M ATEMATICAS

A NOTE ON THE CAUCHY PROBLEM
OF FUZZY DIFFERENTIAL EQUATIONS

William Gonzéalez-Calder 6n*, Elder JestusVillamizar-Roa?
Abstract

Gonzélez-Calderéon W., E. J. Villamizar-Roa: A note on the cauchy problem of fuzzy
differential equations. Rev. Acad. Colomb. Cienc. 34 (133): 541-552, 2010. | SSN 0370-3908.

In this paper we analyze the existence and uniqueness of solutions for a fuzzy initial value
problem of kind «'(t) = f(t,z(t)), x(to) = xo, where f : T x X — X is a fuzzy-valued
mapping, 7" is a time interval, X is a class of fuzzy sets, ¢ € X and to € T. We consider
2'(t) as a generalization of the Hukuhara derivative.

Key words: Fuzzy-valued Mappings, Fuzzy Differentiability, Generalized Hukuhara
Derivative, Fuzzy Differential Equations, Fuzzy Cauchy Problem.

Resumen
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una clase de conjuntos difusos, zp € X y to € T. Se considera la derivada z'(t) como una
generalizacion de la derivada de Hukuhara.
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1. Introduction

Theory of fuzzy differential equations is a useful tool
for modeling dynamical systems under possible uncer-
tainty [19]. Fuzzy differential equations have been able
to solve some disadvantages presented in the ordinary
case. In particular, first order fuzzy differential equa-
tions appear in varied real problems, as for instance,
quantum optics, gravity, medicine, chaotic systems, en-
gineering problems, population models, etc. In general
terms, the Cauchy problem associated with a first order
fuzzy differential equation can be expressed as

'(t) = f(t,2(t)), x(to) = =0, (1)

where f : T x X — X is a fuzzy-valued mapping,
xg € X,tp € T, T is an time interval and X is a
class of fuzzy sets. So, to deal with the problem (1),
we need to establish the sense of the derivative z'(t).
Initially, Puri and Ralescu [12] developed the concept
of Hukuhara differentiability for fuzzy valued mappings
(c.f. Definition 3.5). Under this setting, several results
of existence and uniqueness of solutions of fuzzy differ-
ential equations (1) have been obtained (see for instance
[7, 10, 11, 15, 16] and some references therein). However,
this approach has the disadvantage that, in some cases,
the support of the solutions have an increasing length
as time t increases, which shows that this interpreta-
tion is not a good generalization of the corresponding
crisp case (see [1]). In order to solve this difficultly,
some approaches have been proposed. A first alterna-
tive is to replace the fuzzy differential equation in (1)
by a family of differential inclusions (see [4, 5]). How-
ever, the approach of differential inclusions does not take
into account the kind of fuzzy derivative of fuzzy-valued
mapping. Bede and Gal [1] gave another possibility
to solve this shortcoming by introducing a more general
definition of derivative for fuzzy mappings, which allows
to define the derivative for a larger class of fuzzy func-
tions. This generalization of the Hukuhara derivative
is obtained by considering the fuzzy lateral Hukuhara
derivatives (c.f. Definition 3.6 below). Also, by inter-
preting the derivative a’(¢) in the generalized Hukuhara
sense, some results of existence of solutions for the ini-
tial value fuzzy problem (1) were obtained in [1, 3]. Re-
cently, in [8], by utilizing the generalized differentiabil-
ity, the authors investigate the problem of finding new
solutions for a second order fuzzy differential equation.
We also refer the work [20], which presents recent re-
sults related to the global existence of solutions for fuzzy
second-order differential equations under generalized H-
differentiability. On the other hand, in [17] the authors

investigate the first order linear fuzzy differential dy-
namical systems with fuzzy matrices. Especially, the
authors discuss some properties of the 2D dynamical
systems and describe their phase portraits. In this pa-
per we prove the results of existence and uniqueness of
solutions of the fuzzy initial value problem (1) developed
in [1, 3, 7, 11, 15] (and some references therein), but as-
suming a more general definition of the derivative z'(t).
Indeed, we consider the derivative z’(f) as being the
generalized Hukuhara derivative of the set-valued map-
ping x,, defined by the a-levels of the fuzzy set z(t) (c.f.
Definition 3.9). This definition of differentiability will
be called a-differentiability and it generalizes the no-
tion of differentiability used in [1, 2, 3, 7, 11, 15, 16] and
some references therein. Some properties related with
the differential caleulus taking into account the notion of
a-differentiability are showed. In order to establish our
existence result (c.f. Theorem 4.2) we prove an equiva-
lence between the differential problem (1) and an inte-
gral formulation (c.f. Theorem 4.1). As our approach is
based on the analysis of the set-valued mappings defined
by the a-levels of the respective fuzzy-valued mappings,
we assume a more general continuity condition on f; in-
deed we assume that f is a a-continuous function with
respect to the Hausdorff metric d (c.f. Definition 4.1).

The outline of this paper is the following: in Section
2 we recall some preliminaries about the general theory
of fuzzy sets. In Section 3 we introduce the definition
of a-differentiability and give some results concerning
the differential calculus. Finally, in Section 4, we ana-
lyze the Cauchy problem of first order fuzzy differential
equations.

2. Preliminaries

Let K" be the collection of all nonempty-convex-
compact subsets of R™. If A, B € K™ and A € R, then
the addition and the scalar multiplication in K™ are de-
fined as:

A+B={a+b|la€ A be B},AA={)a|a€ A}. (2)

In [14] was proved that K™ is a commutative semigroup
under the addition, which verifies the cancellation law.
Furthermore, can be proved that a(A+ B) = aA+aB,
a(B4) = (af)A and 1A = A for o, € R, A,B € K".
Moreover, if e, 3 > 0, then (o + §)A = A + FA.

The Hausdorfl metric d on K" is defined as:

d(A, B) = max { sup inf ||a — b||,sup inf ||a — b|| } ,
(4, B) mm{zg%gslla II;gg;gAlla II}
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where A, B € K™ and || - || denotes the Euclidean norm
in R™. The couple (K",d) is a complete metric space;
moreover the metric d verifies the following properties:
(i.) d(AA,AB) = |\|d(A, B), (ii.) d(A+ C,B+C) =
d(A, B) and (iii.) d(A+B,C+ D) < d(A,C)+d(B, D),
forall A,B,C,D € K™ and A € R.

A fuzzy set u on R" is defined as a mapping u :
R™ — [0,1]. For 0 < e < 1, the class [u]* = {2 €
R™ | u(z) > a} denotes the a-level of the fuzzy set
u. For a = 0, the support of u is defined as the set
[u]® = supp(u) = {z € R" | u(z) > 0}.

Let F" be the class of fuzzy sets v : R™ — [0, 1] such
that u satisfies:

(1) w is normal, that is, there exists zg € R" such
that u(zg) =1,

(2) u is fuzzy convex, that is, u(Az + (1 — A)y) >
min{u(z),u(y)} for any z,y € R" and 0 < A <

(3) u is upper semicontinuous,

(4) [u]° ={z € R" | u(x) > 0} is compact.

Then, from the definition of 7", we have that [u]* € K"
for all 0 < a < 1. F! is often called the class of fuzzy
numbers. Real numbers R can be embedded in F! by
using the application a € R — xy,) € F'. In general,
K™ can be embedded in F". We recall that if u,v are
two fuzzy sets, then u = v if and only if [u]* = [v]®, for
all a € [0,1].

The following representation result is known as
Negoita-Ralescu Theorem.

Theorem 2.1 ([9]). If u € F", then

(i) [u]* € K™ for all « € [0,1],
(ii) [ Clu)f Cu*Cu forall0<a<B<I,

(iii) If{an} C [0,1] is a nondecreasing sequence con-
o0
verging to « > 0, then [u]® = [ [u]*".

n=1

Conversely, if {N, | @ € [0,1]} is a family of subsets of

R™ satisfying (i) — (iii), then there exists u € F™ such

that [u]® = N,, foralla € (0,1],and [u]’ = |J Na C
0<a<l

No.

According to the Zadeh Extension Principle [18], the
operations of addition and scalar multiplication in F"

are defined as:

(u+v)(z) = sup min{u(y),v(z)},
yt+z=x

o Ju® A%, )
oure)= {5, 320

where A € R, z,y,2 € R" and x(¢y is the characteristic
function of 0 € R™. By the Zadeh Extension Principle
and Theorem 2.1, the following relations hold:
[u + .v]ﬂ — [u][! + [U]ﬂ‘ (4)
[Au]®* = A[u]*,Vu,v € F*,Va € [0,1].
The Hausdorff metric d in K™ can be extended to F"
defining the distance

D(u,v) = sup d([u]",[v]7),

ae(0,1]

Yu,v € F".

The couple (F™, D) is a complete metric space [13]. The
metric D verifies the following properties: D(Au, Av) =
[A|D(u,v) and D(u 4+ w,v 4+ w) = D(u,v), for all u,v €
Fr, AeR.

3. a-continuity and a-differentiability

‘We start by recalling some properties related to the
measurability and the integrability of fuzzy set-valued
mappings (c.f. [7]). Let T = [a,b] C R and consider "
endowed with the Hausdorff metric d. We recall that a
fuzzy-valued mapping F : T'— F™" is said to be strongly
measurable, if for each v € [0, 1], the set-valued mapping
F, : T — K" given by F,(t) = [F(t)]* is Lebesgue mea-
surable. On the other hand, an application F' : T' — F"
is called integrally bounded, if there exists a real-value
integrable function ¢ such that for each y € Fy(t) it
holds |ly|| < g(t). Now, we recall the integral of a fuzzy
valued mapping.

Definition 3.1 ([7]). Let T = [a,b)] CRand F : T —
F". The integral [ L:’ F(t)dt is defined levelwise by

[ mdt] T [ Rty

b
= [ / f(t)dt | f: T—R" is a measurable selection for F, |,
a
(5)

for all 0 < a < 1. A strongly measurable and integrally
bounded mapping F : T'— F™ is called to be integrable
over the interval T if ff F(t)dt belongs to F".
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Proposition 3.1 ([7]). If F : T — F" is a strongly
measurable and integrally bounded mapping, then F is
integrable.

Proposition 3.2 ([7]). Let T = [a,b] C R and ¢ € T.
IfF,G :T — F" are integrable and A € R, then

() [P F(t)dt = [CF(t)dt + [ F(t)dt,

(i) [COAF(t) +G(t)dt = A [ F(t)dt + [* G(t)dt,
(iii) D(F.,G) is integrable,

(iv) D(JL F(t)dt, [ G(t)dt) < [ D(F,G)(t)dt.

Remark 3.1 ([7]). If F : T — F! is integrable such
that Fo(t) = [fa(t), ga(t)] for all @ € [0,1], then [, F is
obtained by integrating the a-level curves, that is,

[ =[]

Remark 3.2 ([7]). Let A € 7" and consider the fuzzy-
valued mapping F : ' — F" given by F(s) = A for all

0<s<t. Then
t
/F:tA.
0

Definition 3.2. Let 7' = [a,b] C R. A fuzzy-valued
mapping F' : T' — F™" is continuous at a point fy €
T, if given € > 0, there exists 6 > 0 such that
D(F(t), F(ty)) < €, for t € T satisfying [t — to| < 4.

Throughout this paper we will consider the follow-
ing definition of continuity for fuzzy-valued mappings,
which generalizes Definition 3.2.

Definition 3.3 ([11, 15]). Let T' = [a,b] C R. A map-
ping F' : T — F" is said a-continuous at to € T,
if the set-valued mappings F, : T' — K" defined by
Fu(t) = [F(t)]*, e € [0,1], are continuous at t = tg
with respect to the Hausdorff metric d, that is, fixed o
and given € > 0, there exists (e, @) > 0 such that

d([F(B)]% [F(t0)]*) <€,

for all t at T with [t — ty| < &. If F' is a-continuous for
all t € T, we simply say that F' is a-continuous.

Proposition 3.3 ([15]). Let T = [a,b] C R. If
F:T — F" is a-continuous, then F' is integrable.

Now we introduce the concept of a-differentiability
which will be used throughout this paper.

The Hukuhara difference (H-difference) A © B for
A, B € K™ (if it exists), is defined to be the set C' € K"
such that A= B+ C. In general A6 B# A+ (—)B =

A — B. Based on the definition of H-difference, in [6],
Hukuhara gave the following definition of Hukuhara dif-
ferentiability for set-valued mappings.

Definition 3.4 ([6]). Let T' = [a,b] C R and G :
T — K. G is Hukuhara differentiable ( H-differentiable)
at tg € T if for h > 0 small enough, the differences
G(to + h) & G(tp), G(to) & G(to — h) exist, and there
exists G'(tg) € K™ such that

im G(to + h) & G(to) o —_— G(to) © G(to — h)
h—0+ h h
= G'(to),

where the limits are taken in the metric space (K", d).
At the end points of the interval T' one considers only
the one-side derivatives.

Based on Definition 3.4, Puri and Ralescu [12] ex-
tended the notion of H-derivative of a fuzzy-valued map-
ping. In fact, for u,v € F", an element w € F™ (if it
exists) such that u = v+ w, is called the H-difference of
u and v and it is denoted by « & v. Then the following
definition is established.

Definition 3.5 ([12]). Let T' = [a,b] C R and consider
a fuzzy mapping F': T' — F". F is said H-differentiable
at a point ty € T if for A > 0 small enough, the differ-
ences F(to + h) & F(to), F(to) © F(to — h) exist, and
there exists an element F'(ty) € F" such that

lim F(to+ h) © F(tp)
h—0+ h

(6)

_ iy F(to) S F(to— )

I
h—0+ h = F'(to),

where the limits are taken in the metric space (F", D).
At the end points of the interval T one considers only
the one-side derivatives.

As pointed out in [1], the definition of H-derivative
of a fuzzy-valued mapping is very restrictive. Indeed,
if we consider a fuzzy number ¢ and ¢ : [a,b] — R a
real-valued function, differentiable at t; € (a,b) with
g'(to) <0, then the fuzzy-valued mapping f(z) = cg(z)
is not H-differentiable at ty. To solve this shortcoming,
the authors of [1] introduced the notion of generalized
derivative by taking into account the lateral types of
H-derivatives, as follows.

Definition 3.6 ([3, 1]). Let 7' = [a,b] C R and con-
sider F': T — F". F is differentiable at ty € T, in the
generalized sense, if
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(1) for h > 0 small enough, the differences F(to +
h) & F(ty), F(to) & F(to — h) exist, and there
exists F'(tg) € F" such that

., Flto+h)o F)

h—0+ h (7)

F(to)© Flto =h) _ puy s

or

(2) for h < 0 small enough, the differences F'(to +
h) & F(to), F(tg) & F(to — h) exist, and there
exists F'(ty) € F" such that

limn F(to+ h) & F(tp)
h—0— h (8)

= lim Flto) © Flto — k) = F'(ty),
h—s0~— h

where the limits are taken in the metric space (F™, D).
At the end points of the interval T one considers only
the one-side derivatives.

Remark 3.3. In (3] the authors considered the two
cases 1 and 2 of Definition 3.6. In [1], in addition to
cases 1 and 2 of Definition 3.6, the authors considered
other two cases but in the other two cases, the deriv-
ative is trivial because it is reduced to a crisp set (c.f.
Remark 2 in [3]).

An analogous definition holds for the case of set-
valued mappings.

Definition 3.7. Let T = [a,b] C R and consider
G:T — K". G is differentiable at ty € T in the gener-
alized sense, if

(1) for h > 0 small enough, the differences G(ty +
h) & G(ty), G(to) © G(to — h) exist, and there
exists G'(ty) € K™ such that

| Glto+h)©Glto)
h—0+ h

_ iy Glt) ©Gto —h) (9)

h—0+ h =G (tO)’

or

(2) for h < 0 small enough, the differences G(to +
h) © G(to), G(te) © G(to — h) exist, and there
exists G'(tg) € K™ such that

2 1 ) (10)
= lim Glt) © f{t" B) _ G'(to),

where the limits are taken in the metric space (IC",d).
At the ends points of the interval T' one considers only
the one-side derivatives. If G verifies (9) (respectively
(10)) we say that G is differentiable in the generalized
sense, in the first form, (respectively, G is differentiable
in the generalized sense, in the second form).

On the other hand, in [11, 15], following notion of
derivative was introduced, more general than Defini-
tion 3.5, by considering the Hukuhara-derivative of the
respective set-valued mappings defined through the a-
levels.

Definition 3.8 ([11, 15]). Let 7' = [a,b] C R. A
mapping F' : T — F" is differentiable at the point
to € T, if for every @ € [0,1], the set-valued map-
ping, F,(t) = [F(t)]* is Hukuhara differentiable at the
point ty according to the Definition 3.4 and the family
{F.(t) | @ € [0,1]} define a fuzzy set F'(ty) € F".

In this paper we enlarge the class of generalized dif-
ferentiable fuzzy-valued mappings given in Definitions
3.6 and 3.8 (consequently Definition 3.5), by considering
the lateral type of Hukuhara-derivatives of the respec-
tive set-valued mappings defined through the a-levels;
more exactly, we have the following definition.

Definition 3.9. Let T = [a,b] C R and consider
F:T — F". We say that F is a-differentiable at t, € T,
if for all & € [0, 1], the set-valued mapping F, : T'— K"
defined by F,(t) = [F(t)]* is differentiable at the point
to in the generalized sense, and additionally, the family
{F!(to) : @ € [0,1]} defines a fuzzy set F'(ty) € F. If
F is a-differentiable at tp € T, then we say that F'(tp)
is the derivative of F' at ty. If for each a € [0,1] the
mapping F, is differentiable in the generalized sense ac-
cording (9) (respectively (10)) in Definition 3.7, we say
that F'is a-differentiable in the first form (respectively,
second form).

Remark 3.4. The Definition 3.9 is a generalization of
the notion of differentiability introduced by Seikkala [16]
for studying fuzzy process. From Definition 3.9 it fol-
lows that if F' is differentiable in the generalized sense
according Definition 3.6, then F' is a-differentiable (dif-
ferentiable in the sense of Definition 3.9). The converse
result is not true.

Example 3.0.1. The existence of Hukuhara differences
[u]* © [v]*,a € [0,1], do not imply the existence of
u & v. In fact, consider for instance u : R — [0,1] and
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v:R — [0, 1], the fuzzy sets defined by
ult) {1, if t € [—1,1]

0, otherwise
—t+1, if t€]0,1]
v(t)=<t+1, ifte[-1,0]
0, otherwise.
In this case, the Hukuhara differences between the a-
levels of u and v exist, that is,
[W*s*=[-11e[-14+a,1 —a] =[-a,q],

however the Hukuhara difference u & v does not exist,
since the family [—«, ], with « € [0,1], does not define
a fuzzy set (see Theorem 2.1).

The following example shows that the a-
differentiability does not imply the differentiability in
the generalized sense according to the Definition 3.6.

Example 3.0.2. Let F : [0,2] — F! a fuzzy number
defined as

F(t)(x) = x[-1,11(2), if te[l,2], zeR,

and
@+ 1),z e -1, -1+ (1 -#)7],
F(t)(x) = ﬁz(x - 1),:.5‘ € [1,1 - (1 3 t)2]’

{]7$ é (_11 1)7
Lze[-1+(1—-¢)2%1-(1-1t)3,
if t € [0,1). It is clear that the differences F(1) & F(1 —
h),h > 0, do not exist (see Example 3.0.1). Hence, F
is not differentiable in the generalized sense according
to the Definition 3.6 at {5 = 1. On the other hand, the

family of set-valued mappings F,, (associated to F') are
given by

-1+ e -2 1-a(1-1t)%, tel0,1),
Fa(t) = {[—1,1], te(l,2].

Now we calculate the a-derivative of F' in the first form
at tg = 1. It is clear that the differences of the a-levels
exist. Then

Fu(1)© Fa(1—-h)

h
_[-n1)e[-1+a(l - (1-h))%,1-a(l - (1 —h))?
B h
_[-1,1]e[-1+ah? 1 —ah®]  [-ak? ah?]
N h B h

= hl-a,0] =% {0}.

Moreover,

FG: 1+h chr]- _]-$]-e_]-a]- h—0t
Then F!(1) = {0} for all @ € [0,1]. Hence F is a-
differentiable at ty = 1 and its a-derivative is given by
F"(l) = X{0}-

Theorem 3.1. Let T = [a,b] CR, F : T — F! and de-
note by Fo(t) = [fa(t), ga(t)], the respective set-valued
mapping defined by the a-levels. Then

(i) If F' is a-differentiable at to in the first form,
then f, and g, are differentiable and [F'(ty)]* =

[fa(to), g4 (to)]-
(ii) If F is a-differentiable at t in the second form,
then fu, g4 are differentiable and [F'(ty)]* =

[95(t0), fa(to)].

Proof:  The part (3.1) was proved in [15]. So, we
will prove the part (3.1). By hypothesis, for i < 0 small
enough and given o € [0, 1] fixed but arbitrary, the dif-
ferences F,(to + h) © Fu(to) and F,(to) © Fu(to — h)
exist. Firstly note that by the definition of Hukuhara
difference we get

Fo(to + h) © Fa(to)
= [fa(to + 1), ga(to + h)] © [fa(to), ga(to)]
= [fa(to + h) = fa(to), ga(to + ) — ga(to)]-
Then, as h < 0, multiplying by 1/h we obtain
Fuy(to+ h) © Fulto)
h
= Hlfalto +h) — falto). dalto + ) — ga(to)]

— [ga (tU -+ h’) _ ga(tﬂ) fcr(t{.] + h) - fa (tU):|
h ’ h '

Taking the limit when & — 0~ one can ensure the exis-
tence of ¢/, (to), f.(to), and for all @ € [0, 1] it holds

Fc}:(t(} + h} &) Frz(tﬂ)

Fi(t) = lim :
T Ga (tﬂ + h) i ga(t{)) for(tl] + h) — fcr(tﬂ)
~n [ h ’ 3 }

= [9a(to), fa(to)]-

Analogously we obtain

Fa(to) © Falto — h)
h
i [Qa(tﬂ) - ga(t(} — h) fa(tt)) i fa(tU — h)}
h : h !
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and hence
Fu(to) © Fa(to — h)

F!(t) = lim

h—0- h
. [9alto) — galto —h) falto) — fa(to — h)
B e S e Y

= [9a(to), fa(to)]-

Theorem 3.2, Let T = [a,b) CR. If F: T — F" is
a-differentiable, then it is a-continuous.

Proof: In [15] was proved that if F' is a-differentiable
in the first form, then it is a-continuous. In our case, let
t,t +h € T with h < 0, h small enough and e € [0, 1].
By hypothesis, the differences F,,(t + h) © F,(t) exist.
Now, by using the properties of the metric d we get

d(Fa(t + 1), Fa(t))

=d(Fu(t) + Fa(t + h) © Fa(t), Fa(t))
=d(F,(t+ h) & F,(t),{0})

]h|d( a(t +h) © F,a(t) {U})

h
< hja (FREL0 k) )+ ia (rae). o).

As F is a-differentiable in the second form, then if
h — 07, the right-hand side of last inequality tends to
zero, and hence F is left a-continuous. In an analogous
way, by working with the difference F,(t) © F,(t — h),
we can prove that I is right a-continuous.

Theorem 3.3. Let T = [a,b)| CR. IfF,G : T — F*
are a-differentiable at the point t € T and A € R, then
(F+G)'(t) = F'(t) + G'(t) and (AF)'(t) = AF'(t).

Proof: The proof follows by using Lemma 3 in [14]
and basic properties of the metric d.

Theorem 3.4. Let T' =
JF™ is a-continuous, then

[a,b] CR. If F: T = [a,b] —

(a) G(t) f F' is a-differentiable in the first form
and G'(t) = F(t) for allt € T, and,
(b) H(t) = |, ’F is a-differentiable in the second

formm1dH() —F(t) forallteT.

Proof: If F is a-continuous, by Theorem 3.3 we
conclude that F, is integrable; hence, the fuzzy-valued
mappings GG and H are well-defined. The proof in the
case (3.4) was given in [15]. We will prove the case (3.4).

Let h < 0 small enough such that a <t+h <t <b. By
Theorem 3.2, item (3.2), it holds

pos [Fu= [ B
t+h i t+h

i
Fy + Ha(t) = Ha+ ),
t+h

or equivalently

that is,

t
H,(t+h)e Hu(t) = B
t+h
Let € > 0. By properties of metric d, Remark 3.2 and
the a-continuity of F,,, we have

H(t 4 h) © Ha(t)
d ( 2 ’ —Fa(t))
- [lﬂd (Ho(t + h) © Ha(t), —hFa(t))

t t
/ F,(s)ds, F, (t)ds)
t-+h t+h

] t
S_ dFQ’S,
] Sy 2Fa(8)

=

for h < 0 small enough. Consequently,

T Ha(t + h})l O Hat) _ _p

Fa(t))ds <,

In an analogous way we get

lim ch(t) e ch(t X h’)
h—0- h

= —Fy,(1).

Theorem 3.5. Let T = [a,b] CR, F : T — F?! and de-
note by Fy(t) = [fa(t), ga(t)], the respective set-valued
mapping defined through the a-levels of F. If F is
a-differentiable in the second form on the interval T,
with F' such that [F'(t)]* = [g,(t), f,(t)] verifies that
gh(t), fL(t) are continuous functions on T, then for each
s € T' we have

F(s) = F(a) & (-1) /S F'(t) dt. (11)

Remark 3.5. In Theorem 3.5, in case when F is a-
differentiable in the first form on the interval T, we have
that F(s) = F(a) + [ F'(t) dt. (c.f [11, 15]).

Proof: As F is a-differentiable in the second form,
from Theorem 3.1, part (3.1), we have that [F’(t)]* =
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[gL(t), fL.(t)]. Now, by using Remark 3.1, for each a €
[0,1], we get

[ /a ) F'(t)dt] i / P ()] dt
= | [ sutvar, [ rocoar]

= [9a(5) = gala), fa(s) = fala)]-

Consequently,

1)][F’ % dt = [fa(@) — fa(5): 9(@) — ga(5)]

= [fﬂ(a}a gﬂ a)] S] [fﬂ(s):gu(s)]
= Fa(a) © Fa(s) = [F(a)]* © [F(s)]".

Then, for all & € [0, 1], we obtain

P = (PO +(-1) [ ()" d,

that is,

[F(s)]* =[F(a)]* © (—IJ/s[F’(t}]‘* dt.

Therefore (11) is proved.

4. Cauchy problem of fuzzy differential
equations

Definition 4.1 ([11, 15]). Let 7' = [a,b] C R. A func-
tion f: T x F" — F™" is called a-continuous at a point
(to, o) € T x F™ provided for any fixed a € [0,1] and
for any € > 0, there exists d(a, €) > 0 such that

d([f(t, @))%, [f (to, 20)]") <€, (12)
whenever |t — tg| < d(e, @) and

d([z]*, [xo]*) < d(ay€), t € T & € F".

The aim of this section is to analyze the existence and
uniqueness of solutions of the fuzzy initial value problem

&'(t) = f(t,2(t),  a(to) = 2o, (13)

where g € F, f : T x F!' — F! is a-continuous and
z' denotes the a-derivative of the mapping z. The fol-
lowing theorem gives an equivalence between the fuzzy
differential equation and an integral formulation.

Theorem 4.1. Let f : T x F! — F! a-continuous and
9 € F'. A mapping x : T — F' is a solution of (13)

if and only if x is a-continuous and verifies the integral
equation

itf(s, x(s))ds, Yt €T, (14)

to

LB(t) =Ty +

or
i
z(t)=zp (=1) | f(s,z(s))ds, YVt T, (15)
to
depending on the a-differentiability considered, first or
second form, respectively.

Proof: Using the arguments of [7], in [15] was proved
that if the a-differentiability is considered in the first
form, then a function z : T — F! is a solution of (13)
if and only if  is a-continuous and verifies the inte-
gral equation (14). We will prove the second equiva-
lence. Firstly, we note that if = is a solution of (13) with
the a-derivative 2’ being considered in the second form,
then from Theorem 3.2 it follows that z is @-continuous.
Moreover, Theorem 3.5 for all ¢ € T, implies that

t t
z(t) =z00 (=1) | f(s,z(s))ds =z 5 (—1)/ z'(s)ds.
to to
On the other hand, by Theorem 3.3, if f is a-continuous
then f is integrable; hence, the integral in (15) has
meaning. Moreover, if x is a-continuous and verifies
the integral equation (15), then by using Remark 3.1,
the a-levels of z (denoted by [z(t)]* = [zL(¢), 22 (t)])
verify

[2(1)]* =[za(t), 2% ()= [xo]"‘e(—l)[ f(s, m(s))ds]

/[fs z(s))]%ds

— [& (to), 22 (t0)]O(— [f( ())t,ffa(-,(»)ds]

=[za(to), x4 (t0)] © (—

i
O | 2 - 2 - 1
= [aA(to). xa(tone[ / 12(e s~ [ £36s m(s))ds] ,
where fl, f2 are defined such that
[f(s,2(s)]* = [fals,2(5)), f3(s,2(s))].
Consequently
e o)t = | f 12(5,2(s))ds, — fa(s :c(s))ds]
+ [z a5 (1)),
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and therefore
t

fa(s,z(s))ds,

to

20 =23t + | ikl

To(t) = 2o (to) +

Thus,
(z)'(t) = fa(t, z(t)),
or equivalently,
[2' ()] = [(«3)' (1), (z3,)'(1)]
= [fa(t,z(t)), F3(t, 2(1))]
= [f(t,2())]%, Va €0,1],

which proves that z is a solution of the differential equa-
tion (13).

(o) () =750, =),

The following theorem gives us conditions on the ex-
istence (and, in a certain sense, the uniqueness) of so-
lutions for the fuzzy initial value problem (13) when we
consider the notion of a-differentiability.

Theorem 4.2. Let us suppose that the following con-
ditions hold

(1) A mapping f: Ry — F' is a-continuous, where
Ro={t:|t—t]| <d <a} x{z e F:
D(z,z0) < b},a>0,b>0, and zg € F.

(2) There exists K > 0 such that for all
(t,2),(t,y) € Ro, d([f(t )] [f(t,y)]*) <
Kd([z]*, [y]*), for all & € [0, 1].

(3) There exists ¢ > 0 such that for any t sat-
isfying |t — to| < gq, the sequence &,(t) =
200 (-1) f:u f(s,@n—1(s))ds are defined for all
n e N.

Then the fuzzy initial value problem (13) has two
(unique) solutions x, &, with x being a-differentiable in
the first form, @ being a-differentiable in the second
form, and defined on the interval

|t—tu[§5:min{a,%, }, (16)

where M = D(f(t,z),0) for any (t,z) € Ry, and 0 € F*
is the fuzzy number defined by

x 1, t=
oy =4 =%
0, otherwise.
Moreover

D(zn,x) — 0,D(%,,2) — 0, on |t —ty| <6, (17)

as n — oo, where x,, T, are the respective successive
approximations given by

t
z, (1) = xg +/ f(s,xp_1(8))ds, n=1,2,... (18)
to

t
Tn(t) =209 (=1) | f(s,Zn-1(s))ds, n=1,2,...(19)
to
Remark 4.1. The importance of this theorem is that it
guarantees the existence (and uniqueness) for fuzzy ini-
tial value problem by assuming a more general notion
of differentiability, as was developed in [1, 3, 7, 11, 15].
Moreover, this theorem provides conditions for the im-
plementation of a numerical method in order to obtain
such solutions.

Proof: For the case of a-differentiability in the first
form, we obtain the existence of a unique solution z
verifying D(zn,z) — 0, and z, as in (18) (c.f. [11]).
For the case of a-differentiability in the second form, if
te{t:|t—to| <6 <a}, thenfork=1

() =z06 (1) /: Sf(s,m0(8))ds,

and hence, from Theorem 4.1, the function #; is a-
continuous on the interval |t — {y| < §. Moreover, for
all @ € [0,1], by using (4) and properties of metric d
given in Section 2, we have

d([@: ()], [x]*) =
d ([:zllﬂ, 1) + (-1) [[ £(s, :sg(s))dsj[
d ({/ f(s,xg(s))ds] ,{U}) :
Consequently, taking the sup in the last equality we
0<a<l
obtain o

D(&4(t), z0) =

D (/:: f{s,zg(s))ds,ﬁ) <

/t D (f(s,20(s)),0)ds <

to
M|t — to| < M3 < b,

provided |t — tg] < &, where M = D(f(t,z),0), for
any (t,z) € Ry. By an induction argument, as-
sume that #,_;(t) is a-continuous on [t — tg] < §
and D(Zn—1(t),z0) < Mt —1to| < M < b, provided
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[t —to] < 6. Using (19) we have that Z,(t) is a- |t —to| < 4, when n — oo. Note that by definition of

continuous on [t — ty| < and )
Hukuhara difference, we have

D(&n(t), x0) < M|t —to| < Md < b. .
zo = (=1) [ f(s,20(s))ds + Z1(t),

Consequently we have that the set {Z,(t)},>1 is a se- "

quence of functions which are a-continuous on [t — to| <

t
0 and (¢, ,(t)) € Ro, [t —to| <d,n=1,2,... o = (_1)f f(s,21(8))ds + Z(t).
We will show that there exists & : {t : [t —tp| < <
a} — F' such that D(@,(t),#(t)) — 0 uniformly on Then, by using the properties of the Hausdorff distance

d (including the invariance with respect to translations),
for any « € [0, 1] we obtain

d([Z2(8)]*, [#1(8)]*) < -+

< ([rh(t)]‘* 4 {(_1)/tf(s, i (s))dsr B (O] + [(—1) /t f(s,m(s))dsr)

v + [0 [ eamo] wor [ [ o))

= d([30]®, [7]") + d ([ / £(s, :zl(s))ds] , [ / 16, :sn(s))ds] )

Sft d([f(sa-'fl(S))]“s[f(sazn(S))]“)dSS/t'Kd([il(SJ]“-.[xn(S)]“)dsa

and thus |
t
D(@a(t),2:(t)) < K | D(Z1(s),z0(s))ds / Kd([&,(8)]%, [#n-1(8)]")ds.
to
|t — to]? 62
SMK 21 = MrK_ Therefore
By an induction argument, assume that 3 =
. s b D(Fns1(t), #n(?))
D(Zn(t), Fn-1(t)) < MK™ 1 E—2L < MK™ 11—, ¢
ol l <K / D(@n(t), En1(t))ds
We want to prove that to
. LN i |S s tuln < MR? 6n+1
D($ﬂ+l(t)s$n(t)) - to n! - (n+1)'
] tu|'n+l 5n+l i . . i
< MK" <MK “—1_ (20) Consequently, according to the convergence criterion of
(n+1)! (n+1)! Weierstrass, from (20) it follows that

In fact, as before, for all a € [0, 1] we obtain

d([Fn1 (D], [En(B)]) uniformly on [t — 5| < 6, as n — oco. Hence, there
: “ i * ists & : {t : |[t—to] <6 < — F! such that
<d ([ (5, En(5))d } [ 15, :En_i(s))ds] ) exists & { | _uf = < a} suc a

D(Zn(t), #n—1(t)) — 0,

A D(&,(t),&(t)) — 0 uniformly on |t —to| < §, as n — 0.
’ As D(f(t,@n(1)), f(t,(t))) < KD(&n(t),&(t)) — 0 uni-
f A([f (5, Fn (8))]% [f (5, Fn1(s))]?)ds formly on [t — ty| < 6, as n — oo, we have

Z(t) =zp 0 (—1) t J(s,E(s))ds

to
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Finally we will prove the uniqueness. In [11], by us-
ing the a-differentiability in the first form, was proved
that there exists a unique application z(t) defined on
|t — to| < & which verifies (14). Now we consider the a-
differentiability in the second form and we suppose that
there exists (t), defined on |t — tg| < 4, verifying (15).
We need to show that D(&(t),4(t)) = 0 for all ¢t such
that |t — to| < 4.

For all n € N and #,, defined as in (19), for all a € [0, 1]
we have

d((g(0)]*, [2n (8)])

co{ [ s [rosviom])

< / Kd([§(s)]" [Eno1(5)])ds

Consequently, for all n € N, we get

DO, [En(B)]*)< K ] ' D{(§(6), En1(5))ds.

Note that D(g(t), o) < bon |t —tg| < §. Therefore
D(y(t), #1(t)) < bK|[t —to|,

on |[t—tg| < 4. By an induction procedures, if we assume
that

D(g(f), i‘ﬂ(t)) < bKn%,

on |t —ty| < &, we obtain

n+41
D(i(t), Zn1(t)) < bK““%

Hence, D(g(t), &,(t)) = D(&(t), &,(t)) — 0, when n —
oo and ¢ such that [t — to| < 4.

Example 4.0.3. Consider the Cauchy problem given
by

() = —z(t) +t+1, z(0) = C, (21)
where C is a fuzzy interval, that is, an element of F!
such that each a-level of C' is the compact interval
C* = [e1,¢c2]. The problem (21) verifies the assump-
tions of Theorem 4.2 and thus, the existence of solution
is guaranteed.

Now we will calculate explicitly the solution. We
write the a-levels of z as 2,(t) = [ua(t), va(t)]. If /(1)
is the a-derivative of z in the first form, by Theorem
3.1 we have that !, (t) = [ul,(t),v,(t)]. Then, the fuzzy
differential equation in (21) can be expressed as

[ut, (), v (8)] = —[ua(t), va(t)] +t +1
= [~va(t) +t+ 1, ~ua(t) +t +1].

Hence, we obtain the following system of Cauchy prob-
lems of ordinary differential equations

u,(t) = —va(t) +t+1,  ua(0) =ci,
Vo(t) = —ua(t) +t+1,  va(0) =co.

The solutions of the last system are given by

c1+c € —c
Uqg(t) = %e—t_k%ez_u
and i
c c c c
va:122_g+221f+t

Thus, the solution of (21) by assuming the a-derivative
2’ in the first form is

c1 + o _,

z(t) =t + 5

—[c+( o), teT.

Now, if 2’ is the a-derivative in the second form, by
Theorem 3.1 we have that 2/, (t) = [v],(t),ul,(t)]. Then,
the fuzzy differential equation in (21) can be expressed
as

Il

[uly (), v, (£)] = —[ua(t), va ()] +t + 1
= [-va(t) + t+ 1, —uq(t) +  + 1].

Hence, we obtain the following system of Cauchy prob-
lems of ordinary differential equations

ul (t) = —ua(t) +t+ 1,
vy (t) = —va(t) +t+ 1,
The solutions of the last system are given by

valt) =t +coe™.

uq(0) = ¢y,

Ua(0) = ca.

Ua(t) =t+cre™ and

Thus, the another solution of (21) by assuming the a-
derivative z’ in the second form is

Z(t) =t+Ce™", teT.
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