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Abstract
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A new class of multistep methods for stiff ordinary differential equations is presented. The
method is based on the transformation of the arguments of the original system into purely algebraic
combinations of the solutions of previous steps. The scheme differs from the classical multistep
methods in that the state variables, instead of functions of them, are aproximated by means of
linear combination of previous steps. A family of coefficientsis deduced from acombined analysis
of convergence order and stability. Numerical results are presented for three test problems.
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Resumen

Se presenta una nueva clase de método multipaso para ecuaciones diferencial es ordinarias con
stiff. El método se basa en la transformacién de |os argumentos del sistema original en un sistema
puramente algebraico utilizando las soluciones de |os pasos anteriores. El esquema difiere de los
clasicos métodos multipaso en que las variables de estado son reemplazadas por funciones, las
cual es son aproximadas por medio de unacombinacién lineal de las soluciones previas. Unafamilia
de coeficientes se deduce a partir de un andlisis combinado de orden de convergenciay estabilidad.
Por ultimo se presentan resultados numéricos para tres problemas test.
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1. Introduction

The use of implicit numerical methods is convenient
when solving general stiff Ordinary Differential Equa-
tions (ODE) problems. Their use, in turn, requires the
solution of a corresponding discrete problem, which is
one of the main concerns in the actual implementation
of the methods. Linear implicit multistep methods and,
in particular, Backward Differentiation Formulae (BDF)
[6] [2] are regularly used for the numerical solution of
stiff initial value problems. In turn, implicit methods re-
quire solving at each integration step an algebraic prob-
lem, whose dimension is a multiple of the corresponding
continuous one [3].

A high-quality numerical method to solve stiff ODE
should have good accuracy and some wide region of ab-
solute stability ([5], [8], [9] and [10]). The latter imposes
a strong limitation on the choice of suitable methods for
stiff problems.

In the present paper a new class of implicit mul-
tistep method is derived, having good stability and
convergence properties compared with equivalent linear
schemes. The difference with classical multistep meth-
ods is the transformation of the differential system into a
purely algebraic system by introducing estimation func-
tions not only for the derivatives but also for the state
variables. In this sense, the methodology used in the
current method can be understood as a variant of the
basic theory of classical multistep methods. In the last
section, numerical experiments are presented comparing
the new method with BDF.

2. Linear Multistep Method

Let us consider the initial value problem (IVP) (7]

V() = f(), y(to) = yo (1)
where ¢ € [ty,to + Nh] (N being a natural number and
h a constant time step), y : [to,to + Nh] — R™ , y(})
stands for the first temporal derivative, and f : R™ —
R™ is continuous and differentiable.

The classical linear multistep method can be written
in the general form [2]

Za'iyn—i = hz.ﬁsf (yn—i) ' (2)

=0 =0
where «;, [; are parameters to be determined and y,, =
y(to+mnh). The method is explicit if Sy = 0 and implicit

otherwise. A multistep method is of order p if and only
if [3]:

k
Z a;i? =g Z Bt ' + O (k) (3)

i=0 i=0

with 0 < g < p. The well-known multistep scheme BDF
is given by

k
Zaiyn—i = hBo f (yn) . (4)

i=0

This scheme is a class of k-step formula of order £,
and for k = 2, the BDF coefficients are [2]

3
Qg = 7, 1 =

1
9 —2, g = 5, ﬁu = 1. (5)

3. New multistep transformation

The general multistep formula (i.e. Eq. 2) is essen-
tially a transformation of the differential Eq. 1 into a
purely algebraic equation by means of the estimators:

y — Zas Yn—is f(y) — ng& (n-i)-  (6)

1—0 i=0

Let us propose the following alternative set of transfor-
mations:

y*ZAyn iyt

i=0

_ZB Yn—i- (7)

where A; and B; are coefficients satisfying Z:":o B; =0

and ZLD A; = 1. Eq. 7 lead to the following alternative
multistep algebraic equation:

| & k
M’ > Biyn-i=f (Z Aiyn—e‘) : (8)

1= i=()

To make clear the deduction of the coefficients, let us
consider a two-step instance of Eq. 8 (k = 2). The gen-
eral method to determine the coefficients 4; and B;, can
be generalized from this particular case.

3.1. Convergence order. Expanding y,—» and y,
in Taylor series around (t-h) leads to:

0 2
Un :y\gx,)l +hy‘n—]. + o y‘n. 1 +0(h3)

9)
Yn—2 = yf,,—)l - hygl)l +5 y‘flr‘?]- +0 (hq) )
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where y,(f) stands for the k-th derivative of y respect to

time. Combining Eqgs. 7 and 9 yields:
) = (Bo — Ba)y +

n—

(Bo + Ba) 2y$?, + 0 (h?) | (10)
yn = 401 + (Ao — A2) by, +0 (1) .

Expanding now f; around (¢-h), gives

F@Wn) = f Wne1)+ V7 (ynor) 952, R+0 (R2) , (11)

where VT f (y,) stand for the transpose gradient of f(y)
(taken separately to each component f; evaluated at

Y= 1Un-
Likewise, expanding the right term of the Eq. 8, gives:

f (Z?:n Aiyn—i) =fO (yp_1)+
(Ao — A2) VT f (yn-1) 4, h+ 0 (h2) .

The relation between f (y,) and VT f (y,) with y,(lk) can
be found by successive differentiations of Eq. 1. Com-
bining Eq. 10 to Eq. 12 yields:

(Bo = B2) )y = f (un-1) 1
(Bo+ B2) y'2 2 = (A9 — A2) V7 f (yuor) i1
(13)
which leads to the following set of algebraic equations
for the coeflicients A; and B;:

o di=1,

2 i—oBi=0,

(Bo = B2 = 1) f (yn-1) =0,

(B{) + By —2Ag + 2A2) va (yn—l) f (yn—l) = 0( 4)
1

(12)

Egs. 14 is a set of 4 algebraic equations with 6 un-
knowns. Therefore, there is a family of coefficients A;
and B; that ensures O (h?) convergence; that is:

AU:%_?_%‘ A2:%+%L_A2L? (15)
0 A

3.2. 0-Stability. As the name implies, O-stability is
concerned whit what happens in the limit A — 0 [2].
The linear multistep method is O-stable if all k roots &;
of the characteristic polynomial:

2
p(€) =) Bi&* " =0, (16)
i=0

satisfy |&| < 1. If the root condition is satisfied, the
method is accurate to order p. Therefore provided that
the initial values are accurate to order p, the method is
convergent to order p.

Lemma 1. If By < 0, then the roots & and & of p(§)
verify that |&;| <1, fori =1,2.

Proof. Applying Eq. 15 to Eq. 16 yields

1 B 1 B
2 1 1
= - —_—— By ——-———/—=0. 1
p© =€ (5-5)+em-3-3 =0 a1
Then, the roots are
-B1+1
= 1
§12= 7= B (18)
Next, it can be observed that
—-B;+1
|51|—‘ﬁ|—1a (19)
and
—-B;—1 2B,
=" | = |—]1 — <
ol = |25 = |- | <1 e
for B; < 0.

3.3. A-Stability. The stability of the linear multi-
step method is given by the stability of the resulting
difference equation [2]. Applying Eq. 8 for k=2 to the
linear test equation y = Ay, (A €C), yields:

2
> (B = M) yn—i = 0. (21)
i=0
The stability of Eq. 21 is demonstrated by ensuring the
stability of the difference equation. The difference equa-
tion is stable if all roots &; of:

2
¢ (€)= (Bi — Aih\) €7 =0, (22)
i=0
satisfy & < 1.

When f is linear and k=2, a necessary condition for
A-stability is given by [2] Re(z) > 0, where

2 2—i
> B,
2= —21;0 T (23)
Zs:ﬂ Aiq2_1
for all (unitary) complex numbers ¢ = cos# + isin#@, for
0 € [0, 2x].

Figures 1 and 2 compare the absolute stability re-
gions for the proposed method and the BDF method for
different sets of coeflicients. However, numerical compu-
tations show that, in the general case, those conditions
are not sufficient. For example, for the values A; > 1/2
and By < 0 the method is A-unstable.
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Re(z)
Figure 1. Absolute stability region of the present method
and the BDF method
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Figure 2. Absolute stability region of the present method
and the BDF method

For the particular case of k=2 a range for the coeffi-
cients that make our method A-stable can be found. We
resume this result in the next lemma.

Lemma 2. If By <0, A; < 1/ and Re(z) < 0, then all
the roots £ of the ¢ (§) verify [£] < 1.

Proof. Applying into 15 and 16, the roots of the differ-
ence equation are:

§1,2(2) =
Ay z—BI:I:\/l—(Bl—E;L) z—(l—‘ZA]—Ezi) 22 (24)

1-B1—(1-A;—34) =

The aim is to study the function & 5 (2) of the com-
plex variable z, for the values of Ay, By and z defined
in the hypothesis. First, observe that the denominator
of Eq. 24 vanishes for
2B -2
24, -2+ By’
which is a real positive number, meaning that it will
never occur as Re(z) < 0. Then & 5 (z) is an analytic
function in C_ and hence, by the Principle of Mazimum
[4], for every open and convex set @ C C_, the maximum
of |£12(2)| in Q is obtained at the boundary. So, it is
sufficient to prove that the following limit inequalities
are verified:

im &2 (u+iv)| <1, Vv €R,
Iim [&2(u+iv)| <1, Yve R_|J{0}.

U— oo

Which are easily verified for B; < 0, 4; < 1/2 and
Re()\) < 0, as require the lemma, g.e.d.

z (25)

(26)

Remark. Although the proposed scheme is A-stable for
By <0and 4, < 1/2, the numerical solution of the re-
sulting algebraic system is compromised when the abso-
lute values of these coefficients become too large. Heuris-
tic tests have shown that efficient numerical schemes can
be ensured keeping a lower bound of -5 for both coeffi-
cients.

4. Numerical experiments

In order to assess its performance the new multistep
method was applied to the integration of specific equa-
tions using By = —1,5 and 4; = 0,1. This method was
compared with the BDF and Adams-Bashforth-Moulton
methods for k=2.

4.1. Ricatti equation (m = 1). Let us consider the
following Ricatti equation [1]

yW=-2-y+4° (27)
with initial value yp = 1,8. The exact solution is given

by:
3

ST (28)

y(t) =2
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Figure 3 shows the absolute difference between the an-
alytic and the numerical solutions for i = 0.01. It can
be observed that the numerical solutions obtained by
all methods are similar; and these are always below the

order O (h?).

5 T T T
—— Present Method
o - - -- BDF Method
ar Do - ---oo-- Adams-Bashforth |7
A
3+ |: A ]
-5 ' v
lef/10™ | ;v [:
rI R Y .
1 ':’ I" .‘ (!It? . T
0 B el
0 1 2 3 4

Figure 3. Absolute difference |e| between the analytic and
the numerical solutions (h = 0,01)

4.2, Stiff linear case. An example of a stiff linear

equation is:

y® = _ (10033;(2) + 3002y + 2000y) L (29)

with initial value yo = 1, y(()l) = —1,5 and y((f) = 2,5,

The exact solution is given by:

y(t) =05 (e7F +e7%). (30)

The stiffness ratio, given by [2]

o |Re (A

~ min |Re(\;)| (31)
1<i<n

where \; are the eigenvalues of the Jacobian matrix, re-
sults R = 1000. This indicates that the stiffness of the

system is very high.

——A=0.1,B=15
---- BDF

0 / I 1 1
2 3 B 5

0 1
t

Figure 4. Absolute difference |e| between the analytic and
the numerical solutions (h = 0,01)

Figure 4 shows the temporal evolution of the absolute
difference |e| between the analytic and the numerical so-
lutions for y (h = 0.01). It can be seen that the three
methods give very similar results, whose departure from
the exact solution are always below the order of conver-

gence.

4.3. Elastic pendulum. The elastic pendulum (fig-
ure 5) is represented by a fourth-order no-linear system
whose natural variables are the string length, r, the in-
clination angle with respect to the vertical, #, and their
respective temporal derivatives, z and w, that is [11]:

r) =z,

o) — 4
’ 32
2V =rw? — £ (r — L) 4 gcos, (32)

wl) = (—gsinf — 2zw) L.

L

Figure 5. Elastic Pendulum

Comparisons were made using the following parameters
and initial conditions: k =7, L =1, m = 0,1, g = 9.8,
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ro = 1,00 = 5, 7 = 0 and 6, = 0. Figure 6 shows
the trajectory of the mass in the (z, y) plane. Figure
7 shows that the stiffness ratio is always much greater
than 1, which indicates that the stiffness of the system
is high. Figures 8 and 9 shows the absolute differences,
le-| and |eg|, for the variables r and 6 calculated be-
tween the present method (B; = —1,5 and 4; = 0,1)
compared BDF (B; = —2 and A; = 0) and Adams-
Bashforth-Moulton method, showing good agreement.

It can be seen that the differences do not escalate,
remaining bounded even for very long times.

0
y At 1
) . . .
-1 0 1
X

Figure 6. Trajectory of the mass tied to an elastic pen-
dulum in the (z,y) plane
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201 .
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Figure 7. Temporal evolution of the stiffness ratio R of
the elastic pendulum
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Figure 8. Absolute difference |e,| of the variable r cal-
culated with present method (B; = —1,5,4; = 0,1) and
(solid) BDF (B; = —2, A; = 0), (dashed) Adams-Bashforth-
Moulton method. The time step is b = 0,01

—_
<
w

Figure 9. Absolute difference |efl| of the variable @ cal-
culated with present method (B; = —1,5,4; = 0,1) and
(solid) BDF (B; = —2, A; = 0), (dashed) Adams-Bashforth-
Moulton method. The time step is b = 0,01

Table 1 shows the ratio between the CPU time divid-
ed by the simulated time, for each method, with respect
to the time step h. As expected, the time ratio decreases
as h increases, being the present method better than the
Adams-Bashforth-Moulton one.
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Tabla 1. Ratios between CPU time and simulated
time (B; = —1,5, A; = 0,1).
h  Adams-Bashforth-Moulton BDF Present

method
10-4 0.186 0.184 0.182
10-3 0.025 0.023  0.022
10-2 0.002 0.001  0.001

5. Conclusions

A class of second order multistep methods that pro-
duce good candidates for the solution of stiff problems
was presented. The class includes as a special case the
BDF method. The scheme differs from the classical mul-
tistep methods in that the state variables, instead of
the functions of them, are approximated by means of
linear combination of previous steps. This feature can
be usefulness in the design of object-oriented numerical
solvers, since the state variables are natural candidates
for object definitions.

For a suitable choice of the parameters, the scheme
was proved to be A-stable using the Maximum Principle
of the theory of complex functions. With several numer-
ical examples it has been also shown that the compu-
tation time is approximately the same as the BDF and
Adams-Bashforth-Moulton methods, providing a larg-
er stability region. Moreover, the results presented here
open the possibility of extending the methodology to
DAE systems, since its generalization is straightforward.
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