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In this paper we establizh a unique continuation result for a generalized KdV type equation
with verinhle cocficients of the form
wy + piu + kerg(e, ™ B 4 ooz )8u +rs(z thu=0, (E=12)

in the ollowing sense. I b= a sufficiently smooth solution such that supp ez @) C -8, B =
[=T, T, them w must be necessarily the zero solution, assuming some decay in the Fourier
transform of the mefficlents e, 0] with respect to the spatkal variable, The result follows
by ndapting and extending the techniques developed by J. Bourgain in [1], used to ohbtain
a unique contlnuation result for a generalized KAV type eguation (constant coaffickent casa].
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Resumen

En este trabajo establecemos un resultado de continuacidn iinica para la ecoacion del tipo
FodV generalizada

1 ; k-1 o g f .

w4+ il + kgl il deu 4 rgle t)dhu 4+ ralz, flu =0, (k=2
en el sipuiente sentido. 81w upa solucidn suficientemente suave tal que suppals i) C
| H.H: w [ T, '.|"|. entonces o neccsariamente debe ser corg, baje la suposicion de que la
transformada de Fourter de los coeficientes vz, ) thene algin tipo de decalmiento con res-
proto a la variable ©. El resultado o= obtenido adaptando v extendiendo lns técnices desar-

rolladas por J. Bourgain en [1], utilizadas para obtener el resultado de contimuaciin dnica
para ln ecuncidn generalizada KdV (coeficientes constantes)
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1. Imtroduoction

In a recent work, Jean Bourgain in [1] proved
that solutions w sufficiently smooth with suppulz, i) ©
[—B, B] x [-T,T] of the generalized Korteweg—De Vries
fvpe equation

tp + Fu+ 8 F(u) =0 en R (FEAV)
with F being a real polynomial, must be trivial (w =10
in E x E}.

In crder to have an insight into Bourgain's proof, we
want to point out that the main idea is to take advan-
tage of two facta: 1.- The Fourier transform with respect

to the spatial variable r of a continuous real funetion
u{t)(x) = uiz,t) defined in K = [-T, T having

suppu(t)() C [-8, 8], forte [-T,T]
can be extended to C x [—1, T, having exponential or-
der,

2. The derivative of entire functions having exponen-
tial order and being bounded in the real axis can be some
how controlled, These facts are evident in the following
complex analveis reslis.

Theorem 1.1. |[Paley-Wiener Theorem| Let w(f){z) =
wir,t] be a continwous real function defined in B x
|—T, T such that

suppult)(-)C [-B B|, foralite I =[-T.T).
Then, the Fourier transform of u(t) with respect to the
spatial variable x,
W0 = [ ePrultads,
E

has & unigue analytic extension to T, Moreover, Lhe ex-
tension has exponential order. In other words, there iz
a pogitive constant & > 0 such that fort € T,

(A +iz)| < kel E, A s ER (1)

Theorem 1.2, Let 0 C — O be an eptire funetion
auch that

|6(A + io)| < wel”I®, Ao e R (2)
Then there is u = 0 such that for any Ay = 00,

¢'(A)| = #H( sUp cﬁ{ﬁ}) [l + hﬂ(laﬁ IME]I) ”

141238 =

Theorem 1.3. Let ¢ 0 — 0 as in previows Theoren.

Then there is g > 1 such that if
sup |@(€ +ir)] < 2 sup |@(£)]. (3)
Il = Aq 1€1Z 3

holds for &y =0 and o € K, then
sup (€ +ia)| =

&1 Ay
“B(uﬁé‘ﬂ, If:iiﬂlj [1 . |lug (ué'u'éi |¢m|) ” -
(1)

Finally, to related these results, we must establish for
functions @ a8 in the Paley—Wiener Theorem for Ay = (),
and tg € I fixed, that we have the estimate

sup [ulto)(§ +io)| =2 sup [u(t)(£),  (5)
HERT (S EST
for & £ B with |o| small enough (see Lemma (3.2} be-
lowe).
In order to illustrate the situation, let us suppose that
4 B a smooth solution of the linear equation
g + Plipry = I,

with suppu(f) C [- B, B] = I.l]:l:u by the Paley—Wiener
Theorem we conclude that wif) bas an analytic exten-
sion in T aud_’r_,_l:htere exists & = 0 such that for all £ £ [,
the function w(t)(A + ie) has the exponential order (1).
Mow, using the semigroup associated with the linear
equation, we know for #; £ I that the solution w(#)()
can be expressed in terms of the Fourier transform as

wlf)(A) = BN, At =1t -ty
bloreover, we have that the extension has the form
AlE)(A + iar) = TP ARE Sy L ),

Mow, applying the triangular inequality and the gener-
alized Mean Value Theorem, we conclude that there is
some [ < |oy| < |o| such that

(A + )] 2 948 [jafiri()
jult1 (A + i) — u{t ) (0

. LR LT [ Eﬁ‘l_]':']"]l _|,,;r|| {Eﬁ:]}r [J'L+i'ﬂ'|:u}|] '

Since we know that the derivative of an entire function
with exponential decay and bounded in the real axis (see
Theorem (1.3)) is controlbed, then for o] small enough,
we have that

—— 1 . ———
Cel® = Juft)(A +ig)| 2 ge I8 uf (),
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which implies that
. I 1 —
Ed’|£ v Iy AT Al = 5 |“-[fl}|::-'!"::| i

ﬂjﬂﬂmlmlwmcu of this, if for some t; we have that
[t )(A)| = 0 for A sufficiently large and we are able
to choose yodt < 0, then we will reach & contradiction
gince the left hand side is converging rapidly to zero,
as A tends o oo, Esseotially, this is alse the situation
while tryving to obtain a unique continnation result for
the equation
ug + 18U = Git)z),

in cass Gz} = =8, F{ur)) where F s a polynomial
{correaponding to the (FKAV) equation), and in case

Gl1)x) = — (kry () () By ra ) (x)hen£ rat) )
=— () ()i (") + ra(th ) + ra(t)(x)u) .

which corresponds to the equation we are considering in
this work.

The equation (FEdV) is well known in the literature
as the generalized Kortewep-De Vres equation when
Fis) = & with k = 2. In this case, the equation takes
the form

ty + pon = ku* " 18u = 0 en BV {gKdV)

In particular, if we pssume that @ and o are sulficiently
smooth solutions of the equation {gRdV), then w = u—v

ig & aolutions of the generalized KdV type equation with
variable coefficients

wy + 1w 4 ey (et + olr, Hw =10,

where o; depends on w and v, Then if we have that 4 = o
in B\ [-B, B] = I, we ohtain that

suppwiz, ) =[-8, B] = I

Thus if there iz a unigue continuation resalt for gen-
erodized KdV type equations with variable coethcients
analogous to the Bourgain's result, we conclude that
w=0inE = I Inother words, u =vin E = I,

We want to point out that the unigue continuation
problem for KAV type equation has brought. the atten-
tion to well known methematicians, In fact, J. C. Saut
and B. Scheurer in ([f]}, using estimates of Carleman,
proved that if « satisfies the linear equation

ty + Uppg + g2, Ehiry + vz Dy +rglz, tlu=0

ein (o, B = (g, 0z}, and @ is zero in an open set £ O
{a,b) = (ty, ¢, then 4 is zgero in the horizontal sompo-
ment of 1 given by

[{x.t) € (a.b) > (£, 83) 1 (y,t) € 2 for some y € (a,b) }.

Moreover, if « is a sufficiently smooth solution of the
peneralized KdV equation {(gRdV) with suppe < B
o, ) For all & & (£, 02}, then « =0 o (o, b) = (#, t=).

On the other hand, B, Zhang in |7| showed that
the nnique smooth solution o of the Korteweg—de Vires
EF TR

e + 20, =0 en B x B

(KdV)

= =00inE x B il there are times £ < 2 such that
for some o £ B,

E‘uppﬂ'it}] C [—m,ﬂ},_‘ii = IIE'

ar
suppu(f;) C {o,x),. i =1,2.

In particular, if u(z, 1) is a smooth solution of the equa-
tion (KdW) wanishing in the open set of B « K, then o
must be the zevo function in B = BE. Through the Miura
transformation, B, Bhang obtained o similar result for
the modified (KdV) equation

W+ Ve — B v; =0 en K x R,

Lhang’s approach is based on the inverse scattering

tramsform theory and properties of the Hacdy spaces
HE

C. Kenig, G. Ponce and L. Vega in [4] combin-
ing decay properties of solutions and J. ©. Saut and
B. Scheurer reaulia proved that sufficiently amooth so-
lutions w of the generalized [gRdAV) equation are zero,
whenever

suppa(t;) € (—oo,a) or suppulty) € (a,o0) (j=1.2).

In this paper, we are interested in obtaining & unique
continnation result for a generalized Korteweg—de Vries
erquation with variable coeficients

ey kry (2, th* T Bnebralz, O utralz, flu = 0, (6)

for (k > 2}, This mode] is appropristed to describe large
amplitide internal waves in a variable medium, as is the
case of the eoastal waters of the ocean. (see (2] and [3]].
It is important to point out that the existence of sufh-
ciently smooth solutions for the generalized Korteweg—
de YWries equation with variable coefficients (8] follows
by the remark (o) to Theorem 1.3 in Kenig of, al, pa-
per [4] (see also [5]). In this case, we write the equation
(6} as
g + 10+ Gzt u, dpu) =0,

where Giz, ¢, u, v]=kry{z, )u* vt ra(z, Ho4rs(z, thu.
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The result is obtained by adapting and extending the
technigues developed by J. Bourgain in [1]. It 1= im-
portant to mention that the variable coefficients case is
rather different from the constant coefficient case sinee
the nonlinear estimates require a more careful analysis.
We will obtain a unigue continuation result by impos-
ing some restriction to the variables coefficients v {¢)(+],
which are related with the need of bhaving the global
boumnd

e =X

14 A2 (7}

We note that functions w(1)(-) satisiving the estimate
(7} are easily obtained. For instance, if vt} is suffi-
ciently smooth, then it i3 easy to see that the bound (7]
holds locally, and we also know that the Fourier trans-
form ry{£}{A) decays rapidly to zero, as A — oo.

rd (A =

Thia paper s organized as follows. In section 2, we
extend Bourgain's results to the variable coefficients
case. We exhibit a class of variable coefficients r;(t)(:)
having the global bound (7) in the spatial varisble, In
section 3, we prove the unique continuation result for

eqquiation (6).

2. Extension of Bourgain's Hesults

In this section we will establish the extension of Bour-
gain's results to study the case of variable coefficients,
including nontrivial examples of coefficients ri(t)(.) sat-
isfying the global bound (7). In particulsr, we obtain a
variation of the Lemma in page 440 of J. Bourgain's
work in (1] for the variable coefficients case, This result
will be clever in the next section to get the extension
of the unigue continuation result in the case of varialile
coefficients.

Hereafter we will assume the same type of hypotheses
a5 in J. Bourgain's paper [1]. We say that a function
w defined in B = I is aufficiently smooth, if the partial
derivatives w; and o exdst and are continuons, Tt is
clear that this is not a restriction at all since we are
dealing with solutions of partial differential egquations
with smooth coefficients, for which the smoothness is
guarantesd at least locally in thine.

Definition 2.1, Let u b a sufficiently smooth funciion
in B o= [ such that for ang t € [,

[ (wtera) + tueaas <2t 9

Let w® and ay be the functions defined az

u'{A:I=z-u|;|ﬁm{A}|1 AER, (9)

tE

aulA] = mp w™E), Ak (10
[E| 14

For the sake of completeness, we include and for com-

plete the proof of some result of J. Bourgain in ([1]),
mainly those resultz that we must extend. Hereafter,
iy = o, unless we want to emphasize the fumction .

Lemma 2.1, Let u be s sulliciently smoeoth lunetion
in B = I satisfying (8), Then the function a is an even,
botinded, ponnegative, and decreasing in the following
gense;

'ﬁl[A:lg::l = I:?I-[.:'t]:I.l if |JL;|| = | Aal. [lI:I

Muoreover, we have that
If X =1 12
mgﬁmu[ 1=0 (12)

Proal. We claim that »* and a are well defined. From
the hypotheses on u, there exists M = 0 such that for
any t € [ and A £ &,

(M < ,ftmrnxndx < M. (13)

Thuis we conclude that «® 1s well defined. On the other
hamnd,

) = A = [ e otu )
Thus we obtain
WA < [ @i <M ()
Using (13) and (14), we have for ¢ € I that

(1 A)[alf1(X)] < 2M,
implying that for some C' > ) and for any A £ R,
. i
w3 < 5
Then for |E] = |A], »o have that
. 'S 0
W S TR S T
In other words, we heve for & € B that
i
| + A%

alA) <
Maoreoeer, for some O = 0,

Yy
I]-|:.|:'|.:| Ll 1-|-__.:||_'1' L) ch |:].EI:|
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implying that the function o s iotegrable in E and
bounded. Note that o 8 an even function, sinee

a[=A) = sup u"(f) = sup u'() = alA).
€1z )=l £z 1A

Mow, for [Ag] = | Az, we have that

alAg) = sup u'(f) = aup u (&) =alM),
1&1 =] 4l l&l=]4

proving (11). Finally, from |:I.’!i:| we obtain that
li Ay =0 O
|.3.|]Il-lmﬂ{ )

Lemma 2.2, Let w be a sufficiently smooth function in
E = I satisfying (8), then there exists By = 0 such that
far Ay = 0 fixed,

ELE
T+t L (16}
whenever |A| < Ay and for any @ = 0.

afA) =

FProgf. First note that for some 8y > 0 (which depends
only on the regularity of w), we have for A € R that
&)
ald) = —

1

_— 17

1+ At 1+ A2 (17)

In fact, from (15) we know that there i5 O > 0 such
thiat

and af}) <

Ch
“N =T

Then we also have for |A = 1 that

afA] = ——

1+.J|.i
Moreover, for [A] = 1, there exists &y > 0 such that
1+ A2
— = K.
|+.1|'d 1:
and s,
by
afA) = .
(A) 14 A2

Taking B, = méx{C, &} we obtain the estimates.

Mow mgsume that |A] < Ap Then we observe for amy
£} = [ that
| Al

A+ @
which is equivalent to have

=%
1 = 2g#iaratt,

Using (17) we hove that

< 1l (4],

28, L3
A
alA) < g e

Mow we state and sketeh the proof of an important re-
ault in Bourgain's work, which we must extend in the
case of having variable coefficients,

Lemma 2.3, J. Bourgain (see [1], page 440). Let u he
a sufficiently smooth function in B = I such that
suppuw(f)(-) C[-B,B] fwiel. {18)

If there are xy € [-B,B| and to € I such that
ultpl{zg) # 0, then there is ¢ > 0 such that for all
€ = 0 there exists A > () arhitrarily large such that

alA} = cla+ - +a)(X] and af{A)=e 9.

FProof. We only sketch the proof since many of the es-
timates have to be extended to the variahle coefficients
case, The first observation is that

* aaJLA)

= m{l—_:l.‘:_
EE

{moway #

- -:'U:::'II: {.:'I.:] = I:I.:;I: -:'|.|=]-n!.:';|_ e If.:'l.k.
(18]

Mow we argue by contradiction. Assume that for given
£ = ), there are ) = [} and Ay large enough such that,
if &= Ag =0, then we have either

alA) = oo o wal{d) y20]

ar
ald] < e 8. {21)

Then it is possible to conclude (see (1)) that o has the
global bound for & £ BE.

afA) < I?IBL AT < 9B, T, (22)
This fact implies that
|alta)(X)| < 2By eT39, for AR,
Using this, it is straightforward to see that
ult)z) = 5 [ ealNdr R,
D R

has an analytic extension in & neighborhood of the re-
al axiz. In fact, let 2 = 2 + iz € O be such that

|.3'_'t L ﬂ-"ulq'jr l.'.hE:n
fulty) (21 + iza)| < (25)" f ¢
"
< Byn~? fem"*lcﬂﬁ%{u
a4

wlta) (A} dA

=Bmn? f g'{’a'-f'ﬁ'm'h: }I""Ili.l
]

Ao + Q)

— Bya! .
L= 2z + Q)
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In other words, the extension

uito)(2) = 5= J’L MUl (23)
ig well defined in the domain 1T = {z el |[Imzl <
e

We claim now that wilg) =0, To see this, take z £ 11
and a sequence {z,} in Il ench that lim, .. z, = z,
Then we have that

Juita)(za)—uita)(z)] = Bn~! j;lﬂih"_tﬂ: o TR 4,

Now from the generalized Mean Value Theorem, we have
for ne large enough that

|eiden — 3| MR < 2|2 P|AReTRIT & Ly(R, dN).
Then, from the Lebesgue Dominate Convergence Theo-

rem we conclude that
Jim_ [ufto){za) = ulta)(z)| =0.

In other words, we have shown that aita)]-) 5 contin-
ous in [1. We will see for any triangle A in [T that

f wity){z)dz = 0,
[t
In faet, from FPubini’s Theorem

Ix f, Ltz = [ ( j; e ultg1A) d.l)da

=£Uﬁﬂe=*¢:)ﬁ?{jmdx

Since the function g{z} = * s analytic, then the
Cauchy Theorem implies that

f ez =0,
it

f ult)zpdz =10,
A

We conclude that wifg)i-] is an analytic function in IT,
by applyving Morers's Theorem, Recall that we are as-
suming that w(fy){x) =0 for ¢ € [- 8, 8], then we must
hiwve that wity) » 0 due to its anelyticity, This is o con-
tradiction since we are assuming that w(ty){xg) # 0 for

some g € [— 8, B O

and w0,

Another clever fact in J. Bourgain's result is E?__L“'L'Ed
with the continuity of the functions w™{A) and |u{t){1)]
given by the Following result.,

Lemma 2.4. ([1], equation 1.12) Under the hypotheses
of Lemiva 2.3, there exists ¢ > 0 swch that for @ =0
there are &) € I and A £ R, with |A| arbitrarily large
such that

|t J{A) = u*(A)

and alX) = ela* --- a){A).

ald) = e 0

A Remark on Bourgain's Results. The key esti-
mative in the proof of Lemmea 2.3 in the work by J.
Bourgain [1] is the global eatimate (22}, which is ob-
tained arguing by contradiction. In order to extend J.
Bourgain's resultz to the variable coefficients case, we
impose gome hypotheses in the Fourter transform of fhe
coefficients to obtain similar estimates. The first obeer-
vation ig that global exponential decay (22) holds for
|A| bounded (see (16} in Lemma {2.2}). In the coming
result, we will assume that the variable coefficient 3 has
& global exponential decay of the form [7), in its Fouri-
ar transform with respect to the spatial variable, More
concretely, we set the following class of functions

A= {w e DR : (1 + 3)id e L’-"“{R}}

where T(R) denotes the set of distributions in E. We
will exhibit below some classes of functions contained in
A, which satisfy the global exponentiol decay (7).

Lemma 2.5. Let 7 be a continwous function mn E = T
such that #(f) € A uniformiv fort € I. Let 8 and ag be
defined as in (9) and (10}, respectively, Then ag satisfies
the conditions given in Lemma (2.1) and for some & = ()

ke~ 13
ag(A) = FwTE (24)

Proof, The result follows by noting that for some & > 0,
we have for ¢ € I that

fee—l3l

14 A%

So, the same estimate holds for ag, The rest of the prool
follows as in Lemma 2.1. O

ETIENES

Mow we are in position to establish the extension o
the variable eoefficients coase of the main Lemmae in [1],

Lemma 2.6, Let 5; be continwows functions in E = J

{1 < i< 5) such that @(t) € A uniformly for t € I. Let

u b g sulficiently smooth function in B = T such that
suppu(f) C[-B,B], foralltel.

If there are zy € [-8,8] and tg € [ such that
wlfo)lxzg) # 0, then there exisis ¢ > 0 such that for
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all {} = 0 there is A > [} arbitrarily large such that
= aj{A}
+ (ag, = al(A} + (ag, * a)(A] + (aga, * ﬂ][a’l]:

alA) = cf(ag, va= - wa)(X) +{ag rar ..

and ai X} = e

Proof, For simplicity we only show that
a(A) > eflag, sa* - xa)l(A) + (ag, +a)(A)]

and alX) = g3 . Tha general case follows in a similar
fashion., We will argue by contradiction, as done by J.
Bourgain in [1]. Suppose that for ¢ > [ that there are
0} = and Ag = 0 sufficiently large such that, if A = g,
then either

alA) < cf(ag, +as -
0o

va)(A) + (ag, =a)(A)] (25)

ald) < e, (26)
Ag ahown in Lemma (2.2), there exists B = 1 such that
o) < O T, 6 M S he(20)

We will see, as in ([1]], that this estimete must be global
for A € B. Assumne that (27) were false for A = Ay, then

Thus we have that

alX') EcLuﬂ._{A'-:u. = AddalA)

there is A' such that

o X mfn{m-.xa;e.[,ug 20, m%;'*:-:r}

14 a2"°
If (26) holds for X', we will obtain a contradiction. In

fact, suppose that (26 holds for X, Then from [17).
we have that
2 B :ﬁ": B T-_nf'T
lalAT)| < Trme [.-:'L'I]"'t: < T f-"-’]"'c .
meaning that
; B\ e
ﬂl:-l] L (m goantarl |
Simce we have that By > 1, then
VEL(1+ (27 < 2B, (1 + (A1),
then -
] 1 =
a{h}ﬂl_w}za .
contradicting the definition of A’
Mow assume that (25) bolds for A" and consider the
et

U= {ml....,men* Sl N J..,l-f_:\’}.

e alAe)dA .. dAe +.:flnf_l.:r — g dal A )dA

< e:f g (A = Ap— - — Ada(An) -~ aldw)dA, - dg
LI

.

:_]IJ‘J'I-:\'""'I

+e f ag, (A" — Ala(d )y + ¢

aa, (A — Ay — oo — Agda{A ) - alheldy .. dhe

ag, (A — Apbalh )di,.

EESS g | =8
Now we will see that there is ) = 0 such that
ag, (A = Ny Mdalha ) - aldg)dhy L odhy < eald). 128}

B

Prom Lemma (2.5), the function as satisfies the property (24}, and then we have thst

o0

—&
Y P — -
f_ am (A =M Majdd £ by f_m T+ N — A — - — AP

-4 I

dAy < kg (29
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78
Similarly we have that
fhﬂ_..;l_l:'.}.r—l] — oo = A0l = kg {30)
AI
MNow from the property (11), we obtain that
aa, (A'=Ap o0 = Aeda{hy) - alAgddhy .. dhg
THESY
< af)) 8, (X = Ay oo = Agdalhg) -+ aldg)dhy - dhy
ENEEY
=N
o) [ ([ e = e - ain Jaa) - awida . dn
L -
Lol
+ al A} ) (f ﬂ:[q._{;'.' — A — ees —Ak]d}.l)uflg] con A ldAg . dAe
“ 1 :"l'
k=1
= Ek:#a{hr}(’[ u[ljl-:ﬂ.) |
13
gy Cpy B

obtaining (28] as desired. Argning in the same way, it is possible to show that there are positive constants e
guch that for ¢ =2, ..., &k, we have the estimates

ag, (X =M = o = Mpdaldg) o afddh L dh < e,
[EM
n_&‘{}.' — Mlald v dhy < ka{A).
| = A
Thus, we get
alA) = ﬂf wa (A — A — - = Aglaldy) - alAdddy L. dA
i

E
+ e [ a (A — Ay Jalh )dAhy + mlfl.']z.:,- + eral ).

[Aq J Ar i=1

Then taking « sufficiently small we conclude that
ald) = Eﬂf g (A — X — -0 = Agdaig) - a{Agddh . dhy
LI

+ 2 f aa, (AT — Apha{dg by

ENEY

Mow, since Ay is large, then 2(A; + Q) = 1, and =0,
— A=Ay — - = A
—|A =A== |
W= ol < 30 + Q)
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Again from Lemma (2.5), the function as, satisfies the property (24), and then we have that

fﬂn_:[r — A — - = Agdaldg) - -ald)ddy L ddg
b
< k(2B i e et
< k{281 ful+|).-'_,;!u.1—..-_J,*|?1+|;,l|1"'1_|l],|tlg 1---EAR
fa{zﬂ}*gﬁﬁ%ﬁf ! IR S
| 1 L.'|+|-]'-I—-:'||.—"'—-}-i,-=|+|J|.]|? 1+|-"k|? 1. dAg.
MNow we consider the sets N
{;:I:Lrn{l::ll}'-"'}m::lenk:1]_'--+‘hk}§}|
d
;-"E=E-'r|-|{{AI.\,....'A'.}ER'*:_:H.]—---+Ak{.;'l_ .
then it is not difficult to show that there exists gy > 0 such that for i = 1,2,
1 1 1 1
Lﬁl_r_ll]'..l_}u_ A _;.*2 1+||:'||]|2 1+|Ak|2-i-:'|:|..-{ﬂuﬂ 1+[.-’|'I_:|31
Then we alao have that
Muoreover, we also have
r,-“'”‘[”“ = A= oo = AgfalAn) ol A ) dAg . dd a{A) > e[(ag, =a+ - xa)(A)

o Mam(2B)F oo
S Ny

Similarly, there existe py > 0 such that

ag, (A — AyJalhn)dAy < % i
WY

Sinoe ¢ is being taken small enough, the we have that

2 — &
O & TR

alAT) =

contradicting again the definition of A In other words,
wiz hawe the global estimate for A e E,

ald) < DL HERT < 2, e T,

1+,5.'*":

Az in the last part of the proof of Lemma 2.3 we also
reach a contradiction.

Similarly to the Lemma 2.4, it is possible to show that

Lemma 2.7, Under the hypotheses of the Lemma 2.6,
there exists ¢ = [} such that for given @ = 0 there are
ty & T and A € [ arbitrarily large, auch that

el (A)] = (M) = a(A) = e E".

+log; *a - xal(A) + {og, *a)(A)
# (o, » a)(A) + (ag, « a)(A)].

2.1. Some Examples of Functions in the Class
A, Mow we will exhibit examples of functions in the
class A, including functions § defined in B = [ having
the exponential decay (7) uniformly in .

Example 2.1. Let K and g be functions such that
o L& ] ~ —I5
KA = —=. Al = M,
B < T 1000 < eae

Then we have thet the function 5= K & g € A. In fact,
a simple computation gives us for some constant ¢ = 0
that

N — o P

B = K =g = RG] < &5
We note that such functions K and g can be even built
explicitly. The first observation is that K{z) = '"—_jll if
and only if K(A) = . In fact,

- 1

H'I:.l:l =§J‘{E H::E I:cll.i.i,_.
_! f cos{Aze— =l gy — X f sin{ e ¥l d
2k 2 Iy -

Sinee we know that sin (Ac)e™ ™! is an odd function (in
x), and that cos({Arje™ " is an even function, we have
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that

Bog=1 f cos{ Az~ ldr = f cos{ ke Tdz.
2 -] 0
Mow, using inbegration by parts, we conclude that
(1 Iﬁi}fmu(.ln:]ﬂ_‘d:: eos{ Ax)e ™ b AEn Az e T,
which implies that

(1+ A%) L " cos(Azle—"dz

— !Jim cos[Me™ 414 Jull_[.m ain(At)e™" = 1.

This mweans that

1
T+ A%
Since the Fourier transform is a bijection from LR
to Lz(R), we have that K[z} ’% if and only if
K{4) = 1z Now, we will build some functions g. Us-
ing the same type of estimates, we have for any o # 0
that g.(y) = *;rﬁ'_?_r if and only if ga(A) = e To
see this, we observe that G, € La(R) and that

_ L iar—alalgy — lr o —ok
Aalx) En];c e ik = cosl dr el
1 @

i
proceeding as above, Then, for o = 1, we have that the
function 7 = K + g, € A, sinee

K(x) =

g-aldl e-lM

BN = 1K » galX)] = [R(NGAN = 1557 < T2

Ag we will see below, there are many functiona K satis-

fying the estimate K ()| < T

Example 2.2. Let p be a bounded continuous function
such that 1 < |pif)| for § € E. Define now the function
Git)[x) = Kgnlx) = K(p(t)z), where K is a function
a5 in previous exsmple, Then we have that

1 =4 A
—K | = .
plE) (.ﬂ{ﬁ])
Thus the function 4t} = @(t) = g, £ A uniformly for
t € [ In fact,
O] = [GTE) * galA)] = GG
Pl:’.t':le—iﬂ.ﬁ.] ..ll':!.E_IJ‘
= PR+ AZ = 14 A%

G{EN(A)

Example 2.3. Let K be a contimions function such
that K, 8K & L'(R). Then wo have that

1+ MK = KN + [EE )|

< f K ()i + f |0 K ().
E
Thus we conclude that
- c
KX = T8

providing in addition functions K as needed in previ-
ous examples. Now define fiz) = e~ . Then for some
positive constant &, we have that B{A) = kye=*". As a
consequence of this, there is & positive constant ke such
that for Ac K
[B(A)| < kae™ M,

Then we hiwe that § = K+h and 3{t) = K, #h belong
to A, uniformly in § £ K, for any function p as in the
gcond example,

4. Unigue Continunation Resulta

In this section we present some results related with
unigue continuation for the differential equation (G), in-
cluding the extension of J. Bourgain results in [1] to
the variable coefficients case, We start the discussion by
prowing an important property of the function a, whose
proof was not included in J. Bourgain's paper ([1]).

Lemma 3.1. Let Ay £ B, o be as in Lemma 2.1 amd
A e R be such that a{X) < 1. Then there exist a con-
stant p = 1 independent of Ay and A such that for
A = mind [Ay |, [A]} we bave the estimate

a(X)[1 + [loga(X][] < plald) +a(2)][1 + Ilﬂsalli][-}
41

Proaf. If X = |A|, then the estimate follows since a is
a nonnegative even function. Assume that X = |Aq|. If
[Ag] = [Al, then a{X) < ald;). Thus, all) = 1 implies
that

logalrs)| < [logalX)],
and so0 we have the estimate. Now, recall that o i5 &

bounded function, thus, for all) > 1, there exists
O = 0 such that

alA} £ 1 < a{d) <

Taking & < 1 and such that &0 < 1, we obtain
kpaldg) < 1, Thus we have either

BraiMml=ald) <1 or ald) = bafl) <l
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In the firat case, we use that fiz] = .i'.‘l::] + |log x|}, = =
0, is an ineressing function to conclude that

alA)[1+ logal)l] < kptald) [1+ | log(k;  a(2))]]
< k! [afA) + a(Ay)] [14 |log k| + [loga(A)|]

< ey L+ |log k) [ald) 4+ a(Aq)] [1+ [ logald)]].
In the second case, i ald) = Eald) < 1, then
[log(kya(Xy)}| = [loga{A)|. Using this we obtain that
al A ) [1+ [ loga{d )]

< a(A )1+ [logky | + |log(kia(A))|]

< {1+ |logky |} [alX) + a(i)] [1+ [ loga(a)]]. O

Ag v mention in the introduction, we need to apply

Theorem {1.3) to be able to handle the derivative of w.

Lemma 3.2, Lei uw he as in the Paley—Wiener Theorem.
Let &y = 0 and & € I be fixed, and lot ulfy)(z) be the
analytic extension of the Fourfer transform of wiy)iz].
Then for o € K such that || is small enough, we have
that

sup [ulfo) (€ +i0)| <2 sup [Wlta)(€).  (32)
= A €12 4

Froaf. Let A8 = 0 be such that
u(z,t)| < M, =ze|-B, B (33)
Now take £ € R such that [£] = Ay, then

i, i 8 .
lulta) (£ + io)] = [u(to)(£)] < j: N e~ IRy (g ) (x)da

=
= f s"‘“ul:t.;.}{::]dm|
-B

Ej:l.:"r 1| ulta)(z)| = Mf_:k” s

|=l B =B _
<M (E +& E) _
|er|

But we have that

then we are able to take |o| small enough such that

|| B —|e| B _ ———
(£2200) - vy 0

Thus we have that

[alto}(£ + ic)] < 2 sup [altol(E)],
S

obtaining the desired estimate (32). O

Using this result, we also have that

Lemma 3.3, Let u be a sufficiently smooth function in
E » I such that

suppu(t] C -8, 8], forte [l

Then we can choose &) € B, with | A | sufficiently large,
such that for

o] < B7Y[1+ | loga(A )],
we have that
—————, . -
sup [wlte)(£ +io)| <2 sup [ulta)(E)],
(= |&]2= Ay

where tn © I and m[ﬂ] denotes the apalytic exten-
gion of the Fourier tranaform of uity){x).

Proof. Since limjy_.a{A) = 0, then we can choose
|Ar| sufficiently large such that

lo| < B~'[1+ |logalrd)]
ig amall enough. Thus applying Lemma 3.2 we have that

sup |ulto)(£ +io)| <2 sup |ulf)(€). O
HEEH €] 24
Now we present, one of the main theorems in this work.

Theorem 3.1. Let v, and fyr; be continuons functions
inRx=TIfori=123andj=1,2 withr;, &:r; € L'(R)
uniformly fort € I, and such that 8.ry(t), ryt) € A uni-
formiy for ¢ £ T, Il u s 8 sufficiently smooth solution
of the {KdV} equation with variable coefficients

ug-lﬂ'ﬂ':u-- irrl[l,'l[.r]lu*_lEL utra{ i) utra () xu=10
(34)
inE =1, (k> 2) such that
suppu(t) C [-H, B, frtel.

Then wiz, ) =0 for all (z,t] e B = .

Proaf. Hereafter we st
Ft)(x)=F(t)(x, r1, ra, ra, u, dou
=—(kry(t){z)u* " Beu+ry(t){x)Bpu+ralt){xhu)
(rlE)z) e (u®) 4 ra () z)Feu+ra(t)(z)u) .
We first note that r,(f) and rg(f) also have the glob-
al decay estimate (7}, uniformly in & In other words,

riltl,re(f) £ A, uniformly in ¢ In fact, using that
r(t) & LYR) uniformly in ¢, we have for £ = 1,2, that

RN < €.
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14|
Now, since the function f(A) = {75 18 continuous and

ia mever zero in [—1, 1], there are positive constants
guch that

eyl
|f.ff:|[a’l]| = T

But d.r;[f) satisfies condition {7) uniformly in £, imply-
ing for [A] = 1 that
—— =l b
&e CiE
=
(&M < AT+ = T+ A%

Thus we conclude that there are positive constants o
guch that for t € J and A £ R,

Ag[-L1].

e 1A
RN < 357

Mow we will argue by contradiction, In ether words,
assume that there are xy € [-8, 8] and £, € { such
that wilp)lxa) # 0. T]Je.n, froam the Paler"-‘lr’mne: The-

orem we know that TJ[I:I has an analytic extension in L
and there 15 sy = 0 such that for £ 2 1,

[ulf)(A + iz} < sel1®, A o e R (35)

As in the intreduction, using the semigroup associated
to the linear eguation

1-|!'|I.+W.':::r. = I-.|-|

we know that Duhamel s principle implies for ¢ € T
that the solution of (34) can be expressed as

#l{f'][_x] — %-fnﬁiuﬂl"u!ﬂ “”mtl]dl

+ % j;(j: E.rrarﬂﬂu—:rn;:mmﬁ)ﬂ

This for fixed £, bz £ T we have that

ulta)(z) = 5 L ethe F 3=t} g ()

ﬁ j;(]:ﬂ ﬂ‘r""_"’“:'r""]:'!?m{}.}dr)ih

Moreover, in terms of the Fourier transform

At (A meiTATae [:T{?T (M f e 'Pf?T‘mm:efr}
il

whers Af =ta — 1. We alzo have that the analytic ex-
bension of w(is (A}, for A, € E, satisfies that

At I(A + i) = ghViAtHimi®ae [E[?.“]m + i)
& ——
+ fﬂ e FIAHT T Bl g (A +-i.:r]dr] ,
0

sinee we also have that F-"Erh] admits an analytic exten-
sion in C { Fi{t) hes compact support). Using that

(A +io) = (3 = 3xc?) + (3022 = o™i,
for A, £ B and £ .f2 & I, we conclude that
ulta) (Ario)| = 73N {4 1A + ia)

At -
+ f PELE Ly A T aicr}-:ir|
1]
= f'}l:-fJ—HrrJ.E].ﬂ.l [|!F|:.!-]_:|[.-:'| +w}|

ot e
- f ET[SFA;_F;IIT'FET-{- tl:'[.:’l.-l—l-ﬂ':lld?’].
1]

Suppose that A € E and that & is such that sodt < 0
with |7| = 1 then

ot = B X 1AL = (347 = 7)oy Al
Using (35), we conclude for & = s that

e ‘ e
5 el I8 5 gmrihoatl Beat “uih}{ﬁ. +ia)| - fﬂ 3 =1t | ity + )+ :'u:r,'l|{-ET]
I

e -1, . i
E E—d“l"l'ﬂ'&ﬂEHAI"‘_'ﬂ'_"ﬂ [lu{tlj[l + 1|‘_|':|| _ __qf E—A”J'"I'ﬂ'fl F[Il + 1-:' |:.|:'| + :‘g}ld.r-] .
a

where A = 2T Observe for At = 0 that

At . P [5A]] . o
f e~ el BlE £ A + i) |dr = f e~ Wl | B £ RN 4 i) |dr, (36)
0 ]

and for At < 0,

At I || ———
f E—.'Elrrl'l-l..-r-r| Flty + )M 4 a'.-sr}|dr f c—ﬂ;*lwlrlpih TILA :Iu'::lld.?'. {37}
o 0
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Then without. loss of generality we can use either (36) or (37). Thus for £;, 12 € T and A = e*717 ) we have that

e x — &:I o T
e odd = AN edd | | () 4 de)| — A f e~ 3T B (A !'-5'}|dr]. {38)
L}

But we know that
(FAa)(3) = iX(Fa)(N) — (B Fa)(x), amd (fi )0 = (Fi e oo m Fi) )
Then for anv ¢ € T,

FO) = —ix(roltheult) o - o ult) )0 + (Boref) » ulth = v ult))(3)

iA(ralf] o wl®) ) (0) + (Ferald) o u(®)) (4)  (rale) » ul8)} ()
SBinee |r| < 1, then for |A] = 1 we have that |4 + ée| < 2|A|. Using this

Fio)(A+ia)| < |-+ io|(m(0) » at) « -+ »alt) ) (A + ie) [+

(Eor(6) o wlt) « - o alt) ) A+ )| 4+ |2+ | (7alE] » a8 ) (A 4 i)+
| (Ferafe) () ) (A + )| + | (7al0) + )} (A + i)
< MG A + i),
where {7 is defined by

GO (=) = | (mo(6) = ut) = - »ult) ) (=) +| (Fora )+ ulE) - wule) ) 2)]

| (0 00) 3] + | (8 + D) 2] + | (0 » w00 )2

For convenience we set 3 = vy, B = 8oy, s =75, 34 = dprg, and Js = r3. Then for 4.t = 1, |A| =1, |7 <1 we
have that

.K-E'?u vt -, Eﬂ-lulwﬁtl

i, I'l:"! 9 i,
it (A + i) — 247 f T T T iu-]|d-rl. (39)
¥

Note now that

B (A + )] — 241 L e G )4 i)
e I'ﬂ'” a ———
= [ultr}(A)] — 241 f e~ hele | Gl + 7 )(A) dr
(]
— [t} (A + i) — ulta) (A

lag . I R
3 AN j; e~ el | Gl (A + i) — GlE + THA)|dr

Then choosing e, £ and A (| A| large enough) as in Lemma 2.7, with @ = 0, which will be specified below, and o = o[ X)
such that
24

dolpr |

> % (40)
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we have that

— las —
w(t A} — 244 f e” I Gty + 7)) |dr
1]

lag
alA) — 2A|A f g~ 3N IT"lf[
[}

(Baltr 47 wults ) e o wufty 47 ) (A
+ |[Iaiﬁ_1?r} # !F{E]_.:_T] ® -k !r{ﬁr]}{lﬂ
+ | (Bl 7w ults + 7)) (0| + | (Bl + 1) wules + 7)) )|

3 |[ﬂamT] * ulf_g_:f]:}fl] ]d“."

[t
= alA) —24 A.|f E_le"“ﬂ'lr[lfum xax - zal{A)+(ag =a* - xal(A)
o
+ oy # a){A) + (ag, = a)ld) + (og, * “}"{:"}'] dr

| du]
= alA) — 24¢~[Ala(A) f =3 rale g
L]

2.-"1. Al _alulwn rl Ed"l l
alX) - g (1-e Jaln) > a(x) Tonon @ > A (41)
. . 4 1
From the generalized Mean Value Theorem, there is 1= oA ) =
70 E R, Joo| < o], such that which is equivalent to have
— ) iy, - # :
Julta ) (A + i) — wlty )(A)] < o] | {ulte)) (A + i) | % <ol (43)

< a| sup |(uts)) (€ + imo)|
€Iz A
then if g and p are as in Theorem 1.3 and in Lemma 3.1
respectively, and o is such that
lo| < (BuaB)~ {1+ |log alA)[)
< (8uB) 71 + |loga(A)|) ™"
< BH(1+[loga(A)]) ! < 1,
we conclude [using Lemma 3.3, Theorem 1.3 and recall-
ing that |A| is large enough) that

[u{ts)(A + iz} — ults)(A)| < B “"(l,ﬁ“_’t’,ﬂ i) (6))
[1+ flog{_ sup [aieriien)|]
lElz1Al

uBlola(N)[1 +|loga(N)]] < gal).  (42)

We now claim that the conditions imposed to A and #(A)
are verifiable, If 4, = Bﬁ‘?, then we will see that

then we can choose A such that l‘Ef- <= 1. But we also
st liave that
ler| = (BppB) 11 + |logal A1~ =< 1,

meaning that A must be such that

Aa 1 1

— el =1, {44
Pl < T+ Togam] ™™ B+ [logagiyy = 1 Y
where Az = 164 ppl. The second inequelity is reached
by choosing A large enough, since limy .. alA] = 0.
For the first inequality, we must recall that given 0} = 0
we can take A auch that

al\) = e~ 7.

As a consegquence of this , i we take Q) such that % e j';
and [A] = 6 we conclude thag

|4

1 A —
[logalA)| < 5

implying that
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2|-’t| |A|
14| logalA)| = — 3 A},
and obtaining the desired condition. Now we will establish an estimate for the expression
lay R —
2A|A f e~ Wl | GTE £ TIA + i) — Gt + T)(A)|dr.
i
For £ < I, we have that
(50 0+ 503 ) — (o) a0+ 00 )
= | LT = dy = =+ ) - A e BT e .
- jhiIEﬁ[A— A= e = AJulE)(h) - ulE) o DA (6 Ae)dd . dhe
B
L A OIS R W [MOIEN]
o JulE e ) B (ER N |y -
i:j;tlﬁmu—h—---—AHw}—&EﬁH—AL—---—mlauﬂ
cvaf A1 )aa, (A )dAs ... dg.
From the generalized Mean Vilue Theorem, there i o € E with oy | < |o| such that
[(E)(A — A — - = Ay +dg) — w(thh — A — - — A = a|(wlO) (A — A — - = Ae + idg)].
Now, taking A = min{|A|, |A — Ay — -~ — Ae|}, and using Theorem 1.3, we conclude that
|ﬁ_ffj[.x—.1, —ve— Mg i) — W(EA— Ay — e — A < |F| " sup ||:“f¢]] (£ + i)
—Ai—— A

< o sup | (u(t)) (€ + iov)] < pBlo {alup Iu{t}{f}l} [1 + [log  sup fu(e)(€)) |
&)=

< uBlo | sup sup fu(B)(©)] ) [1 + o sup sup (e}

HEPR
< pBlala(X)(1 + [logaiX)[).

Then using the estimate {31} in Lemma 3.1, we obtain that

[u{t}(A = de = o = Autior) = wE}(A = Ay =+ = M)
< ppB|e|{alA) + ald = & = = A)) (1 + |loga(A)])

< alA)+afh— Ay — o0 — Ag)
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As a consequence of this, for L e T,
| (308 ) 5081 ) A i) — (B8 D) o0 00 )

< j; [a{A) + alh = Ay = -+ = Axd]afda) - - a{Ap—y Jag, (Aehdhy - - dAg

= qalX) + (ag, *a=-- =a)(A),

where the constant O is taken as o
= ( th g, E-:}ld-:) ( fl ﬂ{c]dc) :

In a similar fashion, it can be shown the existence of positive constants Oy, Oy, Oy and Oy such that for § = 3,4,5
|(BalE) o ult) » - = wfe) ) 4+ i) ~ (BalE) » ult] + -« ul6) ) (4] < CoalA) + (g, +ax--- s a)(A),
(Bt o ult)) (A + i) — (B(E) » ulO)) ()] < CalX) + (ag, + a)(N).
These facts imply that there is & positive constant © = 0 such that
|Gl + ) (A + ia) — Gty + TIA)] < Ca(d) + (ag, =a= - +a)(]
+{ag *a* - sa){A) + (ag = a)(A) + (ag, = a)(A) + (as, = a)(A).
Again, from Lemma 2.7, we have that
[t . —— e |2t o
24 f e~ el |Gty £ 1) (A + o) — Gl + 1A dr < 2400 + e VJalA) f e~ helr g
] ]

2A(C +¢71) a(A)
S Tahend M= gEp

(45)

taking A and & such that
16A(C +e71)
3l Al
Now, argning as in (43) and (44), we can choose A and

L &
T = 46T

< || < 1. . - o - ;
with Az = 4xe?™T, But this is & contradiction taking

€T} large enough.

a{A) with this eondition satisfying

1 "

Thus, v choosing &1, A and =(A), and also with (39),
(41%, {42} and [(46), we have that for some positive
onstant g that

e Iredt] o, (33T yma [%ﬂl:.l:] — én{.l] — %u[.ﬁ.}].
In other words, we have shown Chat
a[A) < dre” 1ol =33 ede]

Thus choosing ty = I such that T < |At| < 2T and
uging Lemma 2.7 and condition  (46) we conelude that

e < ald) < dre2ITe=T,
which is equivalent to have

The firat consequence of the proof of previous result is
the extension of the unique continuation result due to J.
Bourgain for equation (34) for variable coefficients de-
pending only on £, The proof does not regquice imposing
any decay condition on the coefficients.

Theorem 3.2, Let r; (i = 1, 2, 3) be continuous func-
tiong in . If u iz a sufficiently smooth solution of the
(KdV) equation with variable coeficients
g+ u+ ke (O eu s e[ Ddu+ra(tin = 0, (47)
anch that
suppu(t)(-) € [-B, B, fortel

then u(z, £) =0 for (z,t) e R = 1.
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Proafl Let F be defined asg

Fit)iz) = F(t)(z,r1,ra,r3,u, dzu)
= —(kr (" dou + ra(t)feu + ra(thu)
= —(ra{thi (u®) + ra(t)den + ralthu).

Ag in Theorem 3.1, there is & = D anch that for ¢85 < 1,
A =g — Iy, yrdd <0 and |o| = 1, we have that

P P [lt-t[h](l + ier]|

| 2|
_ Af E—.].l.ih:rlr
o

Fit, + f][l+t'-:r]|df],

Morveowver, we alao have that

with A = #1717 Then,
FO) =~ (araie) [ult) o -+ ult) (A
FAra(tul (N + ralOulf)(A))
For |A| = 1 large enough,
|FIEA+io)] < 2071 [Ira (N (fulE) + - = [ulB}I} (A + i)
+ 2B + i) + [ra(t) ()1 + i)
< 2[Ry (udt)| = -+ + [WlE)]) (A + ie)
+ (Rz + Ry)[ult)(A + ie)| | < ANCEA +io)
where H; = sup,.; [ri(t)], and
G(t)(z) = Raflult+ -+ o[ult)]) (=) + (Fa+ Ra) u(£) ()]

o &EI q i,
b J(A -+ i) = 2431 f e~ 34T\l (A 4+ iodr
i}

—— I":'*I ] ———
= |ult}(A)] — 24JA J£ e~ Gty + 7 ) A) |dr

— [WlE) (A + i) — () (A

|| — I
— 247 f e~ Yl |Gl ) + i) — Gt + TH(A)|dr,
il

then using Lemma 2.4 and proceeding as in the proof of Theorem 3.1 we obtain the result, O

Az o eonsequence of the previous Theorem, we obtain
a uniqueness result for the (KdV) equation.

Corollary 3.1. Let u, v solutions of the (Kd V) equation
w+Hu+udu=0 en RxE, (48)

auch that for & = 0, u(t),v(t) & H*(R) and
dpult), dev(t) € A wniformly for £ € R If u(z,t) =

v(x, ) for (x. 1) € {I—B. B]*xf;'l:, then w(x, t) = vz, 1),
foriz e R xR

FProof. Clearly, the Hilder inequelity implies thet
ult). dpu(t), dev(t) € LYR) uniformly for ¢ € I. Thus
wit have that w o= w = v 18 & solution of the (KdV) type
equation with variable coefficients

we + fow + wlx, 1w + Aoz, Hw =0,
guch that
suppuw(t)(-} C [-8,B], fortel

Then from Theorem 3.1, we conclude that ulr,y) =
vz, y) for (z,t) € [- B, H] = 1. O
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