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ABSTRACT

Ramirez Diego-F, R. France, J, Silva-Valencia. Magnetic transition of yiterbium atoms confined in optical
superlattice with local ferromagnetic interaction. Rev. Acad. Colomb. Cienc., 37 (1): 44-49, 2013. ISSN 0370-
3908. -

We used the density matrix renormalization group to study the ground state of ytterbium atoms (7'Yb) for the
Hund lattice model, where the delocalized atoms are confined in a one-dimensional optical superlattice and
his number is one third of the lattice sites. We found a paramagnetic-ferromagnetic quantum phase transition
for any vakue of the potential strength. The local critical ferromagnetic coupling decreases as the superlattice
potential increases.
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RESUMEN

Nosotros usamos el grupo de renormalizacién de fa matriz densidad para estudiar el estado base de los dtomos
de Iterbio (17'Y'b) para el modelo de red de Hund, donde los atomos delocalizados son confinados en una su-
perred Optica unidimensional y son un tercio de los sitios de la red. Nosotros hallamos una transicién de fase
magnética paramagnetica-ferromagnética para algunos valores del potencial. El punto critico del acaplamiento
decrece cuando el potencial de la superred disminuye.
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1. Introduction

Ultracold atoms confined in an optical lattice (quantum simu-
lation) offer a clean and simple system for the experimental
investigation of quantum phase transitions. Bosonic [1] and
fermionic [2, 3] models, and the spin Hamiltonians [4] can
be controlled under novel conditions: dimensionality, inte-
ractions between particles through Feshbach resonances [5],
independent pericdic potential [6, 7] and different lattice to-
pologies [8]. Moreover, Gorshkov et al. [9] showed that pro-
perties of fermionic alkaline-carth-metal atoms confined in
an optical lattice allows the simulation of simple models, or
condensed-matter Hamiltonians, such as the Kugel-Khom-
skii model [10], SU(N) Hubbard chains [11] and the Kondo
lattice model [12, 13]. Motivated by these developments, we
analyze yiterbium atoms confined in an optical superlattice
using the Hund lattice model (HLM).

The Kondo lattice model (KLM) and its Hund lattice model
(HLM) counterpart are canonical models for studying the
interaction between a magnetic moment (localized) interac-
ting via a contact Heisenberg exchange J with the spin of
any conduction {delocalized} electron at each lattice site. For
these models, the one-dimensional and three-dimensional
ground-state phase diagram is determined by two para/me-
ters: the ratio of the exchange coupling to the hopping (J/ / 1)

, and the density of the conduction electrons #_; with strong
coupling the Kondo effect favors the singlet state, while with
weak coupling the RKKY interaction tends to stabilize a
magnetic order. Fig. 1 shows the phase diagram for the Hund
model with numerical results, with a localized magnetic mo-
ment S =1/2, analogous to the KLM [14]. At half-filled
n =1, characterized by a spin gap, the system exhibits a
spin-liquid phase [15]. The ferromagnetic phase exists abo-
ve the critical points (empty symbols). The phase beneath the
critical points is much less understood; Ref. [14] shows two
phases: the “spiral” phase characterized by two broad peaks
in the local spin-spin correlation function, and the *island”™
phase, characterized by the ferrimagnetic condition. Howe-
ver, for intermediate coupling, there is another ferromagnetic
state between the “paramagnetic” phase [16]. Moreover, Ref.
[ 17] analyzes the paramagnetic phase in the KILM with alkali-
ne-earth-metal atoms confined in an optical lattice. Based on
the latest literature, which motivates the present paper, we
assumed the “paramagnetic” term for this area.

For three-dimensional electronic structures, the KLM is
applied to heavy-fermions material (with greatly enhanced

effective mass), which exhibits an antiferromagnetic (AFM)
exchange, favoring the antialignment between localized and
delocalized particles. The HLM is applied to manganese oxi-
de perovskites, with a ferromagnetic (FM) exchange mode-
rated by Hund’s rule coupling; a strong coupling favors the
alignment of the three localized ¢, spins with the spin of
the e, conduction electron [23]. However, the experimen-
tal data of manganese oxide perovskites disagree with the
model [27].
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Figure 1. Magnetic phase diagrams of 1D Hund model.
The ferromagnetic coupling increases with the filling.
(Points taken from Ref. [14]).

Experimental investigation at low dimensionality in heavy
fermion systems, reproduces the conditions of the KLM
(Kondo effect vs. RKKY interaction) and offers the possibi-
lity of exploring the fundamental physics of the two-dimen-
sional system [18]. Analogous to the 2D one, the 1D KLM
and HLM will have a superlattice structure with nanofa-
brication techniques [19, 20]. However, to our knowledge
these systems are not realized in condensed-matter systems.
Nevertheless, it could be explored with the ytterbium atoms
confined in a one-dimensional optical superlattice. There-
fore, the new model has three parameters: the ratio of the
exchange coupling and optical superlattice to the hopping-
matrix element {J /¢ ,V /1), and the density of the deloca-
lized atoms (7). We analyzed a ground-state phase diagram
of the HLM, where the number of delocalized atoms is one
third of the system sites (# =1/ 3}, using the density matrix
renorrhalization group method DMRG [21].

‘We end this section with the features of the yiterbium atoms
and the optical lattice. Section 2 explain the Hamiltonian
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model. Section 3 shows the result for the HLM, and section
4 summarizes our results.

Recently papers [16, 22] have used the KLM to explored
the magnetic transition of ytterbium (Yb) atoms confined in
optical lattice. The stables isotopes of this element are 'Yb,
7Y, YD, 'Yb, 17Yh, Yb and 1Yb. For experimental
studies of the Fermi gases two fermionic isotopes are used:
"Yband " Ybwithnuclearspin / =1/2 and F =5/2 [11].
The first has two different internal states: f == F =1/2, then
2F +1=2. Hence, the "'Yb can be used to simulated the
KLM, which allows two degrees of freedom for each band,
either spin up or spin down [23]. Furthermore, the atoms
exhibits electronic state dependence: the metastable excited
state jPo and the ground state lSD , which posses no electron
spin and thus no hyperfine interaction with the nuclear spin.
Therefore, the nuclear spin strongly affects the interaction
solely between these atoms [24, 25].

Figure 2. (Color onling) HM plus a superlattice potential
for delocalized atoms.

The optical lattice is formed by the interference of two or more
laser beams. The electric field provided by the oscillating light
from a laser, interacts with the dipole moment in the atoms,
creating a trapping potential [26] V (x) ~ I'sin (2x/1) , Where
I isthe intensity and A the wavelength of the laser beam.
Therefore, the atoms can be trapped in a bright interference
pattern. Thus, independent storage associate with the ground ™
state 'S, (g) and transport associate with the metastable ex-
cited state "P (e) ate created, where the ytterbium atoms
can be trapped in two different optical lattice potential with
the same periodicity. Furthermore, it is possible to form pe-
riodic |D, 2D and 3D spatial structures and different kinds
of potentials can be constructed: harmonic, anharmonic and
superlattice. This last kind consists of a superposition of two
laser beams along the same direction with different wave-
lengths, obtaining different periodicities and potential depth

on the sites. In Fig. 2, the optical superlattice (red line} is
associate with the 'S, and the other optical lattice (blue line)
is associate to the 'P,,

2. Model

The separation and the deepth of the sites and supersites
{even and odd in Fig. 2) throughout the optical superlattice
define the interaction between the ultracold fermionic atoms
and give rise to strongly a correlated system, which can be
analyzed with the Anderson lattice Hamiltonian, the Hubbard
model and the KLM. If a short-range superlattice potential is
applied to this last model, the system can be simulated by
means of localized atoms (blue line, Fig. 2) coupled with the
delocalized atoms at the sites and supersites (red line, Fig.
2), where no interaction exists between them. Moreover, the
model may exhibit two cases for the coupling: the “Kon-
do” model with J <( (antiferromagnetic) and the “Hund”
model with J > 0 (ferromagnetic). In the present paper, we
analyzed the last case where the delocalized atoms are confi-
ned in a one-dimensional optical superlattice whose Hamil-
tonian has the form:;

I\'i‘ r » - l
€Ll 5°S,) M

The first term represent the kinetic energy of delocali-
zed atoms hopping between nearest-neighbor sites, where
e (é{ﬂﬂ)are the creation (annihilation) operators for one
atom at the site / with spin o’(=T,\L) and ¢ isthe hopping
amplitude. The second term represent the local Heisenberg
interaction, where J is the coupling Hund, ¢ is the Pauli
matrix and S,. is a localized spin operator 1/2. We assume
that 7 is setto 1.

The third term represents the one-dimensional optical su-
perlattice potential. Here, 7, , = cﬁ'za@m represent the local
density of the delocalized atoms. ¥ determines the optical
superlattice potential, being the difference between the odd
and even sites defined with two sites periodicity. In the pre-
sent paper, V=V ; therefore, ¥ =V for odd sitesand ¥ =0
for even sites (Fig. 2), which denotes the shift in the energy
levels for each site. When ¥, =0 Eq. 1 returns to the HLM

Hamiltonian.
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Since we study a one-dimensional many-body system in
the ground state, the density matrix renormalization group
method (DMRG) is applied in order to study the Hamilto-
nian (1), when the number of delocalized atoms is one third
of the localized atoms.

3. Result
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Figure 3. (Color online). Spin structure factors of ytterbium (Yb)
atoms in a superlattice potential with lattice size £ =102, and
N =34 delocalized atoms, a} and c) represent a paramagnetic
phaseat J =1, ¥ =5 and J =2, V =2 .b) exposed a ferro-
magnetic phaseat J =2, V' =35.

The magpetic phase diagram of the KLM and Hund models for a
partially filled system has been calculated through the spin structure
factor [14], defined as the local spin-spin correlation function and
its Fourier transform. We used this argument for the same purpose,
which can be written as:

e
S(q)=E§€q° O (s7-s) @

L represent the lattice sites and S, =2u ¢ o.c

SR N ] +Sj iS the
total spin at the site j (Fig. 2). When Eq. 2 shows a peak’at
g =0, the system indicates an alignment of the total spin or

ferromagnetic state. The paramagnetic state exhibits a maxi-

mum at a g-value between 0 and 7.

The Hund model for the case n=1/3exhibits a ferro-
magnetic phase at J =5 (Fig. 1), which is highlighted for
a maximum value or peak of S{g)at g =0. However, we
observed this phase at J =5 when the model is subjected
to a superlattice potential. This can be seen in Fig.3b, in
which we consider J =2 and ¥ =35, for L =102 sites and

m = 200 states per block. The confinement of the delocal-
ized atoms at the odd sites increases with the potential, re-
ducing the tunneling and the kinetic energy and favoring lo-
cal ferromagnetic coupling.

If the local ferromagnetic coupling is fixed and the potential
decreases, we expect that the system will show a paramag-
netic phase when J =2. Fig. 3c shows the maximum spin
structure factor at ¢ ~ 0.2 for V' = 2, indicating that the sys-
tem evolves to a paramagnetic phase.

Now, we vary the ferromagnetic coupling and fix the poten-
tial. Comparing the figures 3a and 3b, the maximum value of
S(g) has a paramagnetic order at J =1 and a ferromagnetic
order at J =2, for ¥ = 5. This occurs by means of Hund’s
rule coupling, in which if J increased the delocalized atoms
force the localized atoms to align in the same direction fa-
voring the ferromagnetic phase. Therefore, the probability of
the delocalized atoms being aligned parallel to the localized
atoms at each site increases.

With Fig. 3, we conclude that the system evolves from a
paramagnetic to ferromagnetic phase, which can be tuned by
varying the local coupling or the potential strength.

The weight of the peak of the spin correlation S{g)__ repre-
sents the magnetic order of the system. In Fig.4a, the poten-
tial is fixed and the coupling changes. For J =1 (red line),
S(g),,. increases slowly and is finite at the thermodynamic
limit, indicating that the paramagnetic state is stable. For a
larger coupling (blue line), the maximum of the spin structu-
re factor increases as a function of the lattice size. For these
parameters, the system is in a ferromagnetic state; hence this
result indicates to us that the system remains in this state and
that the magnetic order is not due to the finite size effects.

Keeping in mind Fig 3, we explored several values of the
potential and the coupling, indicating a magnetic phase tran-
sition. In Fig 5, we change the potential, finding the points
of the coupling at which the transition occurs; in this figure,
we demonstrate the propagation of the ferromagnetic area
when the potential is increased. Furthermore, we analyzed
the situations when ¥ = 0. and ¥ — oo, The first case rep-
resents the HLM without potential, in which the transition
phase occurs at J 25 (Fig. 1). The critical point in Fig. 5 is
J (V' =0)=4.964£0.085, which is in agreement with the
previois result [19]. The second case indicates that the fer-
romagnetic phase can be obtained for low values of the cou-
pling, where the critical point at which the transition occurs
acquires a constant value.



48

REV. ACAD. COLOMB. CIENC.. VOLUMEN XXXVH, SUPLEMENTO - ANO 2013

S(@uax

40

36 [~ .

20 — =

0,01 0,015 0,02 0,025 0,03 4,035

Figure 4. (Color onling) The peak weight S(g) a) for the ferro-
magnetic ./ = 2} and paramagnetic (J = 1) cases atV = 5.
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Figure 5. (Color online). Magnetic phase diagram of Ytterbium
atoms for the Hund model with superlattice potential. The number
of the delocalized atoms is a third of the localized magnetic mo-
ment: n=1/3,

Conclusions

We considered the number of delocalized atoms to be one
third of the lattice size, and adopted the density matrix re-
normalization group technique to find the ground-state wave
function of the Hund model plus a superlattice potential. We
showed the magnetic phase diagram, in which the system
increases the ferromagnetic phase with the potential, while
the critical coupling decreases. This is caused by Hund’s rule
coupling, in which if the coupling is strong, an alignment of

the delocalized spin with localized spin exists, Furthermore,
the spin structure factor exhibits a ferromagnetic ordering of
the total spins if the coupling increases for any value of the
potential, favoring the ferromagnetic phase. Moreover, the
ferromagnetic or paramagnetic ordering is maintained at the
thermodynamic limit £ —
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