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In this paper we give a generalization of two results obtained by Garcia and Stichtenoth
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1. Elementary Abelian p-Extensions

Throughout this note we denote by K a perfect field
of characteristic p > 0, by F/K an algebraic function
field with constant field K and by

prur—uP —u
the Artin-Schreier operator.

Definition 1.1. For a subset A C F we denote by
F (p~'A), the splitting field of all polynomials TP —
T — a, with a € A. For w € F such that u ¢ Im(p),
the extension F/ = F(y) with p(y) = wu is called an
Artin-Schreier extension of F.

The following theorem provides a complete descrip-
tion of the Artin-Schreier extensions. Its proof depends
essentially on the following lemma.

Lemma 1.2. (Hilbert’s Theorem 90) Let F' be a
finite extension of F' whose Galois group G is cyclic gen-
erated by o. Then 8 € F' has the form 8 = a — o (a),
for some o € F', if and only if Trp: /g () = 0.

Proof: See [L-N] Theorem 2.25. ]

Theorem 1.3. Let F' be a field of characteristic p > 0.
The polynomial

o(T)=TP —T —ue FII], (1)

either splits completely over F or else, o(T) is irre-
ducible over F'. Moreover the following assertions are
equivalent:

(1) F'/F is a cyclic extension of degree p.

(2) F' = F (y), whose minimal polynomial over F
is (T, where ¢(T) is defined as (1), for some
ueF.

(3) F' is the splitting field of an irreducible polyno-
mial of the form (1), for some u € F.

Proof: Suppose that ¢(y) = 0, then for t € F, C F
we have p(y+1t) = 0 and since ¢(T) is a separable poly-
nomial of degree p, it follows that y,y + 1,y +2,...,y +
(p — 1) are all its roots.

Now, its is clear that, if y € F', then F' is the splitting
field of ¢(T).

It remains to consider the casey ¢ F. Let F' = F (y).
To prove that ¢(T') is irreducible over F' it is enough to
prove that [F’ : F| = p, that is to say, that o(T) is the

minimal polynomial of y over F' (which, from now on,
we will denote by min (y, F)).

Since F” is the splitting field of the polynomial ¢(T),
we have that F’/F is a Galois extension, therefore, it is
sufficient to show that |Gal (F'/F)| = p.

For this end, observe that since each o € Gal (F'/F)
is completely determined by its action on y and o per-
mutes all the roots of ¢ (T'), then o(y) = y +t for some
t€{0,1,...,p— 1}, hence, |Gal (F'/F)| = p.

Now we will to prove the equivalences:

(1= 2) Suppose that F'/F is a cyclic exten-
sion of degree p and let o € Gal(F'/F) be
such that Gal (F'/F) = {id,a,a2,...7ap*1}. Since
Trgp(=1) = —p = 0, then by Lemma 1.2, there ex-
ist y € F’ such that y — o (y) = —1. Moreover, since
y—o(y) #0and o € Gal (F'/F) theny € F/ — F.

On the other hand, observe that (o (y) —y)’ =
(1)’ = 1= (y)—y. That is to say, o (4* — y) = y” — y,
then y? —y € F, therefore, there exist v € F' such that
yP —y = u and consequently y satisfies the polynomial
o(T)=TP —T —u € F[T).

Now, since
p=[F":F]=[F':F@y)[F(y):F] (2)

and y ¢ F then [F (y): F] > 1. Thus [F(y): F] =p
and (2) ensures that [F' : F' (y)] = 1, which is the same
as, F' = F (y). Therefore (T') = min (y, F).

(2= 3)If F' = F(y), with T? =T —u = min (y, F),
we have that F” is the splitting field of min (y, F').

(3 =1) Assume that F’ is the splitting field of an
irreducible polynomial of the form ¢(T) =T? — T — u,
for some v € F. Again by similar arguments as above we
obtain that |Gal (F'/F)| = p, which means that F'/F
is cyclic of degree p. |

Definition 1.4. An extension E/F is said to be an El-
ementary Abelian p-Extension of exponent p and degree
p" if E/F is Galois with Gal(E/F) = (Fp)"

The following Theorem states a relationship between
the additive subgroups of F' and the elementary abelian
p-extensions. To this end, we first need to establish a
result.

Theorem 1.5. Let F' be a field of characteristic p > 0.
There exist a one to one correspondence between the
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additive subgroups U of F containing @F which have
finite index (U : F), and the elementary abelian p-
extensions. This correspondence is given by

U:U+— F(p~'U).
In such case
[F(p7'U): F] = (U:pF).

The inverse map of W is given by
Ul L— LNngL.

Proof: See [La] page 263. |

Remark 1.6. Observe that, regarding abelian p-torsion
groups as vector spaces over IF, we can as well de-
fine p* as the map (induced by ') that takes finite-
dimensional vector subspaces U (over IF,)) of the quotient
space F'/oF to finite dimensional subspaces V of the Fy
vector space p 1 F/F (where p~!F is the inverse image
under g in some fixed separable closure F'*P). That is
to say

©*(U) :={z+ F € p"'F/F such that 2? — 2 € U}.
Finally if instead of ¥ we consider the map
U:U+— F(p*D) =F(p'U),

one can see that, one such n-dimensional subspace U C
F/pF corresponds, in the notation of Theorem 1.5 to a
subgroup U C F with U NpF = 0 that is a “section” of
U in the sense that U = (U + pF)/F. Therefore, if U
and U’ are subgroups of F' such that:

U =p"=|U'] and UNpF ={0}=U"NpF (3)
then, the following sentences are equivalent.
(1) F(p™'U) =F (p~'U").

(2) U+ pF =U'"+ pF.
(3) U CU+ pF and U CU' + pF.

(Observe that F (p~'U) = F (p~'U’) exactly when

U = U’ (more accurately, when (U + pF)/pF and
(U'+ pF)/pF are the same subspace of F/pF.)) More-
over, if u,u’ € U — {0}, then
F(p™'u) =F (p~ ')

S u' = X-u, for some \ € Fj. (4)

Theorem 1.7. Let U be an additive subgroup of F
such that
|U| =p" and UnNpF ={0}.

Then, the extension £ = F (p_lU) is an elementary
abelian p-extension of F' of exponent p.

Proof:  First observe that since F is the splitting
field of the set of polynomials {T? — T —u : u € U},
then the extension E/F is a Galois extension. On the
other hand, since U is an additive subgroup of F' and
char(F') = p, then there exists u1, ug, ..., 4, € U nonzero
elements such that

U=@P (u)=EPFu. (5)
=1 i=1

We can find y; € E (1 <1i <n), such that y¥ — y; = u,.
Now, by Theorem 1.3 we have that

F (Kflui) =F(yi), (6)
and since F(p~'u;) = F(p~'Mu;) for each A € F}; (Re-
mark 1.6), we obtain

E:F(y15y27"'7yn)' (7)
Now, since y; is a root of ¢,(T) = TP — T — u;, then
the extension E/F is finite. In order to prove that
[E : F] = p", first observe that,

Flp™'(U+pF)) = F(p~'U) (8)
- E. 9)

Since [F(p~ ' (U+pF)) : F] = [E : F] < oo, by Theorem
1.5 we obtain

(U + pF : pF) < 00, (10)
as well as
[E:F)= U+ pF :pF)=|(U+ oF)/pF|. (11)
But

U+pF)/oF ={y+pF: y e (U +pF)} (12)
={wP —wtu+pF: weF uecU} (13)
={u+pF: uecU}. (14)

So, for a,b € U, since U N pF = {0} then
a+pF=b+pF <= a—-bepF < a=0b, (15)

consequently, [E:F] = p". Next we prove that
Gal(E/F) = (Fp)": For i € {1,2,..,n} we define
o; : E — F as follows,

oi(w) =w ifweF
oi=1 oilyj) =yi+1 ifi=j (16)
oi(y;) = y; if i # j.
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Observe that o; is the identity on

Fi:=F(y1, ., Yi-1,Yis15 - Yn)

therefore by Theorem 1.3, the polynomial ¢;(T) =
TP — T — w,; is irreducible over F; (otherwise y; € F;
and [E : F] < p"~! which is a contradiction) hence the
o; are actually well defined. Now it is clear that each
o; € Gal (E/F) and (0;) =F,, also

(1) 0; =0; if and only if i = j.
(2) If o; = 0" then, i = j and m = 1(mod p).

In fact, if o; = 07" then,

yi+m ifi=j

" itity, (7

gt 1= oi(i) = o7 (1) {

it follows that ¢ = j and m =1 (mod p). Therefore

::]:
|||

Gal(E/F) =

z:l

The converse of the Theorem 1.7 also holds. To prove
it, we need the following lemma.

Lemma 1.8. Suppose that L/M is a finite Galois ex-
tension with Galois Group of the form

G=Gal (E/F)=G1 x G2 X ... x Gy, (18)
If
H = Gy X.Gi—1 x{t} xGiy1 X ... x Gy (19)
where {¢} is the i-th coordinate and
Li=MH;)={a€L:o(a)=a,Yo € H;}

then

(1) L;/M is a Galois extension with Galois group
Gal (LZ/M) Gi.

(2) L =L1Ls... H L;.
(3) Foreachi € {1 2 n} L;N(Liy1...Lp) = F.

Proof: See [Ro] Corollary 5.5.4. [ |

Theorem 1.9. If E/F is an elementary abelian p-
extension of F' of degree p™, then

E=F(p 'U), (20)
for some additive subgroup U of F' which satisfies (3).

Proof: Since E//F is an elementary abelian extension
of degree p™, then

G = Gal (F'/F) = (F,)", (21)

thus, G = G; X ... X G,,, where each G; has order p. Let
us define for j € {1,2,...,n} H; and E;, be as in the
Lemma 1.8. Then by 1.8 (a)

[Ej : F] = |Gal (E;/F)| = |G| = p, (22)
consequently, by Theorem 1.3, there exist u; € F'\Im(p)
such that E; = F (y;) for some y; € E; with y;# —y; =
u; € F, which amounts to, (u;) N pF = {0}. Ob-
serve that F (y1,y2,...yn) C E and since E; = F (y;) C

[1E <
j=1

F (y1,vy2, .--Yn), from Lemma 1.8 (b), F =

F (y1,y2,.--yn), and therefore

E=F(y1,y2,.-yn) = F (pfl({ul, ,un})) . (23)

We now claim that wq,...,u, are linearly independent
over F,. In fact suppose there is a non-trivial linear

n
combination Y «;u; = 0 with a, ...,
i=1

oy, € Fp, then

n
O:Zaiut Zaz i_yl
z=1n
= (Z Oli?/i) - Z QiYi,
i=1 i=1

> oy € F, C E;. Now if we assume
i=1

that ag # 0, then y; = 1/ (z — 2?12 a;y;) and since,
for j = 2,...,n, we have that y; € E; C ExE3...E,,, then
y1 € EsFs...E,. On the other hand by Lemma 1.8, y; €
Ey N (EyEs...E,) = F, consequently Ey = F (y1) = F,
which is a contradiction since [Ey : F] = p > 1. There-
fore, a3 = 0. Similar arguments will lead us to prove
that ag = ... = o, = 0. Let U be the subgroup gen-
erated by wui,ug,...,u,. Then by (23), E = F(p’lU)
therefore only remains to prove that U N pF = {0}. In
fact, if x € UN pF, then @ = y? —y = > 1 | \ju;, with
y € F and each A; € Fp. Therefore it is enough to prove
that A\; = 0. For this end, observe that

yp—y:ZAi“z—ZA L)
i=1
= (Z Ai?ﬁ) - Z Ailis (24)
i=1 i=1

hence z :=
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therefore z = Y~ Njy; —y € Fp, so if Ay # 0, we have
i=1
that

1 n
Y1 = )\—1 (Z +y— Z)\zyl> e Fin (EgEgEn) =F, (25)

i=2
which is a contradiction. |

Theorem 1.10. Let U be an additive subgroup of F
such that

Ul =p" and UnNepF ={0}.
If E = F(p~'U), then there exist t = (p" —1)/(p — 1)

intermediate fields F' C E; C E such that [E; : F] = p,
where E; = F (p~'u) with u € U — {0}.

Proof: If w € U — {0}, then F (p~tu) = F(y)
with y? —y = u and by Theorem 1.3, [F (p~'u) : F|
is either 1 or p. But if [F(p~'u):F| = 1, then
F = F(y) therefore u = y?» —y € U N pF = {0}
which is a contradiction with the choice of u, hence
[F (p~'u) : F] = p. On the other hand, if E; is a sub-
field such that F C E; C F (p~'U) and [E; : F] = p,
then by Theorem 1.3, E; is the splitting field of one ir-
reducible polynomial of the form ¢(T") = TP — T — u for
some u € F. Now, since E; = F (p‘lu) C F(p‘lU),
then by Remark 1.6 we have that (u) + pF C U + pF,
hence u = v/ +wP —w, for some v’ € U and w € F, from
which E; = F (p'u) = F (p~ ') for some v’ € U.
In sum each subfield E; such that ' C E; C E and
[E; : F] = p has the form E; = F (p~'u) for some
u € U — {0}. Finally by Remark 1.6 we obtain the
number of these subfields. |

Theorem 1.11. Let K be a field of characteristic p > 0
and F/K an algebraic function field of transcendence
degree one over K, with constant field K and genus
g(F). Consider an elementary Abelian extension E/F
of degree p" such that K is also the constant field of
E. Denote by En,...,E; (witht = (p™ —1)/(p—1)) the
intermediate fields F C E; C FE with [E; : F] = p, and
by g(F) (resp g(E;)) the genus of E/K (resp E;/K).
Then

9(B) = g(E) - Lt~

P Dg(F).  (26)

Proof: Let G = Gal (E/F). For a subgroup H C G
consider the fixed field Fy C E whose genus g(Ey) is
denoted by gz and the trace idempotent €f:

EH:|—11{|ZO'€Q(G).

The idea of the proof is to construct a relationship of
the kind

ZTH'GHZOGQ(G)v

HCG

with rg € Q,because in this case the genera would sat-
isfy the same relation (see [Ka])

Z TH 'g(EH) =0.

HCG

First, observe that G has exactly ¢ subgroups with order
p"~L. In fact, by one side, for j € {1,...,¢} the Galois
group H; of the extension E;/F, is one of such sub-
groups. On the other hand, if H C G is a subgroup such
that |[H| = p"~!, then since E/Ey is a Galois extension
with H = Gal(E/Ey), we have [E : Eg] = |H| = p"~1,
from which we get [Ey : F] = p and Ey = Ej for some
j €{1,...,t} consequently,

H = Gal (E/Ey) = Gal (E/E;) = H;.  (27)

Now we shall show that any o € G — {id} is contained
in precisely ¢ subgroups H;. In fact, each H; has the
form

n—1 n—1
Hi = P Njm) = P Fprjm, (28)
m=1

m=1

where each Aj,, has order p and the set {A\j1, ..., \jn—1}
is a basis of H; over F,. Now, if ¢ € G — {id}, then
o ¢ Hj if and only if o ¢ F,\jp, for m =1,...,n — 1.
That is to say, there exist p"~! subgroups H; such that
o ¢ Hj. In other words o is contained in precisely

t—p"t = (p" ' —1)/(p—1) subgroups H; of G, there-
fore
t t
P em =3 ) 0 (29)
j=1 j=1 ocH,
t t
=>id+> Y o (30)
j=1 j=1oecH;\{id}
no_ 1 n—1 _ 1
BT SNR ST
P P=2 ecTriay
(31)

But from ey, = id and

GG:ﬁZJ:i id + Z ol, (32)

n
ceG p
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it follows that, Y. o =p"-eg —id. Thus

oceG—{id}
t pn 1 pnfl 1
n—1 _ L. 7 n .
P ngleij p_lzd+ ] (p"eq —id) (33)
n—1
n—1 - p -1 n
= d+— 4
prid e (34)

and

t
g P -1 gy
j_zleHj =id+ p— (p 1) €a, (35)

which amounts to, we have the following relation in

Q(G) :
t
€r, — ZeHj — Ll (p”71 —1)-eq | =0. (36)
i=1 b=

The theorem now follows from Kani’s result. [ |

Observe that the intermediate extension E;/F men-
tioned in Theorem 1.10 is an Artin-Schreier exten-
sion, whose genus, g(E;/K) can be computed by [[ST],
II1.7.8]. This takes us to determine explicitly such inter-
mediate fields, which we will call Artin-Schreier interme-
diate subfields, for which we give the following results
generalizing Propositions 1.1 and 1.2 in ([G-S]).

Before that, we should give a definition. We call a
polynomial of the specific form

a(T) = anT"" + an 1T + ..+ TP + aT € K[T]

(where p = char (K)) an additive polynomial over K.
Observe that a(T) is separable if and only if ag # 0.

Theorem 1.12. Let h(T) € FI[T] be a separable,
monic, additive polynomial of degree p™, with its roots
in F. If E/F is an elementary abelian p-extension of
degree p", then there exists an element y € E such that
E = F(y) whose minimal polynomial over F has the
form

o(T)=h(T)—z€ F[T), with zcF. (37

Proof: Let us consider the set W = {a: h(a) =0} C
F, it is clear that W is a vectorial space over F,,, more-
over W is an additive finite subgroup of F. Now, since
each cyclic subgroup of W has order 1 or p, then there
exist nonzero elements p1, pa, ..., un, € W such that

W= @ (i) (38)

and, the set 0 = {{1, o, ..., tn } is a basis of W over Fp,.
Now, from Lemma 1.8 we can choose y1,¥ys,...yn € E

such that £ = F(y1,y2,...Yn), with y;? —y; = u; € F.
If we define o; for i € {1,2,...,n} as in (16), it is clear
that each o; is an element of order p of Gal (E/F) and

therefore
n

Gal(E/F) =[] (). (39)
i=1
On the other hand, since o € Gal (E/F), then ¢ has a
unique representation

— vi 1] v
oc=o0'005%0.. 000", (40)

with v; € I, then the action of o over the element

n
Y= pkyk, is given by
k=1

aly) =D mlys + k) = y+p, (41)
k=1

where p = > upvr € W. It follows from (40) that
k=1

o(y) =y if and only if v =0 for k = 1,2, ..., n, that is,

o(y) =y if and only if o = id, and therefore E = F(y).

On the other hand, if z = h(y) and ¢ € Gal (E/F) then,

since o (y) = y + p, for some p € W, we have

a(z) = o(h(y))
= h(o(y))
= h(y)+h(p)

= Z.

That is to say o(z) = z and therefore z € F, conse-
quently y is a root of the monic polynomial ¢(T') whose
degree is p* = [F : F] = [F(y) : F]. This implies
©(T) = min(y, F). [ |

Reciprocally we have:

Theorem 1.13. Let h(T) € F[T] be a separable,
monic, additive polynomial of degree p™, with its roots
in F and z € F such that the polynomial ¢(T) =
WT) — z € F[T) is irreducible over F, then the exten-
sion F(y)/F where ¢(y) = 0 is an elementary abelian
p-extension of degree p". The intermediate subfields
F C E; C F(y) with [E; : F] = p, have the form
E; = F(y,), where p € W—0, with W = {« : h(a) = 0}
and each y,, satisfies the equation (y,)’ —y, = p- 2,
therefore F(y) = F(p=U), withU = {p-2: pe€ W}

Proof: Tt is clear that ¢(T') is the minimal polyno-
mial for y over F. Now, for each u € W, ¢(y + pu) = 0,
then all roots of the polynomial ¢(T") have the form
y—+p, with up € W C F, and therefore F(y) is the split-
ting field of the polynomial ¢(T"). On the other hand
since o € Gal(F(y)/F) permutes the roots of ¢(7T") then
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o(y) = y + p, for some p € W, therefore, the applica-
tion o —— u, of Gal(F(y)/F) into group (W, +) is an
isomorphism, that is to say, F(y)/F is an elementary
abelian p-extension of degree p™.

n—1 .
Now, if f(T) = > u?" TP — y,, then f(T) €
k=0

F(y,)[T) and f(y) = 0, it follows that [F(y) : F(y,)] <
p"~ 1. On the other hand, since (y,)? —y, = p -z then
[F(yy) : F] < p and therefore

p" = [F(y):F]
= [F(y): F(yu)I[F(yu) : F]
< p"top
= p",

consequently [F(y,) : F] = p. It is to say, F(y,) =
F(p~'u - 2). Now, by Remark 1.6, there exist (p" —
1)/(p — 1) such subextensions F(y,)/F and therefore
F(y) = F(p~'U) where U = {u- 2z : p € Fpn }. Finally
by Theorem 1.10 there exist exactly (p™ — 1)/(p — 1)
intermediate fields F C E; C F(y) with [E; : F] = p,
therefore such F'(y,) must be one of the E;. |

2. An application to the construction of curves
over finite fields

It is well known that algebraic function fields over
finite fields have many applications in coding theory,
and the latter is closely related to cryptography, see for
example [N-Ch]. In this section we exhibit a method
to construct algebraic function fields over finite fields
(algebraic curves) with many rational places (rational
points).

Let p be a prime number, K = F, the finite field
with ¢ = p™ elements and F' := F,(z) the rational func-
tion field over the finite field F,. By E/K we mean a
function field of transcendence degree one over K, with
constant field K. We denote by Ny(g) the maximum
number of rational places of the function field E/K of
genus g(F/K) = g. The Hasse-Weil bound implies

Ng(q) <q+1+2-9v4q (42)

After Weil proved his bound around 1940 the question
how many rational places may lie on a function field over
a finite field F, remained untouched for many years. In
1980 Goppa came up with the beautiful idea to associate
an error-correcting code to a linear system on a curve
over a finite field, see [Go]. In order to construct good
codes one needs function fields with many places and

thus Goppa’s work led to a revival of interest in rational
points on function fields (algebraic curves) over finite
fields. Applications in cryptography and recent con-
structions of quasi-random point sets also require curves
with many points and added a further impetus to work
in the field.

In 1981 Thara showed in [I] that

Ng(q) < q+1+[(v/(8a+1) +4(¢® — q)g—g)/2]. (43)

For g > (q — \/q)/2 this bound is better that Weil’s
bound and gives the asymptotic bound

. Ny(q) 11
A(g) == lim sup ,_, qg < m— 5 (44)

Refining Thara’s idea to derive (44) Drinfeld and Vladut
proved that

Alg) <va-1. (45)
Since the asymptotic bound (45) of Drinfeld-Vladut is
approximately 1/v/2 times the asymptotic Thara bound
(44) we think that it is reasonable to put this qualifica-
tion as requirement to filter out curves which should be
considered ‘poor’.

To begin our construction, let us denote by a(T") the
additive polynomial
a(T) =T +TF" "+ 4+ TP+ T €F,[T)]. (46)

We will consider extensions of the rational function field
F,(x) of the kind E/F, where E = F,(z,y) is defined
by the equation:

a) =y 4y Pty
= u(@) := Re(a(f(2))) (47)
where f(x) € Fylz] \ F, and Re(a(f(x))) denotes the
remainder of the Euclidean division of the polynomial
f(z) by £(z) = 27 — . That is to say extensions of the
kind,

E:=Fy(z,y)/(aly) — p(x))

T

F:=Fy(z)

The reason to consider this type of extensions is that
the number of rational places of F/K is related with the
image of the function a : F; — F,,. More precisely we
have.

Theorem 2.1. The polynomial u(z) = Re(a(f(x))) de-
fined as (47) has the following property:

for alla € Fy, p(o) €Ty
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Proof: 1t is enough to prove that

29— | ()’ — (o).
Since
a(f(x)) = (29 — 2)h(@) + p(z),

for some polynomial h(x) € Fp[z], then
p(@)? — (@) = a(f(2))? — (2! — z)"-
Ma)? = a(f(@)) + (29 —2) - (2).

Now, since f(x) € Fp[z] and a(T) is additive, the result
follows. |

Remark 2.2. Observe that in accordance with Theo-
rem 2.1, we have that, for a € Fg, the equation
a(T)=T"" " +T°" "4+ 4+ TP+ T =pla), (48)

has p"~! solutions in F,, therefore the induced curve by
the function field E/K has at least p"™ - p"~! places of
degree one. This leads us to expect to get good curves.
|

The following result provides us a relationship among
the genus of the function field F/K and the genus of
the Artin-Schreier intermediate subfields Eq, Fs,..., E;.

t=@E""-1)/(p-1).
Theorem 2.3. With the previous notations, the genus

of E/K is given by

o(B/K) =P mp (- uw) 1), (49

where mp_ is defined as follows:

—1 ifthereisz € F: vp(u—p(z)) >0,

mp,, (u) = m  if thereis z € F': vp, (u— p(2)) =
—m < 0 and m Z 0 mod p.
(50)
and \; € (W —{0})/Fy, with W = {a : a(a) = 0} CF,.

Remark 2.4. Lemma IIL.7.7in [ST], guarantees that
we can exclude the case vp_(u — p(z)) = —m < 0 for
an integer m = 0(modp) in the above definition for
mp,. (u)

Indeed, first observe that from ([ST], 1.4.18) together
with Theorem 1.11 we have that:

9(E/K) = g(E;/K). (51)
i=1

On the other hand, by Theorem 1.13, each Artin-
Schreier subfield Ey/F has the form

E)\ :]Fq(ﬂj,y)\) (52)

where ¥4 —yx = A p(z) and A € W — {0}. Now, since
p(z) € Fylz], then each place of F' different from Pu, is
unramified in E), in this way, from ([ST], I111.7.8), the
genus of Fy /K is given by

p—1

g(EN/F) = “Q‘*(T”I%Q(A () — 1), (53)

Now, since there exist exactly ¢ different subfields of
Artin-Schreier, then there are A1, ..., Ay in W such that,
each one of those Artin-Schreier subfields have the form
E\, = Fy(z,y»,). Finally, from (53) and (51) we have
the result.

Next, we exhibit a technique that allow us to count
the rational places of E/K. For this, we will denote by
C(E/F), the induced curve by the function field F/K.

Lemma 2.5. Let us consider the polynomial

pi(T) = u(T) = t, (54)

where t € F,, and p(T) are defined as in (47). Then, for
x € Fy, there exist y € Fy such that (z,y) € Fq x F,
belongs to C(E/F) if and only if ¢;(x) = 0, for some
teF,.

Proof: Let us suppose that exists y € F; such that
(z,y) belongs to C(E/F), it is to say, a(y) = p(z). Since
a(y) € Fp, then by taking ¢ = a(y) we obtain the de-
sired result. Reciprocally, if p(z) = t for some ¢t € Fy,
and since the function a is surjective ([L-N], 2.23), then
a(y) =t for some y € Fy, it is to say, u(z) =a(y). N

Lemma 2.6. With the above notations, u(a) =
a(f(a)) for all « € F,.

Proof: By the division algorithm, there exists
h(x), Re(a(f(x))) € Fylx] such that

a(f(z)) = h(@)(z) + Re(a(f(2))),
with degree (Re(a(f(x)))) < degree (¢(x)). Then,

n(x) = Rela(f(z))) (55)

= a(f(z)) — h(z)(x) (56)

and since f(a) = 0 for all @ € F,, we have pu(a) =
a(f(e)) =

As consequence of all the above mentioned we have,
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Theorem 2.7. The number of rational places of the
elementary abelian p-extension defined by (47) is given

by
N(E/Fg) =p"" Y deg(ged(pi(x), £(x))) +7, (57)

teF,

where, v denotes the number of rational places of E
coming from the ramification, which is one or zero.

Proof: For fixed x € F,, we have that (z,y) is a
rational point of the curve C(E/Fy(x)) if and only if
y = f(z) + o, where « € W. In fact, if (z,y) is a
rational point of C(E/Fy(x)) then

aly — f(x)) = a(y) — a(f(z)) = p(x) — p(z) =0, (58)
therefore y — f(z) € W. Reciprocally, if y = f(z) + a,
where o € W, then

a(y) = a(f(2)) + a(e) = p(z) (59)
and therefore (z,y) is a rational point of C(E/F,).
Now, for each z € F, such that ¢,(x) = 0, we have
p"~1 = deg (a(T)) places of degree one of E. Addition-
ally, since for all place P of F different of P,, P is
unramified in E, then v =1 or 0. Therefore,

N(E/Fq) =
= deg (a(T)) {a € Fq : (3t € Fp)(pe(a) =0)} +7 (60)
=p" 'Y G+, (61)

where C; = {a € F;: (o) =0} y t € F,. On the
other hand, if d;(z) = ged(pi(z), £(x)), then di(a) = 0
if and only if o € F,; and ¢4(a) = 0 and since di(x) is
separable, then |Cy| = deg(d:(x)). |

3. Examples

In this section we give examples of elementary
Abelian p-extensions of the kind given by (47). We
will to consider the particular case when n is odd and
flz) = 27" with k = (n—1)/2 and we will determine
the genus and the number of rational places of these
extensions using the formulas (49) and (57).

Example 3.1. If p =2, and n = 3, then k =1, ¢ = 8.
Also,

fl@) = a2 (62)
a(T) = T*+T?+T, (63)
p(x) = Re(a(f(x) =2 +2° +2°  (64)

in this case, there are exactly t = 3 different subfields E
which are Artin-Schreier extensions over F'. For all A €

(W —{0})/F% we have vp__ (A-pu(x)+p(2(z))) = -5<0
and since —5 2 0(mod2) then, from ([ST], I11.7.8), we
obtain mp__ (A-p(x)) = 5. Observe that this value is in-
depend of the root A, therefore there exist exactly 3 dif-
ferent Artin-Schreier extensions generated by such roots,
and in accordance with (49) we have

g(E[F) =" @E-1)=6 ()

Now, for the number of rational places we have that
ged(po(z), 0(z)) = z*+2° 4z, (66)
ged(p1(2),b(z)) = a*+2°+22+z.  (67)

Since, the place Py, of F is the only place that ramifies
in the extensionE/F then by (57) we have

N(E/Fs) = 4(4+4) + 1 = 33. (63)
This is the best value known. See [VV].

Example 3.2. Taking p = n = 3, then ¢ = 27 and
k=1. Also,

fl@) = at (69)
a(T) = T°+T*+T. (70)
p) = Re(alf(x) =22+ +at (T1)

Then ¢ = 4 and for all A € (W — {0})/F} we have

vp (A-p(z)+p(2(x))) = =10 < 0 and mp__ (A-p(z)) =
10. Therefore,

9(E/K) = %(4)(10 —1) = 36. (72)

Now,
ged(po(), l(z)) = 2% +2" + (73)
ged(pr(z),0(z)) = 5+ 2t 4 22, (74)

ged(p2(x), £(x)) e+t ot 11, (75)

and since Py is totally ramified and rational in E/Fa;
then we have

N(E/Fy;) =9(9+6+12) +1=244.  (76)

We do not known any function field over Fa; of genus
36 having more than 244 rational places (see [VV]).

The following table contains the values obtained for
the genus and the number of rational points by taking
different values for p and n, also we compare this values
obtained with the Thara’s bound.

g Thara N
60 [383,542] 513
504 | [5965,8437] | 8193

1080 | [17549,24817] | 19684

w3

ol 3| oy 3
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