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Abstract
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In this paper we present new properties of restricted range polynomials to those developed by
L. Rédei in ([1]), we exhibit a new method to determine their exponent set and use them to
construct curves over finite fields with many rational points.
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i= an affine plane algebraic curve (over the finite
field Fy) and the points P = [0, 3} € Cp such that
o, 7)€ Fy x Fy are called rational points over 5.

Iow 190400 Amcled Wil ]:lnnnm'| the Riemann h}-]:nlhﬂ:iﬁ
for eurves over Oolle Gelds. As an mosediate corollary
he abtained an upper bound for the mumber of rational
psints on & geometrically irreducible ponsingular curve
Coof genus g over a fnite field of cardinality g, namely

[CIFQ) < g+ 1+ 29y, (=)
where C(F,) denotes the set of rational points of the
e O

The interest of polynomials with & restricted range
resides mainly in its applications to the construction of
curves over finite fields, such constructions arme often per-
formisd wsing special polynomials pla) € Fglr]. The es-
sential properties of plx] ace somelimes of the following
form:

Property 1. One hes that p{F,) € F,,, and for most
elements a € Fy, a is a simple root of p{x) ~ pia).

Property 1. The st £ = {"r £ Fgplz] — v has
rnuliiple roots in Fu} has low cardinality, and one has
i miee deseription of Che muoltiplicities of the roots.

Polvnomials that satisfy the property [ are known as
(F,. Fpl-polynomials, The goal of this work is consider
those introduced by L, Bédei in ([1]). We present a
different point of view which allows us to prove new
propertics, [See Bections 2,3,4.)

We use (F,.[F,}polynomiale again in Section § to
construct curves over Fy with many rational points ie,
the cardinal of the set C(F;) is close to the Weil bound

().
2 Polynomials with a Bestricted Range.

Definition 2.1. A polynomial f{x) € F,|r] is a re-
stricted range polynomial if fla) € V & F, for some
proper subset of Fy and for all o € F,. In particular,
when ¥ o= Fy, we say that f{z) s a (F,, Fs)-polynomial,

Remark 2.1, A olissicnl example of restricted range
polynomial s the trace polynomial Tre e (x] =

44 2f4xeFr.

Definition 2.2. A nonzero (F,. Fp)-polynomial fiz) &
Fylx] will b called minimal, if deg f(z)) < g— 1 and

nomee its proper partial sums is a (Fy, Ful-polynomial,

Example 2.1. Let o aroot of f(x) = o'+ 2+ 2 € Fy[x].
Then, the polynomial kiz) = o’z + oz" € Fylz| is a
minimal (Fy, F3l-polynomial. In fact, deglhiz)} = &

and all its partial sums o’z and o"z? are not (Fy, Fy)-

The p-adic development  of & positive Integer a ls
glwen bw

a=kot+pky+ itk +o o
where the numernls &y satishes by < plorall 7 =0,1, ...

Let ky+p ky + pthg + -+ p™ k., be the p-adic devel-
opment of @, We will denote by a”the integer number
obtained after applying the permutation

0" =k + p o+ 0k 4 4 P ko,
and will be called eyelic numeral permutation. By ¢
we will understand the iteration & times of the numeral
cyelic permutation, The peried of a is the small natural
integer i{a) such that o™ = a.

A pecycle s an ordered set (o,a”, rJ.r':I...,r.ll-'J"-:|I I}.

The process of determining the peveles in the set

fy—r = {1,2,...,q =1} play such an important role in
this work, that we present in detsil some propertics re-
lated to these eveles as well as the form of determining
them,

Let &r = (o) be a eyclic group of order i, The group
(s mets on the set £ as lollows
prlwde y — I
(a* @)= (p" ilgor, k=01, n-1
where, (a)q-1 is the residual class @ modulus g - 1.
Theorem 2.1. For cach ¢ © [, the p-oycie

(i, 47,7, s the orbit of i with respect to the
action g above,

Proaf: Tet us soppose that @ € {0,1,...,0 — 1} has
peadic devalopment

i=dg+ap+iapt o tinap™ )

then
=iy tigp+igp? + 00 b dp_gp" L.
Therefore, we have that
pi — i =dgp+iyp® + - Fig_p"—
(im—1 4 ipp 4+ 11p® + + « +in_ap™1)
- ill—]':_']' - l]‘
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and in consequence i @ pi (mod (g = 1)) O p=z
Corollary 2.1, Ifg = p" and 5 = (0.0, ..., gy ) s g=16 (18)
a preyele, then 5. (5, 10
(1.2,4,8) (3, 6,12,9)
Proof: Tt is known ([7], I1,4.3) that, if G acts on & set (7, 14,13, 11).
5, then 3, = {g € O] g2 = x} i5 a subgroup of &F and )
the cardinal number of the orbit £ = {g-z|g € G} of x, ¢ =04 zgfj.n]
i5 (0 Gz ), the index of Oy in £, O m 18, 36) (37, 54, 45)
iti . —evicle . (1,2,4,8, 16,32) (3,6, 12,24, 48, &1}
Proposition 2.1. Every p-cyele has the form (5. 10, 90,40, 17, 34) 714, 38, 56, 40, 95)
D= (i, pi,. . P (P S (11,22, 44,25, 50,37) (15, 26,52, 41, 19, 38)
(ot 0 0 g (D) (15, 70, B0, 57, 51, 3%) (23, 46, 20, 5843, 53
whoere £ 4 1 is the length of 53 and & > 0 s the smallest (A1, 2, 65, 58, 55, 47)
integer satisfring p¥i < g — 1< pEtli,
p=3
Proof; Bince
_ g=2 (13) (26)
P Hi=rlg— 10+ (311, (1,39 (2.6,13)
{4, 12, 10) (5, 15, 19)
then (7.21,11) (8,24, 20]
_ (14, 16, 22) {17, 25, 23)
P = ppt) = (rpt g — 1)+ (1)1 )ay 7=81
(1]
whiere (40 (&0
o - . ; (10, ) (20, )
ple* Mgy = mig — 1) + (p(p"Milg1dgor. (2 {50, 710}
o (1,3, 8,27 {28, 18, 54)
This implies (4, 12, 36, 28) {5, 15, 45, 55)
Pl b (7,21, 63, 29) (8, 24, 72, 56
(" ilg—1 = (plp* Eg—nlg—1- i) (11,33, 19, 57) (1%, 39, 37, 1)
0 (14, 42, 46, 58) (16, 4864, 32)
(17, 51, 73, 58) (22, 6, 38, 34)
Definition 2.3. An integer ¢, generates the povele 53,
if (23,60, 47,61) {25, 75, 65, 35)
. ; (206,78, 74,620 (41,43, 49, 67)
F= (it P ) (PR (44, 52,76, 68)  (53,79,77,71)
and i < [pFH8),_ for j=1,... -k p=3
Example 2.2. The set {3,6,5} is a Z-cycle of period 3, g=24 () (12)
generated by 3 In fact, since (18) {24)
(1.5] (2, 10]
3=2"-1+2'-14+2%.0 (3,15) (4,20)
7,11} 8, 16)
I S S (9,21} (13.17)
G=2"0+20 14271 (14, 22) (19, 23)

E=2"14+2'.04+2%.1
we have 3" = @, 8" = 5 and 5'' = 4,

Definition 2.4, The p-adic weighh i, of 8 pumber § i=
the bigger of the numerals present in their poadic devel-
opment,

Example 2.3. Tn the following tabde we exhibib the il

ferent pecveles for p= 2,3, 5 and g = p" for soome values The pradic welght of a st A 8 the maximum of the
of n. set of pradie welghts of elements of A, Parcieularly we
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will denote by o the peadic welght of the exponent
sel of the polynomial flx) which we will call the peddie

wedght. of ).

Definition 2.5. A polynomial f{z) € Flz| will be called
a p-polynomial if their exponent set e ) satisfies

afic{oLpp+1p... P e+ 10,
P+ +p+1,.0)

Definition 2.6, A polynomial fiz) € Flz] will be called
p-linear if f** = 1,

In accordance with [2.6) in later sections, we will be
interested in determining those polynomisls flz) € Flz]
whose exponent set €] ) has weight one, that is, we want
to detormine those elements § € Iy, such that i, = 1,
By theorem {2.1] and proposition (2.1} will suffice to de-
termine those elements that generate p-cyeles of weight
ot Firstly observe thet we have 2% — 1 clements of
Foe1 of weight one, We will procecd as follows; Let us
denote by By the quetient ring

Ry 1= Fyle]/ {z" + 1)

and by J',:_] the subset of {,_, containing all elements
of weight one. Then we have the following bijections

I, = Frwie R,

i=dp+ees tinogp" e (i in)
n—1
i) =Y gt
he=i1
with fi(p} =i.

Ifj e I} ) and f;(0) =0, then there exist fi(z) € Ry
such that fj{z) = a7 fi(x) with fz(0} = 1, this means
that j = p"f where { = fiip).

Mow, we are interested in determining all elements
i £ fp_y such that i = 1{maod g}, equivalently, those
polynomlals fix) € My such that f{0) = 1. This re-
duces our search to apalvee 3" 1 — 2 alements in &,.

However, there exist polynomials fiz) © Ry such
that fi0} = 1 but the ehement fip) € f;_1 does not
generates peoyclos,

For example, for f{z) = #* + 2* + 1 € By with p =3,
F(3) = a7, but 37 does not generate & 3-cycle, in fact
a7 € (13, 31, 37, 30) which is generated by 13. This oe-
curs becanse the polynomial fiz) = z* + =* 4 1 can be
soen &s Tog(r) with giz) = 2 + x4+ 1 and g(3) = 13.

More generally, il we dencte by H the cvelic group
flz, ... 2" 1] then we define an action of i over R,
s follows

ol ow R, —
(=%, flz)) — 2* - fiz).
This aetion beads us Lo doteoduee the Tollowing terminal-
oy IF
Jleg) =™ 4™ pgm-dz 4 gam-de e R,
with 1< 43 <4< ... < g Sm—1and m < n—1, we

will zay that fiz) can be fctored il there exist 5 such
Lt

_.r|:I.:|=J'.rM +.'l.'""_'1' +._._Ia.||—l;if+u_r|.+rru—_|:.||,
+___+_T1|-1r|. _1',-+T1I

= pm—ie {TJ! 4+ 4 oplemde-n oy g pivbde—des

... Il'l-—m+_l.-:|

and m + §e = Jeg1 < m oor w4+ §r = Jeg m and
ot Je=Jeqpa < Me=j1 OT R+ Je=jeps = WM, N+ Je=Jepa
m o= j1 and % + Je = Jeys < m — §3 and so on,

If such §y doesn’t exist, then we say that f{x] cannot
he factoved, case in which f{p) generates a p-cycle of
weight ome.

Dhserve that to say “that fix) can be fetored”, re-
JL”:," means thiat _,FI:'.':.'.:I l}l,‘:]rl-CIIHH tey thee orhit of soane el
el of fg .

Mow we want to determine all pelynomials flz)] € B,
such that f{0) = 1 that cannot be [actored, Unforto-
nately to determine all the non factor bled polynomials
i= a very difficult task. The following lemmas give an
approsch to the solotion of this problem.

Lemma 2.1. f{x] € f, with fi0] = | and deg([] <
)2 cannot be fackored.

Proaf: Let fix) = g™ 4™ W pp™m R ™
with 1< 3y < go < -0 < Je = s — 1 amd o < w2 IF
there exist ¢ such that

_||rl:.'|":| =J._r-u—_ir {I.:ll' 4.+ I.:ir—Jf—n +1 +1.rt-l-:|r—:|'.l-r|
+o ) = g,
then we have

degig{z)] = n + j¢ — jes1 = M+ m+ fy — jr4q >m
= deg(fix)). 0
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Lemma 2.2. Let fz) = 2™ + g™ 8 & g"mds 4 4
gt le Bpwithl <1< fe<...< Jr = m=1and
m = n— k. If there exist £ € {0, 1,...,7} (here jo = 0)
siech thal j¢ — 351 > k then fixz) can be factored,

FProaf: Observe that f(x) can be write as
f[m} = mlﬁ L Iﬂl'j'_ +TIII — iz ok Ir.ll-jf_| + _E'H'I-‘lll—_lg

oo T g

therefore
filx) = 2™ 1gix)
with
glz) =zf-1 4 414 Pt g pR=feptle
e L L B
and deg(g{x)) =n—j¢ +Je-1 <n— k. O

Corollary 2.2. Let f(z) € R, with deg{flz)i=n—-1
and f(0) = 1. Then f(x) can be factored if and ondy if
i)z 24+ 424+ L.

Proof: Since fz) £ 2™V 4224 4284241,
there cwist jp such that §e — fe—y > 1, then the corollary

follows by lemma [2.2). O
Corollary 2.3. The polynomial f{r) = 2™ + 21 4
e Al wikth <o — 1 canmof b fataored.

Proafl: For all 1 < & < m — 1, the polynomial
;rk_i_a_k—l ... 1-]-|-.1':“_|' + -|-+I“+I_m+k+i-'ﬂ_m+k
has degree n — 1 = m. |

Corollary 2.4. The polyoomial f(x] = =™ + 1 with
m < — | can be factored i amd cnly iF 2m = 5.

Proaf: It is clear shnee f{z) = 2™[1 + 277™), O

Example 2.4, As an illustration we will exhibit all the
generating elements of cycles of weight one for n = 4,5
gnd p = 2,3, For n = 4, by lemma [2.1) and by corollary
(2.2) the polynomials

filz)=22+z+1 filz}=1

falz) =2 +1 filz)=+zf+z+1

fala) = +1
cannot be factored, therefore each one of fi(p) generates
cyches of weight one, then for p = 2 we have that the ele-
menks {7, 5,3, 1, 15} generate the cycles in Jig, for p= 3
the generating elements are {13, 10,4,1, 40}, For n =5
by lemmal2.1) the polynomials

Nlz)==+z+1 falz)==x+1
falz) =22 41 Jalz) =1

cannt be factored, By corollary (2.2), all the poly-
nomials of degree 4 except the polyvnomial f5lz) =
o+ + 0 + 1+ 1 can be factored.  Finally, analyz-
ing the polynomisls of degree 3 we have, by (2233) that
falz) = 2 + 2% + ¢ + 1 cannot be factored, by (2.2)
Folr) = o + x + 1 pelther and neither the polvisomial
41w (2.4)can be factored, Then remains only to an-
alyaen 2+ 1 bt #4221 = Iz[u""' +x4+1). Then for
g = 2 the generating elements are {7,5,3, 1,31, 15, 11}
and for p = 3 we have the set {13, 10,4, 1, 121,40, 31}

3. Characterization of restricted range
polynomials

I this sectbon we give a characterizatbon of restricted
range polynomials, for which initially we exhibit some
properties of (Fg, Fp)-polynomialz and finally in the ax-
ample {3.1), we caleulate explicitly all the (Fg, Fg)-
polynomials.

Proposition 3.1. (1]} flz) € Flx| is a (F, F,)-
polymomial if and only if

¥ — x| flx) - flz)

Proaf: I fiz) s a [Fy, Fglpolynomial, then f{+] £
Fp for all v & Fq. therefore F{41F = f{+) for all v € Tq.
Il we denote by glz) = fle} — Mlz) then g{+) =0 for
all 4 € Fy and therefore 27 — x | gi{x]. Conversely, if
20— x| Fle® — flz) = glx], since all oot of 27 — 2
iz a root of giz). we have giv) = 0 for all v € Fy then
fl9) = flv) for all ¥ € Fy hence f(y) € F, for all
v € F; from which we conclude that f(z) is a (F,, F,)-
polynicmial. L1

Proposition 3.2. (F,.F,}-polynomials are surjective,

Proaf: Tet g =p" [: F{. — Fj. bt Ul pralyneandal ap-
plication ndueed Ty o] and suppose Lhat ere exist
o £ Fpo~ Im[f). Let {u-| pome g tig b b Lve set of different
geros of [Fp, Fpl-polynomial &, (x) = fir] — a, then
there exist a finite extension, Fym /F; where the poly-
nomial () decomposes completely, therefore Fym =
Folui,....u). Now by (3.1), there exist & polynomial
hiz) € Fylz] such that

®F (2) — B, () = (27 — z)hiz)
and since u; § Fy, d50u;) = 0 implies that fiu;) = 0.
Consequently, again by [3.1), fFlw) — flw) = 0 that
is flz) is a (Fym,Fp)-polynomial. On the other hand,
sinoe

deg(f{z)) € p" — 1 and fP(z) - flz) = (29 — z)hiz)
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then

pdeg(fiz)) = ¢ + deg(hlz}) = " = p""™;
therefore
pm = deg( fx)) < p" -1,
and this is & contradiction, Ll

Since one of our goals 8 Lo koow in detall the sed
of exponents of a (Fy, Fpl-polynomial of Fglx], we shall
comcenteabe on analyzing the behavier of their coeffi-
cients, The next statement 15 a first approximation to
this chjective.

Theorem 3.1, ([1]) A pelynomial f[x) = ET;E: ! €
Folx| i a (Fy, Fpl-polynomial if and only f their coeffi-
cienls sodisfy the follmmng condiltions
£k =::|-€_'|: = pai (ruendfy = "_.;'_." foreg=10,...,q0—2,
gl = t:l{ -
(4)
[l

Meect statement allows us to rewrite the result equa-
ticns (4] of the pass theorem through the vse of the
cyelic permutation .

Proposition 3.3, ([1]) The conditions of conjugation
in [4) can be write as follows

ﬂ-l||=ﬂf,i=ﬂ.....4}—1 [E:l

Proaf: Follows from the prook of theorem (2.1] and
thesrem (3.1). O

Mow, we are in condition of charscterizing all
(Fy, Fyl-polynomial, More procisely we have.

Theorem 3.2, I:[1]:I [Characterization of [Fy, Fgl-
peolynommials) The exposent sels of Uhe minimal [Fy, Fgl-
polynomiale are the p-cyeles af set {0, .., q—1}. For each
proyele 3 all the minimal (Fy, Fpl-polysomialz with ox-
ponent set 3 are
alE]—1 Lo
falz,a)= 3 o2 | acFLa,
=0

where ¢ is an arldtrary bat fxed reprosentative of 33, In
acddition we have all the different (Fy, Fo)-polynominls
ol lewss o erpund clegres foog — 1 by sums of polvoominds
_,I';_-rl::;;. u_:l I:Ti.l'n'ﬂjh‘i.l’]l:riﬂﬁ Lo il fiTeremt :;p'r:i':u:.

Proaf: Let fx) = Ef;,:,] i o (Fy, Fl-polynomial
with * = g — 1 where the cocfficients ag, ..., 01 are

all the solutions of system

Siagn=of ,i=0,...,g=-1.
For o r_._'.-'a_"|r-. S8 o shal] ek I_:q.r S;_-,- the ull_ha}-wl'r-.m af §
conssting of the sguations

i = a0 . i £ 55

i
Since i"' € 3, coefficients o, ..., og_) present in S5 are
those with subscript in 3 (i, e the subsystems Sg
are independent from cach other], By induction, Sy is
epuivadent to Che infnite svstem of eouations
L. i ESK, BE=1,2,....

i =ixF
Then, taking ¢ fxed for & = [5(5) = o(3) have tha
Qen =y,
Therefore
iy £ F'_.ﬁ = F:rm-r: = ':'E]'

Conversely, if we have (5] it = enough to have the svstem
of equations o+« = rz‘}* with i € 3 fixed for the values
E=1,..5% —1 and this equations can be considered
as the explicit solution formulas of system Sz, where all
the unknowns are in terme of oy that are related with
the condition a; € Fuomm, then all (F,, F,)-polynomial
are writen in the form
ol fEi—1

SOy e

Wi g— 1) Rl

flz) =

0

Remark 3.1, Observe that in the proof of theorem
(3.2) ench cycle 53 hos sssociated a system of equations
Sz whose solution leads us precisely to determinate the
coclficicnts of the minimal (Fy, Fgl-polynomials, Ooe of
such solutions is the trivial solution n,-n" = 1. The fol-
Iowing result gives us an casy way 1o determine those
[Fy Fol-polynomials such that oy = 1. Before stat-
ing Lhe result we need 1o establish some nodation: 17
flz} e F,:lu'l: then we will denaole by

Rpa—z[flx))
the remminder of the Ewclidean division of the polyno-
mial fiz) by =¥ — =

Theorem 3.3, With above nstations. Let alz] =
o 4+ be the trace polynomial corresponding
to the extenzion Fg/Fp, ¢ © Iy and 5% the p-cycle gen-
erated by 4. If lengthi(%¥) = w, then

Rav—zin [:'-'::':'

is the minimal (F,,, F,)-polvoomial corresponding to the
p-cyole 5,



ANDRADE RAMOS, C. & A. GARZON R.: POLYNOMIALS WITH A RESTRICTED RANGE AND CURVES WITH MANY POINTS

235

Provf: We claim, that for all flx) € FI?I.J-'l tlee prolyno-
mial Rpo_glalfiz}l] is a (F;. Fgl-polynomial. In [act,
by (3.1} it kB enoagh to prove Ut

T = 2 Repa 2 (8 fx}})" = Rea_slalfz))) .
Since

al flx]) = (7 — x)hix) + Relalf{x])]),

for some polynomial kix) € F [z, then

Relal flze)) " —Relal flz}}) = alflx])*

= [z¥ = z)" - hiz)" — al flx])
+[2¥ — ) - [x),

and since fiz) € Fylx] and a[T) k& an additive polyno.-

mbal, 1l elabm follows, On e obher bamd i s a8y Lo
st thist Ry _,[_r."'e'] = P o1 pne therefore

=1

n—1
ale) =3 = 3 [~ 2) i) + Raa—a )
=0 £=i

n—1 r—1 .
=Y (2 —2) i) + ¥ 2 e
F=il Feili

Now by proposition (2.1) and comparing coefficlents we
have the result. |

The mext [_u'r_r]:rmi.l;.iun allows ws to ﬁl.'siljr dietermine
the mon trivial salutons of the system af et inns Sd .

Proposition 3.4. Let g = p®, %y, . S0 be the different
preveles of length dln and 5 a group-primitive element

of Fy. Then, for each 1 < ¢ < v, the set

. il i—1
{’.-'."r‘ ooy }

15 @ pogr brivial solutfon of system of eqgualions:

Sa, magw =af L i€®, k=12,...,1(3,)

- i i=1
More over if I' = {*r‘:*:r‘ praia ' } iz solution of

5"-11 thin
L PN R e rliEgI—-2
= {’:f‘ T e }

i a zofution az well

'I'I'I

Proof: Follows from theorem (2.1), O

As an illustration of the previous theorem we will
construct some examples of (Fy, Fi)-polynomials,

Example 3.1. Let p = 2, g = 16 and f{z) = z'4z+1 €
Falz]. If % is a root of fiz) then 4 i= & group-primitive
element, that is, v generates the cyelic group B, By
example (2.3) the Z-cycles in the set {0,1,2,....15} are

o1 ={1,2,4,8} 03 = {3,6,12,9}, o9 = {7, 14,13, 11}
wa = 15,10}, 25 = {15} .50 = {0}
Now, with the equations o;n = of  and py we have the
system

S: m=ot. m=0.az=0,a =ai.
whese solution sete are

Y ﬂl' .r.ﬂ ,r-‘l TR ,.:‘_."i ":I'H _.:l_l.ﬂ _.,rH .ru .rl.-l ,r].l ":\:'11
13 _I,J _I_-1 .rl!- ¥ '_rﬁ _-i,'IE 'I'H _I_J _I_ld ,.rl-l- T]I T'-"

oy ,.I_-I ,.rH T ":.2 .:'_]'E ,:l_!l _.,l_H ,.I_I] ,.r'lE ,.r'['[ ,.?T ,.:l'.H
ﬂﬂ .I'H .r .r.l ‘:.'1 o _.:l_.'“l _.:l_H .rl.ﬂ .rl 1 .rT .?:I-‘I _.:rJ.E

and whose the polynomials are

7%+ rE + it + 4
Tz + 42 +

RE TR . BT ST

5 RNV - R
yTr 4yl o lpd 4 11
UL TPOTII LI BRI 0 R LI

If wor take now o to have the system 85

Tz + 72? + ¥ + ®
r + g + Pt + 4f

o JRPRRET 0. L N N
"I':II- + ,.I_H-_.!:E + __I.‘I.'l:.‘ln i ,.rli;‘,_.d-
,.I_I.'I_.!: +..I_|.il_:_.'£ + T]];rl _|_,.I_T_.!_J!
AUl o Tpd o oalbpd g 188

o = @3, Oga = 0, 0g = ajg. 03 = of which solution sets

oy e ,.r! ,.\I_.-‘l ":.3 *':.3 ...',ﬁ r,I,EI ,.I_l! ,.r'?' ,.rll ,.\I_.I:'I- ":.']'1'

EI:I _.,r.ﬂ .r-1 ,?i"- _.:‘ ":r“ _.:I_1.£ ,.:I_H _..rH .rl-1 .r'u' _:'II. ,:‘_1.1
| ag _I_H ¥ ,.r!‘ T1- ,.:I.‘El _r-] '_I'IE _I,E ,.I_I 1 ,.rl.l- ,.:..Iﬂ ,.:‘.'."
|‘ 15 ,.I_-l ,.rH b ,.:I.'E 12 ,:I_!l "rH ,.I_FI ,.r'IH ,.r'[-1 ,.r'i" ,.:I'.I'I
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which pemerate the polynomials

iz + p2ab 4 89§ yigll
R SR QA T I
g il g el L1703
e et g o120 4 o612
qTEd At g 1Ll o 1302
! 44N 412 4T
Last, take the set g to hwve the system

oA g oy ® 1R
A ¢ ,.rJ_:ﬁ +4dg® 4 43512 |
)5 BHPST NN N R

N L e I Y B
ALl g Tl 4 1300 L 10,10
.:l,'ll:[.:l + .rl'.’j-tﬂ-+ .;l_]':r‘H _.rllzli.

Sﬂ : [ £ =ﬂ§ LR =ll:l-|‘ Iy =-I:t$3 [ =ﬂ'fl

which solution sels

ar |7 |12 10 F [7F [2F [+ [72 [+ [+ [ [ ]

a7l 11T | |0 [0 | 2 | A |+ |

o | T T T 7= [ [ [ [ [+ [+

al-i _.:I_.ﬂ _..r'l ,rl'l ,r ,rb- ,?:I.I ,:l,.'i ':r‘l ,:I_Ji ":I'T _..l_ll ,rIH ]
They provide e polynomiale

ozt 4 ABpll 4 adpld | 4 dpld ABpT 4 oaepll o aBapld | dpld

’T*I?-F’:F:I!” +"'|'iI!|3 -|-"'|'HI”
,.rﬂ_z'i' _l_,:‘_'ﬂmll +"'|'|'2.'BH+";-£E!H
,.rFI-I'.' +,:l_11,£|1 +_.,rﬂ_.=lﬂ+,?_.‘!:.14
,.r’.'a.'.' i ,:',IJ:EIJ l"'rm.lim 4 .HIH
,.rl!’lll:'.' + ':.'“'I“ +,.I_'?ILFI +":-'”I“'

4, Stem Polynomials.

The present section s dedicated to the study of a par-
ticular class of {F,, F,)-polynomials: the Stem polyno-
mials, we also show additional properties to the already
displayed for restricted range polynomials,

Definition 4.1. A polynomial f{x] € Fglx] 1w a Stem
pedyvsomial for g g g B

o= fr=1,, 27—z | flz)® - flz).

aq—1

p—1'

In aecordance with definition [4.1) the Stem polyno-
mials sre ;r.\-]:ill.-ﬁﬁ.r ana] resbricted ringe |:|-|'E||._'|-'|:|f'|-|:||iﬁ.'|.m

Example 4.1. Let p = 3,9 = 3 = 9 and o & root
of the irreducible polynomial = + x + 2 ¢ Fs[z]. The
pelymomisl

hiz) = z? + a2 + o’z + 2 € Fylz]
is a Stem polynomial, Indeed, observe that
4=3"-1+3"1

'.'I:“'

b ooyl2ptd
.14

N et LT o L s
BT 4ttt a9l
2T Bl | SIS | o0
FUET o lgtl o118 Tl
AT Tl 1S 180

3=3"-0+3'-1

1=3"-1+3".0
then B = 1 and also % = 4, From other side

h(z) — h(z) = (2* + a2 + o2 + 2)?

(' + a1 + o’ + 2)

=1 a8 L e LR
—(P +a ez 4+ D)
=¥ + oz? - ' - o'z

= (s + e:zi:l{::i' —x).

MNote that examining divisibility in the previous ex-
ample we have that k{z)* = h{z) = (z* + o?)(z? —~ 1) =
B'(x)[x" — x). This fact is not casual, more precisely we
have next proposition.

Proposition 4.1, IF f{x) € F x| is a Stem polvoomial,

then
f=)* — flz) = (=% — z}f'(z).
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Proof: By (3.2) snd (2.1) exist 3,9 poyeles in
Tooq such that fz) is the sum of polynomials of type
ol By -1
z &ﬁ""i.lpui,h 'y F;_m:._i_. )
k=0
where 3&; is & pcycle of length €5 + 1 generate by ;.
We can assume without loss of genesality, that these

exiat a pecycle 3 C I, generate by i of kength £+ 1
sich that

&
fl) =% o e e w,,
k=il
AL ULHIESS] I,

Fapfe) = 3ot (75"t — g6+ 000

E=i

with & 85 in the proposition (2,15, Now, the term

T (0 g ) g
af Flel® — Fix) can be facbored as
"F.'-—ntu_nu--—' —{rp4mlig—1]—1
(8]

x (7 = 1) {:n["_']';“"” O L l} :

cquality which shows thet (=¥ - ) [fiz)F - f{z]. By
hypothesis ¥ is generated by an element ¢ £ Ty of
wr.ig'hl‘. 1. We can assume now that @ ot s brivial, that
wip" ' .4 p+ 1 and that E, the minor integer
such that p¥i < g — 1 < "1, not s noll, Sines pt

havwe weight 1 forall 7 =1,.... 8 — & 1hen
g-lapii<p" " 4 4p
<pr P g Ly
therefore
e —1+p '+ ...+p-1
={g—1)+{p" t+p" T+ +p-1),
thus
(i <o ' kp=1ap" k4

like this
+i - n—1 ;
plE il < (g -1+ (p" . P 410
This implies that the value of m in equation {2} i= 1 and
therefore equation [8) is expressed as
I._-.;-‘"""'"'Tnl_"" [rplig=11=1 (29 — ). (o)

Finally it is encugh to observe that in agreement with
equations (1) and (3]

P = (rphlg = 1) = 1= (PFI ) - L
And this proof that (9) i exactly the derivative of
(7 u

Remark 4.1, In the proof of theorem (4.1) we have a
factorization of any (F,, F,) polynomial which is more
precise that the one obtained in theorem (3.1].

In next example we construct systematbcally all Stem
pealynomiala in Fy.

Example 4.2, Let p = 3,94 = ¢* = 9 and ¢ root of
polynomial plz) = 2% + = + 2. Since plz) iz rreducible
in Fy and ord{#] in F} i 8, then @ is a group-primitive
element, that s, # generates By, More precisely
Fy={0,1=82=0"90" 8 8 6 8§}

g-1 p*-1
-1 1

nesmials in f?a e ol degres 4.

Mow, since P 1 then the Stem poly-

In addition note that Stem polynomials are (Fy, Fy)-
polynomials, thus a first step for his construction showld
be guided by theorem (3.2), that is, a Stem polynomial
i= in general a sum of [Fg, F3)-polynomials which are in-
duced by $-cycles of weight one. According with the ex-
ample (2,.3] we have two weight one cycles in £y namely
{4) and (1, 3) which induee (Fo, F3)-polynomials % and
M x4+ Ao+ 3 with A € Fyg and 3 € Fa. Then the gen-
eral form of the polynomials is given by the exprossion

FIEIET AR S E, |

From which a total of 27 Stem polynomials are obtained.
We consign them in next table:
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L Stem Polynomials in Fy ||

|_T"'|||_',.'||.-|‘:|r'|:|'ml

Factorization in Fg|x]

at

e

'+ 1 lz — W[z — &)z — )iz —8)
T+ [z + 1)z +2)[x — )z — 0]
b bz Tz + 2z = 7] [z — #7)

4 +r+1 iz + 1)

T+t 2 [z — )z — 8)[x — Bz — )
r* + 27" 4 2r Tz + 1)[z = d)ix = 7)

14 Dt 4 2 4 ]

Lz +2)

x4+ 209 4 2+ 2

(= — 0 )z — ) — ) — )

! 4 et 4 dx

r(z — 1)z — &%) [z — #7)

#l 4 e 8+ 1

[z — 2z — &)z + 0)(z — &)

P+ B+ 2 |z
2t 4+ #r7 4 #r r(r — )z — F)z - &)
J'.“+§'hu'.‘]+-ﬁmu'+l I:_::—HEI:I“

1+ Mz 4 5 - 2

{x =1}z -2z - M)z - 07)

21 4 Bt 4+

o[z — 1)z — Bz — &%)

Stean Polyoomials in Fg|u'_l

Polynomial

Factorization in Folx

24+ e 41

(x—2)z— )z — Pz —8) |

2+ 0+ 8+ 2

fr—a)

0t iz

oz — 2z — %)z - &)

2B+ 02+ +1

(z — )z — &)z — &)z — &) |

A e+ 2

([ — 7]

¥+ Pzt 4 Oz

oz = #)[z = )z = &)

AP e+ 1| (z— 80

1+ 00T @y 2 [z —1)x— 2z T — )

Vit W

x(z — 2z — F)(x — &%)

AP0+ | (-1 e—F)x—Nz—8)

L+t + 0z +2 | (z -0

Remark 4.2. ln accordance with the previous ta-
ble we conld expect that the Stem polynomials have
all roots in Fy. Unfortunately in general this is not
true, for example for p = 3 and n = b the 3-cwvcle
[4, 12, 36, LOB. 82 have J-adic weight 1, nevertheless the
polynomial f{z) = z* + 2% 4 o™ 4 202 4 2" | p13 g g
Stem polynomial with three meros of multiplicity thres
in Far and six zeros of multiplicity three in Frag

5 An Application: Curves with many Rational
Points over Finite Fields

There are many methods used for the construction of
curves with many rational points, however, some these
methods do not provides explicit sguations of curves,
The interest for ehisining explivit equations is that one

of the main applications of these curves with many
points [= the construction of good eodes {(4]), ie., codes
with geods parametera. This requires having an egua-
tion that describes the curve. Among the methods used
to construct them are via Kummer extensions, Artin-
Schreirer extensions and Abelian elementray p exten-
gions, W will give a brief explanation of why we expect
that (F,, ¥, )-polynomials allow us obtain goods enrves.

Let y[u::l- | ETEREY [Fq...Fp::l-]:IIII_].':IH:II:nIIHJ.. By Progaosilion
(3.2} there exist 5 € Fp, such that polynomial £x) =
glx} — =+ has at least deglg{x]] roots in Fj.

Mow if we take o polynomisl f{x] £ F,lx] such that
GCDMfix), fix)) = 1, then by the division algorithm
there exist polynominls

fla) = E{z)h(z) + el f{x))
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with deg(Re flx))) = deg(fiz)). Then the rational
funeticn fiz)
x

M) R
takes the value one in the set $ o= {o € Fy|#o) = 0} =
{ox € Fo|fin) = 7). Thercfore if rlg— 1, then we have at
least rdegigiz]) points P = (n, 3] € F, x F; such that
A = o) = 1, Curves of this type were considered in

2.

On the other hand, since for all & € Fy. glo) € Fp,
then the equation

Tre,m, ) =0 +... 40" +y = gla)

has " solutions in F,, therefore we have p"~'.g points
P = (3.g(a))) € F, x F; such that T'rg ¢ (J) = gla).

Finally, since the trace function Trg_ g 08 surjective,
then if we choose a suitable (Fy, Fpl-polynomial giz)
such that GCD{g(x), Tre_ s (z)) = kiz) # 1, we have
that deg(h(z)) = 1 and therefore for all elements o € F,
such that f{o) = 0 we have p elements 7 € F, such that
OF ==,

The abowve discussion beads us to ey o constraet
curves over the finite field F, defined by three types
of equations, nansely:

ey e S
W 3" = ko) = sy

() Tre w9 =8 +...+9 +y=2alz)
(I ¥-y==x

rlg—1

Constructions of type (1) will be called Constrisctions
via Kummer Extensions, type (11) Abelian elementary g
extensions, and of type (1) Artin-Schreiver extensions.

5.1. Examples. In this section we exhibit some cxam-
ples of curves with goods parameters in whose constroe-
tion we used (Fy, Fol-polynomials

Example 5.1. In this example we will construct a
curve & over Fy with geous g(C) = 5 and 32 ratio-
nal points.  Let us o consider the Stem polynemial

fz) =2+ 8 2% + 0% and fizx) = ¢’ + 8 =% with & as in
the example (4.2], then Byl f{z]) = —%, and therefore
) o ) _ T8
HE Rl fla)) —i
Now asince —0F = @ and (897! = &, then pix] =
B a® 4 07 Now, If we conshiler the function felds
Falx, y)/Fy defined by the Kummer's equation
yt = plx) = ﬁi;:'ll:'::.! + ﬂ?]

wo have thet the induced corve © has genus g(C) = 5
and 32 rational points. This is the best valoe koown for
(g, 2} = (9.5) in [d].

Example 5.2, Here we are goang bo construct a curve O
aver the fnite fieh] Faz having genus g(C) = 60 and 513

valional polnls, this number 8 very close 1o the Thara's

hound, see {[5]).

Let us to consider the Stem polynomial s(x) = @z° +
' Pz 4 B2 4 052" with @ a root of the irre-
ducible polynomial g(z) = %4z +1. Then the Abelian
clementary 2 extension given by the eguation

vy yt ey 4y = slx)
= 5 +-IZi|'1J'.H'I -|-|'.'i'*'u'i'-"rI +|']".1'.'§"+I']m.1'.m

defines a function feld over the finite field Fiz whose
genus s G0 and the npumber of rational places = 513,
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