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Abstract
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Known results on orthogonal systems and permutation polynomials vectors over finite
fields are extended to modular algebras of the form L, = K[X]/(p(X)"), where K is a finite
field, p(X) € K[X] is an irreducible polynomial, » = 1,2, ..., and to the algebra of formal
power series L[[Z]], where L1 = K[X]/(p(X)) = L.

Key words: Permutation polynomial, orthogonal systems, permutation polynomial vec-
tors.

Resumen

Resultados sobre sistemas ortogonales y vectores de polinomios de permutacién se extien-
den a las dlgebras modulares de la forma L, = K[X]/(p(X)"), donde K es un cuerpo finito,
p(X) € K[X] un polinomio irreducible, v = 1,2,... y al dlgebra de las series potenciales
formales L[[Z]], donde L1 = K[X]/(p(X)) = L.
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1. Introduction.

Let K be a finite field, K[X] its ring of polynomials
and p(X) € K[X] an irreducible monic polynomial. It is
known that L = K[X]/(p(X)) is a finite field and that
L, = K[X]/(p(X)"), v =1,2,..., are L—algebras (see
infra for details). In previous papers ([1] and [2]) the
authors obtained results about permutation polynomial
over the L—algebras L[[Z]] (formal series over L) and
L, analogous to some known results over finite fields,
Galois rings GR(p™, k) and the rings Z/p™Z (see, for
example, [5], [7], [8], [10], [13] and [14]). Permutation
polynomial, find applications currently in cryptography
and coding theory (see [4] for more references).

In this paper we deal with systems of polynomials in
L[[Z]] and L,, obtaining results than in some cases lead
to construct new permutation polynomials. The systems
we are interested in are know as orthogonal systems and
permutation polynomial vectors. These systems has be-
ing studied by NIEDERREITER in [6] when the coeffi-
cients of the polynomials are in finite fields. Moreover,
WEI & ZHANG in [12] and SHIUE, SUN & ZHANG in [§]
extended some of these results to certain finite rings.

2. Preliminaries.

In this section we recall some properties of L, and
L[[Z]] needed for the best understanding of what follows
(see [3], [9]). Here the elements of L, will be denoted by
a(z,) =ag+a1z, +04223 +... —|—ozl,_1zlf_1, (v=2,...)
wher z, is the class of equivalence p(X) modulo p(X)”.
The elements of L will simply be denote by a. It is
known that

L{[Z]] = {a(Z) = Z iz a; € L}

is a local ring with maximal ideal (Z), and
Oc...c(z")c...c(Zz®c(2)

are the only ideals of L[[Z]]. Also, L[[Z]]/(Z¥) =~ L,, and
L, is a finite ring with ¢” elements, (v = 1,2,...,) when
L has ¢ elements. Thus L[[Z]] is the projective limit
of the projective system of L—algebras (L, (7v,u)v<u),
where

WV#:L#—>LV

E azz »—>an E a;z

and

my : L[[Z]] — L,

Ty
E azZ"—>an E ;2

=0

is the canonical projection.

If f(t1,...,tn) € L[[Z]], its reduction f,(t1,...,tn)
modulo (Z¥) is the polynomial in Ly[ty,...,t,]
whose coeflicients are the classes modulo (Z%) of
the coefficients of f(t1,...,tn). Clearly, if v < p,

Wu,u(fu(tlv cee ,tn)) = fy(tlv cee 7tn)'
If

p—1 p—1
_ % 7 n
Ty = g T1iZps E Tn,iZy, | € Lu
i=0 i=0

is a zero of f,(t1,...,ts) and v < pu, we say that 7,
is a descendant of T, if m,,(7,) = T,; obviously, if
that is the case, f,(7,) = 0, and we also say that 7, is
an ascendant of T,. Moreover, if 7, € L] is a zero of
fo(t1, ... ty), thenin L7}, v <y, 7, has at most g =)
descendants, if any.

A zero T, € LY of f,(t1,...
singular if
3f1(7T1,u(Tu)) _ af1(71,0, s ,Tn,O)
ot ot
for some j = 1,...,n. Otherwise 7, is called a singular

zero. It is clear that any descendant (resp. ascendant) of
a non-singular zero is a non-singular zero.

,tn) is said to be non-

£0

3. Orthogonal systems and permutation
polynomial vectors.

In this section we introduce definitions and some re-
sults on the systems we are interested in. For a given
commutative ring R, and R[t1,...,t,], and a an ideal of
R, W. NOBAUER [7] introduces the notion of permuta-
tion polynomial modulo a and also the notion of regular
polynomial if R/a is a finite set. In [1] we proved that
a permutation polynomial modulo (Z") is also a regu-
lar polynomial in L[[Z]]/(Z"). More precisely, we prove
that f(t1,...,tn) € L[[Z]][t1,...,tn] induces a permu-
tation polynom1a] over L, if, and only if, the equation
fu(t1, ..., tn) = a(z,) has exactly ¢"(=Y solutions for
each az,) € L,.

Accordingly to ZHANG ([11], [12]) this means that
the polynomial f(t1,...,t,) € L[[Z]|[t1,...,ts] Induces
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a permutation polynomial over L, if, and only if,
fo(t1, ... tn) is a uniform map.

The system f1(t1,...,tn),-.., f(t1,...,ts) of poly-
nomials in L[[Z]][t1,...,ts], kK < n, is said to be an or-
thogonal system over L, if the map L" — L* given by

(foilar(zn), ..., 0n(z0))s .o, for(oa(z), ... an(2)))

for (a1(2y), ..., an(2,)) € L is a uniform map over L,,
i.e., if the system of equations
fl/71(t17 cee 7tn) = al(Zu)
fl,72(t17 e ,fn) = ag(zu)
(1)
for(ti, . tn) = au(zy)

has ¢*("~%) solutions in L7, where f, ; is the reduction
of fj in L[t1,...,tn]. If n = k, the system is called
permutation polynomial vector (PPV) over L,.

Is clear that when k£ = 1, an orthogonal system is a
permutation polynomial.

Proposition 3.1. Let fi,..., fx € L[[Z]|[t1,--.,txn]-
If f1,..., fx is an orthogonal system over L, then it is
an orthogonal system over L, _1. In particular, it is an
orthogonal system over L.

Proof. Let f1,...,fx € L[[Z]][t1,...,tn] be an or-
thogonal system over L,. Then the system

fo—ia(ti, oo tn) = aa(z—1)
foo12(tt, ... tn) = aa(zu-1)

(2)
fz/—l,k(th .. .,tn) = ak(z,,_l).

has solutions B(z,—1) = (B1(2v-1),--.,8,(2v-1)) in
L7 . Let N be the number of these solutions. Each
of them has ¢" descendants. On the other hand, from
(2) we see that there are ¢* systems of the form

fl,71(t1, e ,tn) = al(zl,)
fl,72(t1, e ,tn) = ag(z,,)

3)
fu,k(tl, - ,tn) = ak(zu)

each of which has, by hypothesis, ¢"("~*) different solu-
tions, i.e., taken altogether all the above ¢* systems will
have ¢"("~%)¢* different solutions. Since each solution
descends from B(z,_1), then

ql/(nfk)qk _ Nqn

therefore, N = ¢=D(=k) So f1,..., fx is an orthog-
onal system over L, _;. O

Corollary 3.1. Let fi,...,fn € L[[Z]][t1,---,tn]
be a permutation polynomial vector over L,, then

fi,--., fn Is a permutation polynomial vector over L, _1.
In particular is a permutation polynomial vector over
L. |

Proposition 3.2. Let fi,..., fr € L[[Z]][t1,.--,tn]
be an orthogonal system over Li = L, and such that
the zeroes of f1,(t1,...,tn) — o are nonsingular for all

«a; € L. Then f1, ..., fr is an orthogonal system over L,,
v=1,2,...).

Proof. Let N be the number of solutions of (1), where
ai(z) = a0+ ;120 +. .. +a;,—125 1. We obtain the
system

Jra(t, ... tn) = a1
fio(ty, ... tn) = aay
(4)
Jre(te, ..o th) = arpo
n—k

which has ¢ solutions. Since the zeroes of
fri(ti, ... tn) — a0, @ = 1,2,...,k are non singular,
each of the polynomials in (3) has exactly ¢*~1m=1)
descendants in L, ([1, lem. 2.2 ]). All of them are not
different, since otherwise each zero of (4) would have
kq™(*=1) descendants and since each element of L can
be viewed in ¢"*~1) ways in L,, then for k > 1, a zero
of (4) would have more than ¢"(*~1) ways to be viewed
in L,. On the other hand, if £ = 1 then the proposition
is true by proposition 3.1 in [1]. Now, if these descen-
dants were the same for each polynomial in (4), then (3)
would have ¢"¥¢(*~D (=1 different solutions. Then the
system would have

qkuq(n—k)q(u—l)(n—l) — qku-l-n—k—i-nu—l/—n+1

— qnuq(ufl)(kfl) > qm/
different solutions, thus for v > 1, k£ > 1. But this con-
tradicts, the cardinality of L.

Therefore, the number of descendants, let us say D,
contributed, by each polynomial in the system (4) to the
solutions of system (3) is such that

q(nfk)DqVk _ qnz/.

Thus, D = ¢ D™=k and the total number of so-
lutions of (3) is ¢(»~R)gr=1(n—k) "R e,
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fi,-., fr € L[[Z]][t1,...,tn] is an orthogonal system
over L. O

Corollary 3.2. Let fi,..., fn € L[[Z]][t1,.-.,tn] be

a PPV over L such that the zeroes of f1 ;(t1,...,tn)—
are nonsingular for all «; € L. Then f1,..., f, isa PPV
over L,,. O

The following propositions are extensions to L[[Z]] of
results known in finite fields, see [6].

Proposition 3.3. Let v > 1 be, f € L[[Z]][t1, .- -, tn]
and n > 2. Let fo,..., fn € L[[Z]][t1, - .., tn] be polyno-
mials such that f, fo,..., fn is a PPV over L, then,
fw), the projection of f in L,[t1,...,t,], is a permuta-
tion polynomial.

Proof. If f, fa,..., fnisa PPV over L, then, for all
(a1(z0), ..., an(2,)) € L7, the system

f(l/)(tla s 5tn) = al(zl/)
fl,72(t1, P ,tn) = ag(zl,)

()
fon(ti, . tn) = an(z)

has a wunique solution. Therefore the equation
foy(t1,...,tn) = ai(z,) has at least one so-
lution in L,. Let (ai(zn),ah(z,)...,a0(2)) #
(a1(zy),...,an(z,)) € L. The system

f(t/)(tla . atn) = al(ZV)
ft/,?(tla . atn) = a/2(zl’)

(6)
Jon(ti, ..o tn) = oy (2)

has again a unique solution, different to the solution of
(5), because, otherwise, (av1(2y), @5(zy) ..., (z,)) =
(o1 (z), - -+, 0n(2,)). But this can be done in ¢!
ways, i.e., for ai(z,) € Ly, foy(t1,... tn) = a1(2)
has at least ¢¥("~1 solutions. If there is one more so-

lution, say (B;(zv),-..,8,(z)), we can construct the
system
f(l/)(t17 e atn) = al(Zu)
fl/,?(tla cee ;tn) - 02(21/)
(7)
f,jm(tl, . ,tn) = 9n<Zy)

where

fu,2(/81(zu)7 s )6n(zl/)) = 02(Zu)7

fom(Bi(z0), -+ Bn(2) = On(2),
system that necessarily is one of previous systems (6).
Therefore f(,(t1,...,t,) = a1(2,) has exactly ¢"("~Y
solutions, thus f(,(t1,...,t,) is a permutation polyno-
mial. ]

Corollary 3.3. Every polynomial in a PPV is a per-
mutation polynomial. U

Proposition 3.4. Let fi1,..., fi € L[[Z]][t1,- -, tn],
1 < k < n be an orthogonal system over L, and
B1(2),...,8(z,) € L, and at least one them a unit.
Then the polynomial

,Bl(zl,)f,,J(tl, ey tn) + . —|— ,@k<2’y)fy7k(t1, - 7tn)

is a permutation polynomial over L,,.

Proof. Let be A(z,) € L,. We see that the number
of solutions of

ﬂl(ZV)fV,l(tla"';tn)+~o~

+8L(z) fok(t, .o tn) = A(zw)
is ¢*("=1 . By hypothesis, the system,
foa(ti, ... tn) = a1 (zy)
foa(ti, ... tn) = ca(zy)
(8)
for(ti, ... tn) = ag(zy)
has ¢¥("~*) solutions, thus
ﬂl(ZV)fu,l(tla oo tn) = By (z)oun(z)
Ba(2v) fua(tiy ... tn) = Balzw)aa(2)

Bi(zu) foalt, ..o tn) + ...

Bz ) fun(ty, .. tn) = Br(zv)ou (2)+
et Br(z)ak(zy)
(9)
is equivalent to (8). Since 3,(z,) for some i = 1,...,k

is a unit, then (9) has ¢"(»~*) solutions, i.e.,

Bi(z)foi(tr, .y tn) + .o+ Be(zo) for(t, .- tn)
=B (z)ai(z) + ...+ Bi(z)an(z)
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has at least ¢”(" % solutions. Now, the polynomial

g(t1, .. tn) = Bi(z)t1 + ... + Br(2zu)tx is a permu-
tation polynomial, and for A(z,) in L,, the equation
By (2t + ...+ Br(z,)tk = A(2,) has ¢"*~1 solutions.
So, the equation
I@l(Zy)fy,l(tl, c.. ,tn) + ...
+/8k(zl/)fl/,k(tla s

(n—1)

7tn) = A(Zu)

v(n—k) g (k—1) solutions. .

has ¢ =q"
Corollary 3.4. Every polynomial in an orthogonal
system is a permutation polynomial. O

Proposition 3.5. If
ﬂl(zl/)fl/,l(tly QI 7tn) +...+ ﬂk;(zu)fu,k(tlu .. 7tn)7

1 < k < n, is a permutation polynomial over L, and the
zeroes of f, ;(t1, ..., tn)—a(zy), i = 1,..., k are non sin-
gular for all a(z,) € L, and B1(2),...,B,(z,) € Ly,
where at least one them is a unit, then fi,...,fx €
L[[Z]][t1, - - -, tn] is an orthogonal system over L,,.

Proof. If
/61(Zu)fu,1(t17 e 7tn) +...+ ;Bk(zu)fu,k(tla s 7tn)

is a permutation polynomial then 51 ¢ f1,1(t1,...,t,) +
coo + Brofir(ts, ..., tn) is also a permutation poly-
nomial ([1, lem. 3.3 ]). By hypothesis, the zeroes of
fuvi(ti,...,tn) — a(z,) are non singular; then by the
corollary to theorem 2 in [6], the system f1,..., fi is
an orthogonal system over L and by proposition 3.2
fi,..., fr is an orthogonal system over L,,. O

Proposition 3.6. Let fi,..., fr € L[[Z]][t1,.-.,tn]-
If fi,...,fx is an orthogonal system over L,
then for all permutation polynomial ¢(yi,...,yr) €
L{[Z)][y1, - - - yx] over L, the polynomial

go(foa(te, o itn) s for(ta, o tn))

is a permutation polynomial.

Proof. Let be a(z,) € L,. Since g is a permutation
polynomial, g, (y1, ..., yx) = a(z,) has ¢**~1 solutions

(B1(20),...,Br(z,)) in L, and the system
wal(th s 7t’n«) = ﬁl(zl/)
fV72(t17 e 7t’n«) = ﬁQ(zu)
fok(te, ..o tn) = Brzy)

has ¢"("*) solutions. But fi,...
system over L, and, therefore,

gy(fy,l(t:l’ . 7tn)7 .. .7fy7k(t1’ e ,tn)) = a(Z,,)

has ¢7(F=Dgv(n=k) = g»(n=1) golutions, i.e,

gu(fu,l(tla .. .,tn), .. .,fmk(tl, e ,tn))

is a permutation polynomial over L. O

, fr 1s an orthogonal

Proposition 3.7. Let f1,..., fr € L[[Z]][t1,. -, tn]-

If

gu(fu,l(tla . ,tn), ey fl,“lf(tl, - ,tn))
is a permutation polynomial over L, for all permutation
polynomial over L,, g(y1,...,yx) € L[[Z)]ly1,--- Ykl
and the zeroes of f,;(t1,...,t,) — a(2,) are non sin-
gular for all «(z,) € L, andi=1,... k then f1,..., fx
is an orthogonal system over L,,.

Proof. Since ¢,(f1,..., fx) is a permutation poly-
nomial, for all permutation polynomial g,, in particu-
lar it is a permutation polynomial for g(y1,...,yx) =
B1(Z)y1 + ...+ B (Z)yr, where at least one 3,(Z2) is a
unit. Then by proposition 3.5, the system fi,..., fr is

an orthogonal system over L,,. O
Proposition 3.8. Let fi, fo, ... , faq1 €
L{[Z]][t1,--.,tn] be a polynomials system. Then there

exist coefficients 3,(Z),...,B,,1(Z) € L[[Z]], where at
least one of them is a unit, such that
B1(Z)fi(te, ... tn)+Bo(2) faltr, .. tn) + ...
+ 18n+1 (Z)fn+1(t1a s atn)

is not a permutation polynomial.

Proof. Let B,(Z2),...,B,41(Z) € L[[Z]] where at
least one of them is a unit. If the polynomial
B1(2)fi(te, ... tn)+Bo(Z) fa(tr, .- ytn) + ...
+ Ign—‘,—l(Z)fTH-l(tla s ’tn)

were a permutation polynomial, then the polynomial

/Bl,Ole(th e ,tn)+/6270f172(t1, . 7tn) + ...
+ /6n+1,0f1,n+1(t1, ceaytn)
is also a permutation polynomial with (83, o, ..., 8,1,0)

different from (0,...,0). This contradicts [6, theor.
4]. O

Proposition 3.9. If f1,..., fi € L[[Z]][t1,-..,txs] is
an orthogonal system, then any of its nonempty subsys-
tem is again an orthogonal system.
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Proof. If fi1,..., fx is an orthogonal system then
fia(ts, .. tn) = a1
(10)
fie(te, ... tn) = aro
has ¢"~* solutions. The lemma is proved, without lost

of generality, if the system

fra(ti, .. tn) =aip

(11)

fre—1(t1, ... tn) = ag—1p0
has ¢ (=1 = ¢" %1 golutions. Then, for all
(1,05---,Qp-1,0) € LF=1) the equation (11) has at
least ¢"~* solutions, the same as (10). If we take
(@405 Q1 0sQk0) # (1,0, -, Qk0), then again for

this k—ple (10) has ¢" % solutions, which are differ-
ent to the initial ones; therefore for each a0 € L, the
equation (11) has ¢"~* solutions more. In total (11) has
¢ *q = ¢ **1 solutions. O

Corollary 3.5. If f1,..., fn € L[[Z]][t1,...,tn] Is a
PPV, then any of its nonempty subsystems is an orthog-
onal system.

Proof. 1t is clear from Proposition 3.9 and the defi-
nition of PPV. O
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