 10.56 
9 526 (4, O) 9.82 
10 600 (1, 1) 9.50 
11 600 (O, 1) - 5.89 
12 600 (O, 1) 9.72 
13 583 (1, O) 8.92 
14 204 (1, 1) 9.02 

Table 4 presents the basic results about the identified 
model for the whole transformed series. We can observe 
that 86% of the models are low-order and that, among 
them, the ARMA(l,0) model was the most frequent one 
(36% of the times). Because of subsampling variability, 
two no low-order models (14%) were identified. Based 
on these results , our decision is not to reject the as­
sumption of a low-order ARMA model for the relative 
changes of the time series and to pick up the ARMA(l ,0) 
as the appropriate model for it. With this model we in­
terpolate the missing values in each subseries using the 

No. of miss.data 

o 
89 
59 
90 
90 
152 
242 
301 
91 
87 
o 

121 
93 
24 

additive-outlier approach, where possible, or the skip­
ping approach (fixed point smother) both implemented 
in TRAMO. 

5. Conclusions 

We have developed a quick practica! approach for es­
timating missing data in time series which (i) have a 
length greater than that supported by current statisti­
cal computer programs and (ii) are supposed to follow 
an ARIMA(p, d, q) model with p, q ::; 1 and d ::; 2; as is 
the case for example of daily hydrological data. 
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Using a simulation study, we have found that, inde­
pendent of the correlation structure, a number of data 
between 39 and 104 after the last missing observation is 
adequate for achieving (numerical) convergence in the 
seque11ce of missing data predictors with a precision be­
tween 10-6 and 10-3 . This number of data increase if 
the desired precision increase or the moving average pa­
rameter is close to 1. The study can be imitated for 
solving the same problem in higher order models. 

The proposed strategy identifies the model for the 
whole series from identified models for subseries of it, 
which is necessary for computing the missing data es­
timates. For splitting the series, we use the numerical­
convergence result mentioned above and as the global 
model, the most frequent among the low-order identi­
fied models. In future research, this identification-model 
procedure will be formalized by means of a statistical 
test for the null hypothesis that a given series obeys a 
low-order ARJMA model. 

Acknowledgments 

This is a substantially improved version of a consult­
ing job about the topic, that the first author carried out 
for IDEAM under contract 037 /98. The authors grate­
fully thanks Emperatriz Español at IDEAM and Fer­
nando Martinez and Javier Forero (students of the un­
dergraduate Statistics program at Universidad Nacional 
de Colombia) for the benefit of discussions on the top­
ic. Additionally, they also acknowledge Professor Jairo 
Charris for a useful suggestion about the mathematical 
result in the Appendix. 

Appendix 

Proposition. The sequence oí predictors { Pj Zm(l)} con­
verges in mean-square to the BLP oí Zm(l) based on 
Z1, .. ,,zd,Zt(l) , Zt(2), .. -,Zm(k)+l, ... 

Proof. Let 

S = sp{Z1, .. -,zd,Zt(l}, Zt(2) ,·" ,Zm(k}+l ,·"} , 

where sp denotes the closed span of a set of ran­
dom variables . See Catlin [3] or Brockwell and 
Davis [2] for this definition. Let P Zm(l) be the 
orthogonal projection of Zm(l} onto S. Following 
those authors, P Zm(l) is the BLP of Zm(l} based 
on {Z1, ... , zd, Zt(l), Zt(2), ... , Zm(k)+l, ... }, which always 
exist and is unique. To show that { Pj Zm(l)} converges 
in mean square to P Zm(l) as j -+ oo we proceed as fol­
lows: 

Let {Y1, .. ,,Yd,Y'i(i),Yt(2), ... ,Ym(k)+1,···} be a or­
thogonalization of the set 

{Z1, ... , zd, Zt(l}, Zt(2), ... , Zm(k)+l, ... } , 

then 
PZm(l) = L E(Y;Zm(l))Y; 

.iE / 

and 
PjZm(l ) = L E(Y;Zm(L))Y; , 

iEI, 

where I = {l, ... ,d,t(l),t(2), ... ,m(k) + l, ... } and 

IJ = {l, ... , d, t( l ), t(2), ... , m(k) + 1, ... , t(j)} 

Hence 

E{(PZm(l) - PJZm(l))
2

} = ¿[E(Y;Zm(l))]2 (Al) 
iE/; 

where J1 is the complement set of IJ· Now, since 
LiEJ[E(Y;Zm(L))]2 < oo, then the right member in (Al) 
converges to O as j -+ oo. This ends the proof. 

References 

[l] Bell, W. R. , Signal extraction far nonstationary time se­
ries. The Annals of Statistics, 120(1984), 646-664. 

[2] Brockwell, P. J_ & Davis, R. A., Time Series: Theory 
and Methods. Sp_ringer Verlag, New York, 1991. 

[3] Catlin, D. E., Estimation, Control, and the Discrete 
Kalman Filter. Springer Verlag, New York, 1989. 

[4) Delicado, P. & Juste!, A., Forecasting with missing data: 
Application to coastal wave heights. Journal of Forecasting, 
18 (1999), 285-289. 

[5] Doan, T. Regression Analysis of Time Series {RATS}, Esti­
ma, Evanston, IL, 1992. 

[6) Gomez, V. & Maravall, A. , Estimation, prediction, and 
interpolation far nonstationary series with the K alman filter. 
Journal of the American Statistical Association , 89 (1994), 
611-624. 

(7) Gomez, V. & Maravall, A., PROGRAMS TRAMO AND 
SEA TS: Instru.ctions far the user, Banco de Espaüa-Servicio 
de Estudios, Documento de Trabajo No. 9628, Madrid, 1996. 

[8] Nieto, F. H., Una nota sobre la estimacion de' datos fal­
tantes en una serie temporal, usando la funcion de autocor­
relacion dual. Estadistica 46 {1994), 85- 103. 

[9) Nieto, F. H. , A note on interpolation of ARIMA processes. 
Communications in Statistics, Theory and Methods 26, No. 
10,(1997). 

[10] Peña, D. & Maravall, A., Interpolation, outliers, and in­
verse autocorrelations. Communications in Statistics: Theory 
and Methods 20 (1991), 3175- 3186. 

[11) Politis, D.Ñ., Romano, J. P., & Wolf, M. , Subsampling 
far heteroskedastic time series. Journal of Econometrics 81 
(1997), 281- 317. 

[12] Tong, H. & Lim, K. S. , Threshold autoregression, lim­
it cycles, and cyclical data. Journal of the Royal Statistical 
Society, Series B, 42 {1980), 245-292. 

(13) Tong, H. , Nonlinear Time Series, Oxford University Press, 
Oxford, 1990. 




