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In this paper we present the solution of the Poisson-Boltzmann equation using the Lattice-Boltzmann method.
In order to obtain the solution, we use a redefinition of tensor °, which is declared as a symmetric tensor
whose diagonal components are chosen as the second derivative in time of the first moment of the distribution
function, and the compenents outside of the diagonal give account of the nonlinear terms. The results are pre-
sented in two dimensions employing the D2Q9 lattice velocity scheme. We obtain results for the scalar field and
its gradient for several kinds of initial conditions.
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RESUMEN

En este trabajo se presentala solucién de la ecuacion de Poisson-Boltzmann utilizando el método de Lattice-
Boltzmann. Con el fin de obtener la solucién utilizamos una redefinicion del tensor 11°, €l cual se declara como
un tenser simétrico,cuyas componentesdiagonales se eligen como la segunda derivada en el tiempo del primer
momentoe de la funcion de distribucion y las componentes fuera de la diagonal dan cuenta de los términos no
lineales. Losresultados se presentan en dosdimensiones empleando el esquema de rejillas de velocidades D2Q9.
Se obtienen resultados para el campo escalar y su gradiente usando varios tipos de condiciones iniciales.

Palabras clave; Ecuacién de Poisson-Boltzmann, 1attice-Boltzmann.

very important in the biological sciences, because of the
principal rele of electrostatics interaction (Luo G., et. al,

The study of Poisson-Boltzmann (PB) equation gives the 2006). The dynamics become more complex when they are

semiconductor equilibrium energy band for heterostructures mixe_:d blomaterials with low dimensional semiconduct_ors
(Lundstrom M. S., Schuelke R. J. , 1982). Also PB it is (Cui Y., et. al, 2001). On the other hand, a few analytical
’ problems_can be solved from weakly charged distributions.

1. Introduction
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Therefore, a lot of work has been done implementing
computational techniques in the solution of PB equation,
e.g., a combination of a Garlerkin discretization method, the
boundary element method, interface methods, a Newton-
Krylov method, finite element methods, lattice-Boltzmann,
ete. For a discussion of the different computational methods
and their efficiency applied to the PB equation the reference
(Lu B, Z. et al., 2008) is suggested.

On the other hand, lattice-Boltzmann (LB) has been applied
with success to many problems in Physics, and in particular,
we find a previous paper (Wang M., Wang J. and Chen S.,

2007) on the application of LB to study effects of cavitation
and roughness in micro-channels for electro-osmotic flows.
Basically, the electric potential and the pressure are
introduced as an external force term in the LB expansion.
Unlike this approach, our work uses the redefinition of M°®
tensor of the distribution function as a way to obtain the PB
equation.

This manuscript is organized as follows. In section (2) we
present the lattice Boltzmann method and the moments of
the distribution. Section (3) shows deduction of the PB
equation using the definition of the 11° tensor. Section (4)
presents the equilibrium distribution function, based on
D2Q9 scheme that gives rise to PB equation. In section (5)
we present results and in section (6) we give conclusions.

2, The lattice-Boltzmann model

This is considered a bi-dimensional model where the
velocities of particles are discretized ‘on the grid into d
directions. The lattice-Boltzmann equation is:

fE+8.8tt48t) — iR ) = 0,2 6) (N

where f; is the probability density function of finding the
group particle £, in the spatial point ¥ and time £ and &t is the
time step. (; is the collision term. It is defined as:

U@E D = -2 (REO - f,E D) @

The collision operator, Eq. (2), is expressed using the
B.G.K. approximation (Bathnagar P. L., Gross E. P. and
Krook M., 1954), where T is the non-dimensional relaxation
time that measures the approaching rated to the statistical
equilibrium. Expanding the left-hand side of Eq. (1) up fo
second order, in a Taylor series, and using & as a time step
unit, we have:
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Assuming the spatial and temporal derivatives as: .

8 [é]

== Comn (4)
3 [i]

3;_833’1 (3)
J _ _a_ 2_“2__

P LT (6)

Expanding the distribution function f; in & perturbative
series:

fi=fFC +Ef + €% (7N
we obtain at first order in £;
——(€f1 )= 6t(8 -+ Sexa + Ee, “j')foi (8)

and at second order in &;

_lezpz _g25p 9 g0 g 8
terf?, —Sﬁtatzfi (s +e.£-2-

Ee, a‘;) fO+ SUET+ eE it Se},a—h)(‘,‘fli (9)
where it is assumed that

£o, = £=4, (10)
Inserting Eq. (8) in Eq. (9), we obtain:
1) = (i x5 * v 7)1+
1) +e (atz) (1

Replacing eq. (9) in (11), we obtain:
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The moments of the distribution function are defined as:

p=Xif° (13)
i=3&f° (14}

O=3iéefe, (15)
Yift =0k>0 (16)
T =0, k>0 (17)
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Also we assume the distribution function f; satisfies the
probability conservation condition with the equilibrium
distribution f*9, such that: '

o fO1, = Bito f" (18)

3. The Poisson-Boltzmann equation

We do the summation about (i) in Egs. (8) and (9), and
computing (8) and (9)x(€,,), we get:

dp L5

E‘FV =20 (19}
and

i .

5-;+V nv==0o (20)

We assume I1° as a symmetric tensor given by:
Y y

2
M’ = 526, + (1= 6,5)(p — k* sinh(p)) @l

where x? is a constant. Replacing Eq. (21) and (21-a) in Eq,
(20), we obtain for the diagonal components of the tensors:

Z—f+v(§%’) =0 (22)

and the off-diagonal components are:

V(p — k2sinh(p)) =0 2%
and we assume it as:

(p — k?sinh(p)) = 0 24

Then eq. (23)

8, , B

P (it + aV(p)) =0 (25)
assuming

ﬁ'—i-g?V(p) =0 (26)

Taking divergence
V.d +2-V3(p) =0 @7
Using Eq. (19

, ,
~Z4+V(p)=0 (28)

Taking out the temporal derivative

= (p—V(p)) = 0 (29)
assuming
p—Vp) =0 (30)

Using eq. (24), we have the Poisson-Boltzmann equation:

VZp = k?sinh(p) 3

4. The equilibrium distribution function

Fig.1. The lattice velocities of the D2Q9 scheme.

We use the D2Q9 velocity scheme shown in fig. (1), for the
directions &; and weights w; on each celk:

AN i=10
9
w, = é - i=1234 (32)
L 5 i=5678
36

Both directions €; and weights w; follow the next set of
tensor relations:

Yiwie =10 (33)
1.

Liwegaers =6z (34)

Yiwieaeipe, =0 (3%)

Also, we assume the equilibrium function

£ ={ (36)
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Using Equations (13-17) that define the moments of the
distribution, and also the set of equations that give the tensor
relations of the lattice velocity equations (27-28), we obtain:

2
4 =325~ x*p - K’sinh(p)) (37)
B=3 (38)
C=2p_2 0 _ 2y _ i sinh(p)) (39
PYARPR TS P p

Then, the equilibrium distribution function that satisfies the
Helmholtz equation is;

3w, (gi T (?iil —K?p— Kzsinh(,o))) £>0
feq_ = o (40)
8t i [
Wo (gp "Ti(atf' —K*p —K? smh(p))) t=0

p

(b)

5. Analysis and Results

We use the difference discretization scheme of the second
derivative, in order to apply the distribution function, as:

a%p  plae+de)- plat)+p(x,t-6t)

a2 §t2 (1)
The system is initialized with the function:

£ (x,v,0) = Ay sin{D{x + 2)% + D(y + 2)%) (42)
and

f(xy,0) = Ajexp(—D(x + 2)? — D(v + 2)?) (43)
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Fig.2. The numerical result of the d1g3 lattice Boltzmann model. Panels (a)-(d) coirespond to simulations at times ¢= 140At.

Parameters are: lattice size L= 100, ©=20,07, Ax=Ay=1/L.
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Then the algorithm initiates at &, = 0, with Eq. {42) or (43)
in all the nodes of system. We present results for simulations
in Figure (2), panels (a-d) for a system size of 700x1600, with
periodic boundaries conditions. In Figures (2) a-b, we show
results for an initial Sine pulse and its gradient field. For
Figures (2) ¢-d, we have the potential and the gradient field,
respectively, for an initial Gaussian pulse,

5. Conclusions

We have solved the Poisson-Boltzmann equation using the
lattice-Boltzmann technique. We obtain the structure of the
potential and its gradient field for Sine and Gaussian initial
configurations. This method can be easily extended to three
dimensions. For a future paper, we can extend the method to
explore phenomenology for unbalanced charge distributions.
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