Fisica

FUNDAMENTALS OF INFORMATION AND
COMPUTATION IN THE REALM OF THE QUANTA

Por
John H. Reina*+

Resumen

Reina J. H.: Fundamentals of information and computation in the realm of the quanta. Rev.
Acad. Colomb. Cienc. 33(127): 201-242, 2009. ISSN 0370-3908.

La informacién es un ente fisico. Los sistemas fisicos registran y procesan informacién. El
reconocimiento de estos hechos desde el punto de vista de la teoria de informacién y su relacién
directa con aplicaciones a nuevas tecnologias cuanticas ha sido crucial en el desarrollo reciente
la fisica tanto bdsica como aplicada, al mismo tiempo que de otras areas tales como ciencias
de la computacién, matemadticas e ingenierias, donde el reto de construir dispositivos que
permitan el procesamiento de informacién a nivel cuantico es objetivo primordial. En los
trabajos de Deutsch (Deutsch, 1985) y Shor (Shor, 1994), la nocién de bit cldsico de la teorfa
de informacién fue conceptualmente extendida a un marco fisico radicalmente diferente con la
introducciéon del bit cudntico, donde fue demostrado que los efectos de interferencia cuantica
de muchas particulas pueden permitir una forma nueva y fundamental de cémputo, donde
es posible la ejecucién de tareas computacionales irresolubles tales como la factorizacién de
nimeros primos muy grandes o la simulacién exacta de sistemas cuanticos multipartitos. Asf, la
investigacion en fisica de la informacién y cémputo cuantico se ha convertido en un foco de de-
sarrollo basico de la fenomenologia cuantica, analisis y revisién del cual se presenta en este trabajo.

Empezamos con la definicién formal de qubit, registrador cudntico, y de conjunto universal de
compuertas logicas empleado en la construccion de un computador cuantico, desde la perspectiva
de un modelo de computacién de red cudntica. A partir de este, se enfatiza en la versatilidad de
la representacién de circuito cudntico para intrincar y desintrincar estados cudnticos. De aqui se
introduce el “teorema de no clonacién” y sus aplicaciones a criptografia cuantica. Se describen
dos alternativas a la formulacién ‘tradicional’” o usual de cémputo cudntico: i) computacién
cuantica geométrica, y ii) computacién cudntica unidireccional. Se realiza la caracterizacién,
y cuantificacién de intrincamiento cudntico, en particular de sus usos como recurso fisico
en protocolos de comunicacién cuantica tales como teleportacion, criptografia, codificacién
superdensa, y compresion de datos. Se introduce el concepto de paralelismo cudntico de Deutsch
y se analiza su aplicacion a la resolucién eficiente de tareas algoritmicas irresolubles clisicamente.
La decoherencia cuantica se introduce como proceso inherente y central en el procesamiento de
informacion cuantica. Se plantean mecanismos para corregirla o evitarla, en particular, se analiza
en detalle el proceso de correccién de errores cuanticos. Finalmente, se desciben algunas de las
implementaciones fisicas de cémputo y comunicacién cuantica, y de la forma como un qubit
puede ser representado fisicamente en una gran variedad de nanosistemas.
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Abstract

Information is physical. Physical systems register and process information. These facts have
generated enormous interest in the development of novel quantum technologies, especially
because the construction of smaller electronic devices ultimately leads to a consideration of
quantum mechanical effects in electronic and computer designs. The notion of the classical bit of
information theory was formally pushed into the realm of the quanta with the introduction of the
quantum bit or qubit, in the seminal works of Deutsch (Deutsch, 1985) and Shor (Shor, 1994).
They demonstrated that, indeed, controlled multipartite qubit interference effects could provide
the means for a radical new way of computing, allowing the computation of many intractable
computational problems, such as the factoring of large numbers or the exact simulation of large
quantum systems. The field of experimental and theoretical research in quantum information
and computation has emerged as a very important player in the understanding of quantum
phenomena at both the basic and technological levels. This has attracted the attention of
numerous reasearchers with backgrounds ranging from computer science, mathematics and
engineering, to the physical sciences, and we now have an interdisciplinary field where great
efforts are being made in order to build devices that allow the processing of information at a
quantum level.

A concise introduction to the field of quantum information and quantum computation is
presented. This starts with the basic definitions of bits, quantum registers, through to the
universal gate-set for building the universal quantum computer, from a quantum network model of
computation. The work shows how two-qubit gates suffice for quantum computation, emphasing
the power of the quantum circuit representation for entangling and disentangling quantum states.
This leads to the “no-cloning theorem,” which leads us to many interesting applications, such
as quantum cryptography. Two alternative approaches for performing quantum computation
are also described: i) the one-way or measurement based quantum computer method, and
ii) holonomic or geometric quantum computation. Following this, quantum entanglement
quantification is highlighted, particularly its usefulness as a communication resource, in order
to describe some of its most celebrated practical applications to date: quantum teleportation,
cryptography, dense coding, and data compression. Deutsch’s concept of quantum parallelism
is emphasized in order to gain insight into the potential for efficiently solving certain classically
intractable algorithms. A subject central to the field of QIP - quantum decoherence - is then
introduced. Possible ways to overcome it, in particular quantum error correction, are discussed.
A description of some of the currently available hardware for the practical implementation of
quantum computation is provided with a discussion of the main physical quantum bits that are
currently employed (or proposed) for such a purpose.

Keywords: Quantum computation, entanglement, communication, algorithms, decoherence, er-
ror correction, qubits, and nanostructures.
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I. INTRODUCTION

The ways in which quantum theory can tell us about
nature have been the subject of long periods of debate
throughout its history since its foundation, a century
ago (d’Espagnat, 1976; Mermin, 1985; Peres, 1993).
Some of the very same issues that revealed most of the
‘difficulties’ (Einstein et al., 1935; Schrodinger, 1935)
of this theory have come to be of great practical use
for technological purposes in the emerging field of quan-
tum information processing (QIP) (Bennett & DiVin-
cenzo, 2000; Steane, 1998; Bennett, 1995).

In 1935, Einstein, Podolsky, and Rosen (EPR) (Ein-
stein et al., 1935), and Schriodinger (Schrédinger,
1935) pointed out that one such aspect of quantum the-
ory is the phenomenon of entanglement. By means of pre-
dictions associated with an entangled (EPR-pair) state,
EPR argued that quantum mechanics is an ‘incomplete’
physical theory because of the violation of “local real-
ism,” a description of the world where the physical prop-
erties of spatially separated subsystems of a composite
system are characterised by an ‘independent’ and ‘objec-
tive reality.” This was the subject of many fundamen-
tal discussions concerning the basic structure of quan-
tum theory. This conflict had to wait for almost 30
vears for its resolution, when Bell reported, in his cel-
ebrated 1964 paper (Bell, 1964; Bell, 1987), that this
local realism leads to constraints on the predictions of
spin correlations (Bell’s inequalities), which can be vio-
lated by quantum theory for a system in the singlet (Bell)
state [1) 1) — 1) 1), being |1) (1)) a particle’s spin “up’
(“down”) state along a given axis (Peres, 1993). After
this breakthrough, several experiments (Aspect et al.,
1982; Selleri, 1989; Tittel et al., 1998; Weihs et al.,
1998) were performed in support of Bell’s findings. This
feature—nonlocality—reveals quantum entanglement at
its best, an outstanding phenomenon of quantum physics.
As we shall see below, quantum entanglement has led to
several important practical applications for QIP, where
it has been recognised as a valuable resource for commu-
nication at both classical and quantum levels.

1 See also the special issue of Physics World, March (1998).
Note that most of the literature in the field can be found
at the Los Alamos National Laboratory e-print archive,
http://xxx.lanl.gov/archive/quant-ph.

After these theoretical developments, there was a fur-
ther long period until we arrived to the point which
settled the foundations of the field of quantum infor-
mation processing. It was realised that quantum me-
chanical principles are not just exotic theoretical state-
ments but fundamental for a new technology of practical
information processing. This is based on the ideas of
Feynman (Feynman, 1982; Feynman, 1985) and Be-
nioff (Benioff, 1982(A); Benioff, 1982(B)) presented
in 1982, and a few years later, in 1985, by Deutsch
(Deutsch, 1985). These findings have developed in
concrete practical applications: quantum computation
(Feynman, 1982; Feynman, 1985; Benioff, 1982(A);
Benioff, 1982(B); Deutsch, 1985), quantum cryptog-
raphy (Ekert, 1991; Bennett et al., 1992(A); Ben-
nett et al.,, 1992(B)), quantum teleportation (Ben-
nett et al., 1993), quantum dense coding (Bennett &
Wiesner, 1992; Barenco & Ekert, 1995), and quan-
tum games (Meyer, 1999; Meyer, 2000; Eisert et al.,
1999; Eisert & Wilkens, 2000; Benjamin & Hayden,
2001(A); Benjamin & Hayden, 2001(B)), all of which
represent, exciting new arenas in which to exploit such
intrinsic quantum mechanical correlations.

The discovery of algorithms for which a computer
based on the principles of quantum mechanics (Deutsch
& Jozsa, 1992; Simon, 1994; Shor, 1994; Shor,
1997(A); Grover, 1997) should beat any modern digi-
tal computer has triggered intense research into realistic
controllable quantum systems. Since the seminal idea
of Feynman (Feynman, 1982; Feynman, 1985) and
Benioff (Benioff, 1982(A); Benioff, 1982(B)), and the
work of Deutsch (Deutsch, 1985), both pure and applied
research in the field of quantum information process-
ing have blossomed. In 1994, Shor (Shor, 1994; Shor,
1997(A); Ekert & Jozsa, 1996; Cleve et al., 1993)
opened the way to new fast quantum searching algo-
rithms: he discovered that a quantum computer can fac-
torize large integers. T'wo years later the proof that quan-
tum error-correcting codes exist arrived (Shor, 1995;
Shor, 1997(B); Steane, 1996(A); Steane, 1996(B);
Steane, 1996(C)).

Regarding the physical implementations of quantum
computation and information, the main areas of research
include ion traps (Cirac & Zoller, 1995; Cirac &
Zoller, 2000; Monroe et al., 1995; Molmer et al.,
1999; Sackett et al., 2000; Blatt & Wineland, 2008),
quantum electrodynamics cavities (Pellizzari et al.,
1995; Turchete et al., 1995; Cirac et al., 1996; Cirac
et al., 1997; Imamoglu et al., 1999; Rauschenbeutel
et al., 1999; Rauschenbeutel et al., 2001; Greiner et
al., 2002; Leuenberger et al., 2005), nuclear magnetic
resonance (Gershenfeld & Chuang, 1997; Chuang
et al., 1998(A); Chuang et al., 1998(B); Cory et
al., 1997; Knill et al., 1998; Jones et al., 1998(A);
Jones & Mosca, 1998(B); Vandersypen et al., 2001;
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Kane, 199%), optical lattices and Bose-Einstein conden-
sation (Brennen et al., 1999; Jacksch et al., 1999;
Greiner et al., 2002; Mandel et al., 2003; Gia-
marchi et al.,, 2008; Bloch, 2008), Josephson junc-
tions (Shnirman et al., 1997; Makhlin et al., 1999;
Nakamura et al., 1999; Averin, 1998; van der Wal
et al., 2000; Makhlin et al., 2001; Clarke & Wil-
helm, 2008; Montes et al., 2009), molecular magnets
(Leuenberger et al., 2001; Leuenberger et al., 2002),
nanotubes and fullerenes (Ardavan et al., 2003), single
molecule arrays (Reina et al., 2004), graphene quantum
dots (Trauzettel et al., 2007), organic polymers (Mu-
jica et al., 2009), and quantum dots (Barenco et al.,
1995(B); Loss & DiVincenzo, 1999; Burkard et al.,
1999; Reina et al., 2000(A); Reina et al., 2000(B);
Quiroga & Johnson, 1999; Biolatti et al., 2000;
Troiani et al., 2000; Lovett et al., 2003(A); Lovett
et al., 2003(B); Nazir et al., 2005; Fushman et al.,
2008; Robledo et al., 2008). This is, by no means, and
extensive list and many more proposals and implementa-
tions can be found in the literature. This gives an idea of
the broadness of the field and of the current experimental
and theoretical activity.

All of the above proposals and/or implementations
have decoherence and operational errors as the main ob-
stacles for their experimental realisation: these, as we
shall see throughout this work, pose much stronger prob-
lems here than in conventional digital computers. The
main challenge we face in order to process information
at a quantum level is to identify a physical system with
an appropriate internal dynamics and corresponding ex-
ternal driving forces, which enables one to selectively
manipulate quantum superpositions and entanglements.
A fundamental requirement for the experimental reali-
sation of such proposals is the successful generation of
highly entangled quantum states. In particular, coherent
evolution of two quantum bits (qubits) in an entangled
state of the Bell type (Bell, 1987; Bell, 1964; Aspect et
al., 1982) is relevant to both quantum cryptography and
quantum teleportation. Maximally entangled states of
three qubits, such as the so-called GHZ states (Green-
berger et al., 1989; Greenberger et al., 1990), are
not only of intrinsic interest but are also of great practi-
cal importance in such proposals.

Besides the capability to control and manipulate en-
tanglement, a high level of isolation from the environ-
ment is required to reach a full unitary evolution. Quan-
tum information processing will be a reality when opti-
mal control of quantum coherence in noisy environments
can be achieved. The various communities typically rely
on different hardware methodologies. It is therefore ex-
tremely important to clarify the underlying physics and
limits for each type of physical realisation of QIP sys-
tems. This work aims to give a basic introduction of
the main results concerning the processing of informa-

tion at a quantum level. It is not intended to provide
a historical review of the development of classical infor-
mation theory and computer science, and the way they

were linked to fundamental aspects of quantum physics
to give birth to the field of quantum information theory.
Instead, the background and the necessary concepts of
quantum computing and quantum information are pre-
sented to further establish the framework to some phys-
ical realizations such as those of the solid-state.

For the purpose of the implementations discussed in
the final part of this work, the network model of com-
putation is adopted. Here one can imagine a quantum
computer (QC) as a physical device that takes an ini-
tial state (input) into some final state (output) via a set
of quantum networks that evolves in a unitary fashion.
Next, the methods to build such networks are presented.

II. FROM BINARY DIGITS TO UNIVERSAL QUANTUM
COMPUTATION

A. Bits and quantum registers

A binary digit, or bit, is the basic unit of informa-
tion in classical communication and information theory.
This has only two possible states: 0 and 1 in the binary
system generally used in digital computers (in a proper
electromechanical device, this basis can be represented
by an “on-off,” or “open-closed,” or “go-no go” states).
The relevance of this base-2 representation to computer
technology arises from the reliable compact manner in
which data can be digitally stored. For example, the year
2002 (decimal system) can be written in binary system as
11111010010. At first glance, this number appears to be
more compact in base-10 than in its binary equivalent;
however, a physical representation of a four digit number
in base 10 requires 10? states, while its binary represen-
tation ‘only’ requires 2'' = 2048 states: it is clear that
the binary system appears to be the most convenient one
for the storage and processing of the information. There-
fore, we shall hereafter assume that information is stored
in registers in a binary form?.

2 A binary string can be represented in any base b as: cpb™ +
Crn1b™® 1 4o b+ cnbo, where ¢; are ‘place-value’ co-
efficients. Usually, the number representing this expansion is
written as cpen—1 - -cacieo (base b). For example, in the dec-
imal system, the number 2002 is the compact way of writing
2% 10% +0 x 102 + 0 x 10! + 2 x 10°. Tts binary equivalent is
11111010010, ie., 1 210 £ 1327 1% 28 1% 27 +1 % 26
0x254+1x2%4+0%x2%+0x224+1x2" 40 x2° while for the
Mayans (vigesimal number system) this should read 502.
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In contrast to the binary digit, or classical bit, the ele-
mentary unit for the processing of quantum information
is the quantum bit or qubit, a term coined by Schumacher
(Schumacher, 1995). In this case the Boolean states 0
and 1 are represented by a pair of normalised and orthog-
onal quantum states labelled as {]0),]1)} (Schumacher,
1995). These states form a ‘computational basis’, that we
shall name the B;-basis, so that any other state of the
qubit can be written as a linear superposition o |0)+43 |1},
with |a|?+|3]? = 1, o, 3 € C. Typical examples of qubits
are nuclei with spin 1/2, two-level atoms, polarised pho-
tons, etc.

A quantum register (QR) of size n, is a quantum sys-
tem of n qubits with a 2™ dimensional Hilbert space, and
hence with 2" mutually orthogonal quantum states avail-
able, which can be written compactly as {|7}}, where j is
an n-bit binary number (j = 27715, +2" 725, o+4-- -+
2'514+2%, jm € {0,1}), and |j) denotes the tensor prod-
uct |jn—1) @ |jn—2) - - 71) @ |jo), Or [Jn—1Jn—2 - - - jrjo) for
short. Though a qubit is a prescribed two-state system,
it is fundamentally different from a classical bit. A given
quantum physical system that serves for the storage, pro-
cessing, and readout of a computational process by using
a qubit has to deal with a microscopic system that is to
be “switched on or off” by appropriately manipulating
its interaction with an external driving source, bearing in
mind its interaction with the other qubits of the system
and also with the surrounding environment. This has an
additional ingredient: the dynamics of a qubit is ruled
by the principles of quantum physics. This means that
while a binary string of n classical bits can store only one
number at a given time, say

1 0 0.0 _0 |, (1)
N
Jn—1 Jn—2 Jn-3 Ji Jo

an n-quantum register can store a superposition of all of
the 2" mutually orthogonal quantum states {|7)} simul-
taneously: this is the computational power of quantum
interference, which led to the so-called quantum paral-
lelism (see below). To see this, we need to prepare the
register in such a way that each qubit is in a superposi-
tion state, say (|0) + [1)) /v/2. Hence we are left with a
quantum register in the state

75 (10) +11));,_, @75 (10) + 11));,_,® @75 (10) + 1)),

which in binary notation is the sum of 2™ quantum states

7

S 1) = [00---00) +[00---01) + [00- - 10) +-- - +
Jefo.1}n
1100+ 00) + -~ + [11---10) + |11 --- 11),

(2)

where the normalisation factor 27"/2 has been omitted.
Eq. (2) can be written in base-10 as

L 1 2 ’Q_T:\_?
{2
2" —1
=)= Y )

where the overbraced state is the quantum representation
(in decimal notation) of the binary string represented by
Eq. (1). Hence, it is clear that due to the quantum super-
position principle, a quantum computer can, in principle,
be prepared in a superposition of (and as we shall see be-
low, can process) 2" states in a given n-QR at once. Here,
there is an important issue to be highlighted: a qubit is
an extremely fragile physical system and its reliability
to store and process information at will is going to be
limited by the interactions that it might have with the
environment that surrounds it—the problem of noise at
a quantum level. This QR-environment coupling, known
as decoherence, produces an undesirable effect over the
register: it makes superpositions such as |0) + |1) lose
their phase, and therefore their ability to interfere re-
liably, which results in the destruction of the gquantum
computation. This can also be viewed as a loss of the
unitarity of the quantum evolution of the QR, an essen-
tial requirement for quantum computation to occur.

B. Quantum logic and the universal quantum computer

Building blocks of a quantum computer are now intro-
duced. As in the case of the processing of classical infor-
mation in digital computers, logic gates and networks for
the processing of quantum information (Deutsch, 1989)
are introduced. A quantum logic gate is a device that per-
forms a prescribed unitary operation on selected qubits
in a definite time t and a quantum network is a device
built of quantum logic gates whose computational steps
are synchronised in time (Deutsch, 1989). Such quan-
tum networks are to be represented by a circuit notation
that accounts for the action of the logic gates. Here, a
qubit is represented by a horizontal line—“wire”— that
evolves in time from left to right, and single and two
qubit gates are represented respectively by a prescribed
symbol on one wire, and by symbols on two wires con-
nected by a vertical line. The qubit associated with the
filled dot is usually called the “control” (or source), and
the other one is called the “target.” An example is shown
in the following network of size 4 (Fig. 1):
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FIG. 1 A quantum network containing 4 gates. From left to
right, the QR state |¥) experiences the action of the follow-
ing quantum logic gates: i) Hadamard (H), ii) phase shift
[P ()], iii) Controlled-U (U), and iv) controlled-NOT (cNOT
or XOR). The network produces the final state “output”
[Ty = XORa3U12P(p)1H1 | ). In this operational notation,
the subscripts denote the qubits to be addressed, and in any
two-qubit gate U;;, 4, and j denote the control and target bits
respectively. Note that the first two unitary transformations
are single qubit gates while the remaining ones are two qubit
gates.

It turns out that any possible unitary transforma-
tion to be performed by a quantum computer can be
simulated by an appropriate combination of the set of
quantum logic gates shown in Fig. 1, i.e., by perform-
ing arbitrary single qubit rotations and two-qubit XOR
(or U) gates. Thus, the sets of gates {P(y), H, XOR},
and {P(p), H,U} are universal for quantum computa-
tion: all logic gates to be performed on a given quantum
register can be constructed by composing the gates of ci-
ther of these sets. These are the so-called universal quan-
tum logic gates (Deutsch, 1989; Deutsch et al., 1995;
Barenco, 1995; DiVincenzo, 1995; Lloyd, 1995).

A quantum system capable of realising and manipu-
lating at will a given set of universal quantum gates is
said to perform wuniversal quantum computation. Such a
machine is the so-called universal quantum computer, a
concept first introduced by Deutsch in 1985 (Deutsch,
1985; Deutsch et al., 1995).

The main result to be emphasized here is that two-
qubit gates are sufficient for quantum computation. As
can be imagined, there are many combinations of gates
that can be built to perform elementary ‘quantum arith-
metical operations’ such as binary addition and multipli-
cation. However, it is not the purpose of this section to
describe in detail such quantum networks. Many basic
constructions can be found in (Barenco et al., 1995(A);
van der Wal et al., 2000). We are now ready to define
the building blocks from which one can assemble a circuit
that can evaluate any arbitrary Boolean function:

1. The phase-shift gate P(p) is a single qubit gate that
performs the unitary operation P()(|m)) — "% |m),
where m € {0,1}, or P(p) = (0) (0] + ™ [1) (1].

2. The Hadamard gate H is also a single qubit gate
that performs the unitary operation known as the

Hadamard transform H(|m)) +— %[(—l)m |m) +

[1—m)], or H = 5[(10) + 1)) (0] + (|0) — 1)) (1]].
These gates are schematically represented in the lan-
guage of quantum circuits as shown in Fig. 1. It is easy
to show that by combining the set of transformations
{P(y), H}, any single qubit rotation can be generated.
Hence, the Hadamard and the phase shift gates suf-
fice to perform any unitary transformation on a single
qubit.? Other relevant single qubit gates are the iden-
tity I =10} (0] + |1) {1]; the quantum NOT gate, which
in analogy with the classical NOT gate transforms |0)
to |1) and vice versa: NOT = |0} (1| + |1) (0]; and the
V-gate V = P(n/2).

3. The controlled-U gate is a two-qubit gate that per-
forms the operation [0) (0| @ I + |1) (1| ® U, where
U is some prescribed single-qubit unitary transforma-
tion. This gate leaves the target qubit unchanged or
applies the U gate depending on whether the con-
trol qubit is |0) or |1): |0} |m) ~— |0)(I|m)), and
[1} |m) — |1) (U |m)). The network representation
corresponding to this gate is shown in Fig. 1. This
two-qubit gate comprises a general family of quantum
gates, each of them, together with P(y), and H, being
universal for quantum computation.

4. The controlled-NOT (CNOT or XOR) gate is an impor-
tant example of a U gate*: it flips the target bit if
the control bit is in the state |1) and acts trivially
otherwise. This action can be formally written as:
CNOT(|f) [m)) = [4) [j & m), where j,m € {0,1}, and
& denotes addition modulo 2 or XOR operation. This
is why the symbol @ is schematically used to represent
such a gate, as seen in Fig. 1.

W

To see this, compose the network P(y + w/2) H P(20) H |m),
m € {0,1}. This gives the most general rotation of a single
qubit:

(3)

V{0, ) = o ( cos@ e'¥sin )

sin® e cos@

.

Another common two-qubit gate is the controlled phase shift gate
B(y), which performs the unitary transformation: |[m})|n) —
e’ |m) |n), m,n € Bi. In the language of networks, this gate
is represented as

¥z - {

S

} = "I’,)l,E :

——



REINA J. H.: FUNDAMENTALS OF INFORMATION AND COMPUTATION IN THE REALM OF THE QUANTA 207

The cNOT gate is usually termed as a measurement
gate due to the fact that it maps |m), |0), — |[m), |m),.
i.e., if the purpose is to measure the final state of ‘qubit
1,” then a measurement of the output state of ‘qubit
2" reveals the answer. The advantage of this proce-
dure over a direct measurement of qubit 1 is that it
is a “non-demolition” measurement: the original quan-
tum state of qubit 1 remains the same after the mea-
surement. However, this is only valid if the qubit 1 is
originally in one of the two states of the computational
basis B; = {|0),|1)}: if |m), is initially in a superpo-
sition of the states of this basis, then the state is “col-
lapsed” by the measurement. This is because it is im-
possible to build a universal quantum “cloning machine”
| W) |0) — |W) |P), with [¥) being the arbitrary superpo-
sition state |¥) = « |0) + F|1), a, 3 # 0. This important
result is known as the no-cloning theorem (Wootters &
Zurek, 1982); see Appendix A. In fact, if we ‘run’ the
CNOT12 gate over the initial state |T), [0),, we transform
(a|0) + 3[1)) [0) — «|00) + [11). This output state is
known as an entangled state because it cannot be writ-
ten as a direct product of quantum states for the two
qubit register, i.e., & [00) + G |11) # |¥1) ® |¥3). Hence,
a measurement of the output of qubit 2 should collapse
the state of qubit 1. This is to be contrasted with the
case of single qubit gates, where the input and the output
of a general n-QR can always be expressed as a product
or separable state |V1) ® |¥a) ® --- @ |¥,,), for arbitrary
superpositions |U;).

The fact that the ¢NOT gate takes superpositions of the
control qubit into entanglement of the corresponding out-
put qubits is an outstanding property. In addition to this,
the CNOT gate is a reversible gate: from its output we can
reconstruct its input. It suffices to repeat the same gate,
i.e., CNOT1,2(ONOTy 2(|W1) [W2))) = |¥1) [¥2). Thus, the
CNOT can be used to perform reversible computation. As
we shall see below, quantum entanglement is at the very
heart of any quantum computational process and also a
fundamental ingredient of most of the ‘spooky’ techno-
logical applications that quantum information brings as
a byproduct.

For illustrative purposes, let us go back to the net-
work presented in Fig. 1. By making U = CNOT, we
are left with the enfangling quantum network ]me =
CNOT23CNOT 2
P(p)1 Hy, which in the most elementary case performs
the transformation

N (|®) = [000)) — [07) = 75 (1000)+e* [111)) , (4)

thus producing a highly entangled state of three qubits
known as the mazimally entangled Greenberger-Horne-
Zeilinger state (Greenberger et al.,, 1989; Green-
berger et al., 1990). In Fig. 1, the action of the first

single qubit gates H, and P(y) is to rotate and to ‘phase-
shift’ the state |0), into %UU)I +€'% |1),) while the other
qubits remain unaffected. As expected at this stage, the
three-QR state is still a separable state. Next, we enter
the CNOT5 gate. Since its control qubit is in a superposi-
tion state, it is clear that this gate will entangle the qubits
1 and 2 of the register. Indeed, after this XOR gate opera-
tion we are left with the state %HUO) +e |11))®]0), the

product state of the maximally entangled (Bell or EPR)
state of two qubits |¥ye1) (Bell, 1987; Bell, 1964; Ein-
stein et al., 1935), and the qubit state |0). The last
action of the network leaves the quantum register in the
output GHZ state |Wgyu,) = [P’) of Eq. (4). The subject
of quantum entanglement and the issue of how to quan-
tify the degree of entanglement of a given entangled state
is addressed in the Section III.

In the physical implementations to be described be-
low, the universal set of gates {P(y), H,cNOT} shall be
referred to. The logic gates P(p), and H, can be written
in the Bi-basis, and the ¢NOT gate in the computational
basis of two-qubits B, = {|00),|01),]10), |11)} as fol-

lows:
ro=(30) m=u(ih). o

CNOT =

oo o
oo =O
RO oo
o= OoOO

Another fundamental logic gate, whose classical version

is universal for reversible computation, is the “controlled-
controlled-NOT” (c?-NOT) gate or Toffoli gate (Tof-
foli, 1980); a three-qubit gate that maps |a)|b) [c) —
la) |b) |c & (a A b)) . Hence, the third qubit experiences a
flip or a NOT operation if and only if the control qubits
la), and |b) are in the state |1). By contrast, if the third
qubit is prepared in the state |0) then this gate computes
the AND of the first two qubits: |a) |b) |0} — |a) |b) |a A b).
In addition, if we prepare |a) = |1}, then the ¢?>-NOT gate
becomes a CNOT gate with |b), and |¢) as inputs. This
means that the Toffoli gate is capable of generating op-
erations such as NOT, AND, and CNOT in such a way that
all the information about the input is ‘preserved’. Thus,
the Toffoli gate provides us with a complete operator set:
any gate can be generated with just a ¢?-NOT gate, thus
giving the logical connectives for performing quantum
arithmetic and the evaluation of functions in general.
The Toffoli gate is schematically represented as

) 2
[b) |6)
) e (a A b))
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where the filled dots indicate the control qubits while
the target qubit, denoted by @, is negated if and only
if the control bits are in the state [1)|1). The action
of this gate can be written operationally as c‘z—NOTijk,
where i, j (k) stand for the control (target) qubits. The
Toffoli gate can be built from the controlled-V (c-V),
cnot, and Hadamard gates as follows: c¢?-NOTjo3 =
H3W_30NOT12V.2T3CNOT121/Q3H3, where -Vt = V-1
Similarly, the ¢NOT gate can be constructed by apply-
ing a simple network of H, and -V gates as follows:
CNOT12 = HyVisViaHs. There are, of course, plenty
of quantum networks that can be built to represent the
above-mentioned gates, but there is a main concern when
building such networks: it is desirable and almost neces-
sary to minimise the number of gates required to perform
a given quantum computational task.

Quantum parallelism

The fact that a quantum system is capable of per-
forming a computation was first pointed out by Feyn-
man (Feynman, 1982; Feynman, 1985) and Benioff
(Benioff, 1982(B); Benioff, 1982(A)) in 1982. How-
ever, it was Deutsch (Deutsch, 1985), in 1985, who
made this idea more concrete by establishing that a quan-
tum computer can perform the best of its computational
potential by realising a process that he termed “quan-
tum parallelism.” By doing this, it is easy to see that
a quantum computer can perform certain computational
tasks much faster than any classical digital computer.
This observation turns out to be the first quantum algo-
rithm, known as the Deutsch-Josza algorithm (Deutsch
& Jozsa, 1992), where physical principles such as quan-
tum interference and quantum entanglement were made
evident as a powerful computational resource.

To see why this is so, suppose we are given a device
“oracle” that computes the Boolean function f : z €
{0,1} — f(x) € {0,1} in a single step. The problem is to
determine whether f(x) is constant (i.e., f(0) = f(1)),
or balanced (f(0) # f(1)), with the minimum possible
number of queries. It is clear that any attempt at solving
this by using classical means invokes the oracle twice. In
contrast, we note that with the help of a quantum strat-
egy, a “quantum oracle ;" that performs the unitary
transformation Uy : |x) [y) — |x) |y @ f(z)) in a single
step, this problem is easily solved with only one query.
Here z,y € B;. Imagine a two wire network that is given
with the input [Wo) = |0) (|0) — [1))/v/2. The following
algorithm shows how to solve this (Deutsch’s) problem
efficiently:

1. Apply the Hadamard transform to the first qubit:

H o |[Wo) — 1), 1) = 3(10) +[1)(|0) = 1))  (7)

2. Send the two-qubit state |¥;) through the quantum
oracle. This gives you the result

Us W) — 3[(=1O10)+ (1) D [1)](|0) - [1)) = I‘I(’zg
3

Note that the generic action of this function evaluator
Uy over a state of the type |z) (|0) — [1)) gives the

output (—1)7@) [z) (|0) — |1)).

3. Apply H to the first qubit of |Us). Then perform a
measurement, in the By-basis of qubit 1 final output.
The result of this measurement reveals the answer to
our problem.

Note that the state of qubit 1 in Eq. (8) can be written
as

+(|0} + 1)) if f is constant
£(]0) —|1)) if f is balanced

(9)
Hence, after step 3 of this protocol, we shall always find
qubit 1 in the state |0} if the function is constant and |1}
is the function is balanced. Also note that qubit 2 re-
mains in the same state throughout this protocol. Thus,
by using quantum superpositions instead of classical eval-
uations, we have solved this problem with just one query
(throughout the whole process we have assumed a coher-
ent evolution of the qubit states). The power of quantum
parallelism becomes even more evident when we try to
solve the same problem but for large registers, i.e., when
z € {0,1}™. This will be discussed later in Subsec. TTT.H.
Thus, Deutsch pointed out one of the most outstanding
properties of a quantum computer and paved the way
for the development of the field of quantum information
processing.

So far, we have been concerned only with the for-
mal framework that allows an introduction of all the
elements required to perform universal quantum com-
putation. However, nothing has been said about con-
crete physical implementations that may lead to a practi-
cal demonstration of the quantum logic gates introduced
above. This point shall be returned to later, to briefly
describe the experimental hardware currently used for
a few qubit quantum computation and possible future
prospects. As you may imagine, the extremely fragile
nature of the quantum states used as qubits means that
the requirements necessary for any hardware useful for
quantum computation are rather stringent. As we have
pointed out, the dynamics of a qubit physical evolution
on a quantum computer is ruled by the laws of quantum
physics. Thus, we should expect any unitary transfor-

(-1 joy+(-1)70) 1) = §
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mation or quantum gate U (e.g., the matrix operator
U = onNoT given in Eq. (6)) to be represented by an
operator U(t)

Ut) = T exp ( - % /’H(t)dt) , (10)

such that U(t) = U. Here, 7 denotes time-ordering, and
‘H is the Hamiltonian that describes the physical sys-
tem used to represent the qubits. Thus, the dynamic
action of a quantum gate can be viewed in terms of the
time evolution of the unitary matrix U(t) which, accord-
ing to the quantum mechanical Schrodinger’s equation,
connects the initial wavefunction coefficients to the final
ones: mapping on the qubit basis states uniquely spec-
ifies the dynamics of an arbitrary initial quantum state.
Hence, it should be possible to identify a Hamiltonian H,
acting over a definite time ¢, that produces the desired U-
gate. This is the main idea behind any intended physical
implementation of quantum computation. In practice,
there are different quantum hardwares that exploit dif-
ferent types of Hamiltonians in order to implement such
quantum logic gates.

Quantum hardware requirements

The building of hardware for a quantum computer im-
plies the processing of quantum information in a coherent
fashion (see Sec. IV). Regardless of the chosen technol-
ogy, we need the feasibility to reliably perform the fol-
lowing experimentally:

1. Preparation and Storage: We must be able to pre-
pare an n-quantum register in a definite state such
as |00---00), and to store the information used while
processing the quantum computation for a time long
enough to perform an arbitrarily complex computa-
tional task®.

2. Isolation: The quantum register must be well isolated
from the environment, so that we can minimize the
errors due to decoherence.

3. Measurement: We must be able to efficiently measure
the QR states in the basis By.

4. Unitary operations: We must be able to manipulate
individual qubit states, and to have control over the

5 In practice, this time is bounded by decoherence of the register
states (see Sec. IV).

interactions among qubits, so that we can perform uni-
versal quantum gates over any subset of gates of the
quantum register.

5. Precision: We must be able to control the unitary evo-
lution of the register in such a way that the gates are
implemented with high precision.

Some aspects of this prescription shall be made more
precise below, especially when discussing the subject of
‘quantum errors’ that need to be taken into account
when performing practical quantum computation (see
Sec. IV). The subject of quantum hardware practical-
ities will be returned to in Section V, where different
physical systems that may serve as quantum registers
are explored.

C. Global control quantum computation

Aside of the traditional ‘local’ control (LC) mechanism
for the implementation of localized multi-qubit gates in
a quantum register, there is the so-called ‘global’ control
(GC). As described above, in LC quantum computation
(LCQC), an induced evolution in the system requires
the direct individual localization of the computational
qubits. This fact can pose a difficulty regarding the phys-
ical implementation of the computing process, especially
at scales where the manipulation invokes more than a few
qubits register. By contrast, in GC quantum computing
(GCQC) the induced evolution of the system doesn’t re-
quire direct individual localization of the computational
qubits to be targeted by the logic gates; and we can in-
duce a localized gate by using the instructions stored in
the register’s initial configuration (Lloyd, 1993; Ben-
jamin, 2000, 2002; Benjamin et al., 2005; Jaramillo
& Reina, 2008). Thus, from the viewpoint of quantum
information technologies, it may be more promising to be
able to realize unitary manipulations within the quantum
register in a global fashion.

The GCQC models are arrays of two level quantum
systems interacting, in first approximation, with their
nearest neighbours. There exists a finite number of
“qubit species” distributed in an alternate manner within
the arrays, as shown schematically in Fig. 2(a). Here,
each species can be collectively manipulated in an inde-
pendent way. An example of a physical realization of such
architectures is a periodic and finite set of frequencies
(wpwawp - -+ ) manipulated through resonant radiofre-
quency (RF) pulses. Between the ‘ computational’ qubits,
those effectively involved in the computation, there are
auxiliary qubits or “ancillae”, with purely operative func-
tions which are initialized in the computational state
0)®™. Besides the ancillae, there is a “special qubit”, the
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“control unit”, whose role is to localize and ‘transport’ in-
formation between the computational qubits. One qubit
gates, for example, are performed in two steps: first,
the control unit is taken near enough to the computa-
tional qubit to be modified, and then the desired gate is
performed over the computational qubit, as a controlled
gate, where the control unit acts as the control qubit.

We next introduce some interesting architectures and
their respective operative protocols.

i) Model 1 (BM1). Proposed by Benjamin (Benjamin,
2002), this is one of the simplest models for GCQC;
it consists of two species of physical qubits, A and B,
as shown in Fig. 2. The computational qubits are en-
coded in physical qubits (|0) = |1) and |1) = |])) be-
longing exclusively to a given species with the exception
of the “special qubit” or “control unit”, which is initial-
ized in a different species at the computational state |1).
There are arrays of three and five ancillae qubits alter-
nately distributed between the computational qubits (see
Fig. 2(b)). The generic Hamiltonian for this system Is
given by H = Y7 Hf + Z;’":.] H™. |, where the first
term is associate(f with the individual qubit energy and
the latter with the interaction energy between neighbour-
ing qubits. The particular characteristics of the system
reduce the total Hamiltonian to the form (Benjamin,
2002):

Hyj = H,

Hyjp1 = HP,

Hyjojp = HAP,
Hyjy19; = HBA (11)

This model works as long as the following conditions are
fulfilled: a) it has to be possible to control the supression
of the interaction process due to H54, in a way that the
system reduces to a set of pairs A-B interacting identi-
cally through H4%; b) any quantum gate must be able
to be realized, in the A-B pairs, through the manipula-
tion of the remaining terms: H4, H? and HA?; ¢) as in
the requirements a) and b), but this time supressing the
interaction H4®. These conditions may, however, pose a
challenge from an experimental point of view (Benjamin
et al., 2005). To alleviate such difficulties, a strategy
that incorporates a third energy level as part of one of
the qubit species (a “barrier”), has been put forward in
(Benjamin et al., 2005), at the cost of increasing the
number of species in the array.

As an illustration, in Fig. 2(c) we show how to per-
form a one computational qubit gate: the control unit
is located at an adjacent cell from the target qubit (Y).
Making sure that the interacting Hamiltonian between
the target and the control unit is turned on (H4?), any

arbitrary controlled gate (Ctrl —U) can be performed
by means of using the species where the control unit is

(c) A B A B
o OJYJUJJO] crt-uam
] S’ S’ S’
° HAB HAB HAB
E
=

FIG. 2 (a) Schematic of a periodic array of two types of qubits
(A and B), present in the architectures BM1 and BM2 (see
text) for quantum computation based on global control. (b)
Array of ancillae and computational qubits in architecture
BM1. (c¢) One qubit gate U acting selectively on qubit Y.
The gate is indirectly performed using the controlled quantum
gate Ctrlg(A), which uses the H4F interaction Hamiltonian.
The “control unit” acts as the control qubit and assures the
localized action of ¢/ (Jaramillo & Reina, 2008).

located as the control qubit and the species where the
target computational qubit is located as the target.

i) Model 2 (BM2). This model actually precedes
BM1 (Benjamin, 2000). It has the same Hamiltonian
configuration specified in Eq. (11). Unlike BMI, this
model doesn’t require the ability to independently con-
trol the interacting Hamiltonians, H*Z and HEA. This
benefit doesn’t come free; in this case the computational
qubits are encoded in four physical qubits, as follows:
|0) = [TT]]) and |1} = ||]11). Between every encoded
computational qubit there are four ancillae qubits. The
“control unit” is also encoded, but in a different config-
uration: |TTLLTT) and |T11111), representing the compu-
tational states |1) and |0}, respectively. The complete
array is shown in Fig. 3(a). The operational gates which,
applied sequentially, perform any computational gate, are
symmetric three qubit gates of the generic form

M (ugo, uo1, ur0, u11) = [00) (00| @ wugo + [01) (01] @ uoy +
10) (10] ® wso + [11) (1] ® uy,
(12)
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where M acts simultaneously over every physical qubit of
a given species and the symmetric condition ug; = w1 s
fulfilled. This condition is compatible with the fact that
neighbouring qubits are of the same species and therefore
only symmetric gates are physically feasible.

Both models, BM1 and BM2, perform computational
two-qubit controlled gates using the control unit as the

(@) qubit Y
oy,

control unit
———,

(a) Entanglement
(b) ctri-U, (V)

(c) Undo Entanglement

FIG. 3 (a) Array of ancillae and computational qubits in ar-
chitecture BM2. (b) Heuristic protocol for two-qubit (V and
Y) computational gates in models BM{ and BM2. Compu-
tational qubits are in light gray and distinguished by letters.
The white space between computational qubits corresponds
to ancillae qubits, and the line in dark grey corresponds to
the control unit path (Jaramillo & Reina, 2008).

carrier of information from the “control” qubit to the
“target” qubit. This is done through the entanglement
between the control unit and the control qubit, as
illustrated in Fig. 3(b). In (Jaramillo & Reina,
2008), we show that in order to perform a more general
two-qubit gate under the former protocol, two controlled
gates are required; a fact that triples the computational
time. To see why this is so, consider the case where
a general two-qubit gate is performed through the
scheme depicted in Fig. 3(b). In this case, the state of
the control unit (dark gray) approaching step (c) may

carry information about qubit state V, given the action
of the general two-qubit gate performed at step (b).
This disables the possibility of recovering the original
localized qubit state Y through the step (¢) where the
entanglement is destroyed.

iii) Model 3 (LM3). Introduced by Lloyd (Lloyd, 1993),
this model is perhaps the first proposal for GCQC. It
has three different species distributed in a periodic array
ABCABCABC. Here, there’s no need to control inter-
acting Hamiltonians and computational qubits are en-
coded in physical qubits belonging exclusively to a given
species, just as in BMI1. There are two ancillae qubits
between the computational qubits.

B C

Time step

A
W
0
0
0

FIG. 4 Protocol for a two-qubit quantum gate between arbi-
trary computational qubits W and Z, in architecture LM3.
Every computational qubit is initiated at qubit species A. (1)
The control unit is located at the neighbourhood of W, in this
case W is at species A, while the control unit is at species C.
(2) A controlled SWAP gate between species A and B is ap-
plied by using qubits at species C' as the control qubits. Given
the location of the control unit, only the computational qubit
W will be transferred to species B. (3) A SWAP gate is ap-
plied between species A and C. (4) A SWAP gate is applied
between species B and C. (5) Steps 2, 3, and 4 are applied
again. The register is ready to implement a two-qubit gate
between computational qubits W and Z using the control
unit. This is done after applying a controlled two-qubit gate
between species A and B, where the species C' acts as the
control qubit. Any other operation can be reverted so that
the modified computational qubits W and Z can go to their
initial locations in the register (Jaramillo & Reina, 2008).

The operative gates that add up to perform computa-
tional gates are non-symmetric three qubit gates of the
generic form given by Eq. (12). Unlike the models above,
two-qubit gates are performed by the transportation of
one of the computational qubits to a position adjacent to
the second computational qubit involved in the two-qubit
gate. This process, illustrated in Fig. 4, is performed by
using the control unit to exclusively transport the first
computational qubit (W) through the register. Once the
control unit and the two computational qubits (W and
Z) are all in the same neighbourhood, ABC', the sys-
tem is ready to apply any two-qubit computational gate,
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where only the former computational qubits are involved.
This is assured given that the control unit acts as a con-
trol qubit for the action of the two-qubit gate over the
former computational qubits.

Recently, a proposal that uses organic polymers to en-
code the qubits in the global scheme proposed in (Ben-
jamin et al., 2005) has been put forward in molecular
architectures for GCQC (Mujica et al., 2009).

D. One-way quantum computation

Aside of the standard local and global quantum com-
putation described above, which are performed through
a series of unitary quantum logic gates as part of a
multipartite quantum interference circuit, there is an-
other method which is based on a radically different con-
cept. This is the so-called one-way quantum computing
proposal of Raussendorf and Briegel (Raussendorf &
Briegel, 2001). In this view, the requirements for per-
forming conventional QC are reformulated. In the one-
way or measurement based quantum computer method,
the qubits are initially prepared in the form of a highly
entangled resource state: a cluster or a graph state; see
Appendix B (Raussendorf & Briegel, 2001; Briegel
& Raussendorf, 2001). After this, the computation
follows the implementation of a sequence of single-qubit
measurements with classical feedforward of their out-
comes, and therefore, the resource state is destroyed by
the measurements and the one-way quantum computer
becomes irreversible (hence the term “one-way”). As a
consequence, the order and choices of measurements de-
termine the algorithm computed. As a general rule, the
choices of basis for later measurements do depend on the
results of the earlier ones, and hence the measurements
cannot all be performed at the same time (Raussendorf
& Briegel, 2001).

There exist an equivalence between the one-way com-
putation and the quantum circuit model: the former can
be made into a quantum circuit by using quantum gates
to prepare the resource state. For cluster and graphre-
source states, this requires only one two-qubit gate per
bond, so is efficient. It turns out that any quantum cir-
cuit can be simulated by a one-way computer using a two-
dimensional cluster state as the resource state, by laying
out the circuit diagram on the cluster: Z measurements
({|0), |1} } basis) remove physical qubits from the cluster,
while measurements in the X-Y plane ({|0) £¢%* [1)} ba-
sis) teleport the logical qubits along the “wires” and per-
form the required quantum gates (Raussendorf et al.,
2003). This is also polynomially efficient, as the required
cluster size scales as the size of the circuit (qubits x
timesteps), while the number of measurement timesteps
scales as the number of circuit timesteps.

In (Walther et al., 2006), the experimental realisa-
tion of four-qubit cluster states encoded into the polar-
ization state of four photons has been reported. They
characterized the quantum state by implementing ex-
perimental four-qubit quantum state tomography. Us-
ing this cluster state, they demonstrated the feasibility
of one-way quantum computing through the construc-
tion of a universal set of one- and two-qubit logic gates.
Furthermore, Walther et al. (Walther et al., 2006),
succeeded in implementing a basic Grover’s search al-
gorithm. More recently, the same group (Prevedel et
al., 2007) has demonstrated, by running the two-qubit
Grover’s algorithm on a 2 x 2 cluster state of photons,
the execution of one-way quantum computation. This
shows that indeed, one-way QC can be suited for such
computing tasks. In addition, a [linear optics quantum
computer based on one-way computation has been pro-
posed in (Brown & Rudolph, 2005), and cluster states
have also been created in optical lattices (Mandel et al.,
2003).

Next, another way to realise quantum computation is
discussed, the so-called geometric or holonomic quantum
computation (Zanardi & Rasetti, 1999; Pachos et al.,
1999; Pachos & Chountasis, 2000).

E. Quantum computation by geometric means

It is interesting that there is an alternative way of
performing quantum computations. This is built on
the results of Berry (Berry, 1984; Wilczek & Zee,
1984; Shapere & Wilczek, 1989), who showed that
a quantum system under cyclic evolution acquires, be-
sides the dynamic phase induced by the time evolution
of the system, a geometric phase, the so-called Berry
phase. It can be shown (Zanardi & Rasetti, 1999;
Pachos et al., 1999; Pachos & Chountasis, 2000;
Ekert et al.,, 2000(A)) that universal quantum gates
can be implemented by purely geometric means, ie.,
by using Abelian and non-Abelian geometric compu-
tations (holonomies) (Berry, 1984; Wilczek & Zee,
1984; Shapere & Wilczek, 1989) rather than dynamic
ones. The holonomies can be either Abelian phase fac-
tors (Berry phases) or general non-Abelian operations,
depending on whether the cigenspace of the system’s
Hamiltonian is nondegenerate or degenerate. An inter-
esting feature of the holonomic quantum computation is
its potential robustness to certain types of computational
errors, hence offering a natural way of performing fault-
tolerant quantum computation. Let us formally estab-
lish the idea of a cyclic evolution to build the geometric
phase and the non-Abelian Berry phase (non-adiabatic
state evolution):
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Cyclic evolution

The concept of a cyclic evolution is based on the adi-
abaticity (Galindo & Pascual, 1990) of the quantum
state evolution of a given physical system, say the vector
state |¥). In quantum mechanics, a basic goal is to cal-
culate amplitudes, and then square them to obtain the
probability of an event. Formally, in a Hilbert space H,
we have [(U|W)|? = 1. However, this implies an ambi-
guity: there is no physical distinction between the two
states |¥), and e |W¥). To fix this, the projective space
P is introduced, in which vectors are grouped into equiv-
alence classes such that we map Il : H — P, where
|) = [|T)] = {|¥) : [¥') = re¥ |U) }, for any r > 0 and
real ¢ (Ekert et al., 2000(A)). Hence, a cyclic evolution
of the system’s state |¥) translates into a closed curve
II(C) € P covered in a period 7. In H the situation is
rather different: at ¢ = 7, the path C € H followed by
the initial state |¥(0)) no longer coincides with the final
state |U(7)) of the system: there is a phase difference
of ¢? between them. This phase can be determined by
making the following (adiabatic) approximation: for each
point [¥(#)} on C, t € [0, 7], we can choose a |¥  (t)) from
II(¥(t)) in such a way that |¥_(0)) = |¥, (7)). Hence

we can write
(W (t)) = O |w, (1)) (13)

where the phase change of [¥(0)) is now given through
the function f(t): ¢ = f(r) — f(0).

Calculating geometric and dynamic phases

Let us start by writing the system’s Schrodinger equa-
tion

in S 10(0) = H(0) (1) | (14)

where H(t) represents the system’s Hamiltonian. From
Egs. (13), and (14) we obtain

w=[ﬂrdf(t) = }1[ (U()|H W (t)) dt +
z/o (o (O] & [ W, (0 dt . (15)

Hence, we end up with a total phase ¢ which is built
of a dynamic phase § that depends on the Hamiltonian
H(t), and a geometric phase ~ that depends only on the
path C, and is independent of the rate at which |¥(t))
completes C, the Hamiltonian, or the choice of reference
{¥,,)} (Ekert et al., 2000(A)). These geometric and
dynamic phases can be calculated as:

v =i wlde) (16)
5= —%fo (D) H () dt . (17)

A particular case of the geometric phase v is the Berry's
phase (Berry, 1984), which occurs when the system’s
dynamics is performed under adiabatic conditions. This
imposes restrictions over the rate at which |¥(#)) com-
pletes a given cyclic evolution. A fundamental character-
istic of the Berry phase is that the energy eigenspace of
the instantaneous Hamiltonians is non-degenerate along
the path C. As a model example, it can be shown, by us-
ing Eq. (16), that the Berry phase of a spin-half particle
located in an external oscillating field gives the result

v=—m(1l—cos#), (18)

where 6 is the angle between the Bloch vector and the
z-axis (Ekert et al., 2000(A)). As said, it is assumed
that through the qubit cyclic evolution, the Hamiltonian
parameters are changed adiabatically. The generalization
of this result to any closed path gives v = (1/2, where €2 is
the solid angle enclosed by C on the Bloch sphere (Berry,
1984). Thus, the Berry phase depends only on the area
covered by the motion of the system, and is independent
of the details of how this motion is executed.

The results explained above constitute an alternative
approach to quantum computation. Here, quantum gates
can be built by using purely holonomies. A procedure to
perform this is outlined in (Ekert et al., 2000(A)) for the
case of a nuclear magnetic resonance (NMR) system via
the use of the Abelian Berry phase. Experimental work
has combined the above results to perform a first step
towards geometric quantum computation (Jones et al.,

2000). The Abelian geometric phase has been used to ex-
perimentally demonstrate the controlled phase shift gate
B(p) in an NMR system (Jones et al., 2000). There
is also another proposal for doing this via a Josephson
junction system (Falci et al., 2000). However, to be able
to perform universal geometric quantum computation we
need to combine this particular geometric gate (or any
other two-qubit entangling gate) with single qubit gates.
The proposals reported in (Jones et al., 2000; Falci
et al., 2000) are restricted to Abelian holonomies only,
which due to adiabatic conditions, have the disadvan-
tage of being too slow if compared with typical dynam-
ical time-scales, making it very difficult for any realistic
realisation of quantum computation.

A leap has been taken towards the implementation
of holonomic quantum computation. The adiabaticity
difficulty has been overcome in (Duan et al., 2001;
Xiang-Bin & Keiji, 2001; Xiang-Bin et al., 2001),
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by using non-Abelian holonomies to perform geometric
quantum gates in a set of trapped ions (Duan et al.,
2001), and in an NMR system (Xiang-Bin & Keiji,
2001; Xiang-Bin et al., 2001). The use of non-adiabatic
state evolution implies two main differences from what
was said for the Abelian Berry phase: i) After a time
t = 7, the state vector evolution is non-cyclic, and ii)
The geometric phase I' acquired over the period 7 is dif-
ferent from the one found for the adiabatic evolution,
' # —7(1 — cosf) = ~. Details concerning these new
results, and the way they can be used to perform condi-
tional quantum dynamics (e.g., the controlled phase shift
gate) can be found in (Duan et al., 2001; Xiang-Bin
& Keiji, 2001; Xiang-Bin et al., 2001). As a bottom
line, any scheme attempting to perform quantum compu-
tation using only geometric phases has to eliminate the
dynamic phase. In NMR this can be done by using a
refocussing technique known as spin-echo (Ekert et al.,
2000(A); Jones et al., 2000).

Regarding the robustness of the geometric QC to er-
rors, and the way decoherence may affect the geometric
phases during the quantum computation, the following
results are in order. By means of a quantum-jump ap-
proach, Carollo et al. (Carollo et al., 2003) have cal-
culated the geometric phase associated with the evolu-
tion of a system subjected to decoherence. They consid-
ered dephasing and spontaneous decay as the two main
sources of decoherence, and showed that the geometric
phase is completely insensitive to the number of jumps
determined by the dephasing operator; that is, insensi-
tive to dephasing. By using the same approach, Carollo
et al. (Carollo et al., 2004) have also calculated the ge-
ometric phase of a spin-1/2 system driven by one and two
mode quantum fields subject to decoherence: they have
shown that the corrections to the phase in the no-jump
trajectory are different when considering adiabatic and
nonadiabatic evolutions. Finally, it has also been shown
in (Carollo et al., 2006) that in the limit of a strongly
interacting environment a system initially prepared in a
decoherence-free subspace (DFS) coherently evolves in
time, adiabatically following the changes of the DFS. If
the reservoir cyclicly evolves in time, the DFS states ac-
quire a holonomny.

So far, there has been an experimental demonstration
of the two-qubit gate B(y) in an NMR setup (Jones
et al., 2000), and some other physical implementations
in systems such as trapped ions (Blatt & Wineland,
2008), quantum dots (Fushman et al., 2008; Robledo
et al., 2008), Josephson junctions (Clarke & Wilhelm,
2008), and other solid-state setups.

Il. QUANTUM ENTANGLEMENT: A
COMMUNICATION RESOURCE

Entanglement is a central concept in quantum infor-
mation theory. In a system consisting of n quantum sub-
systems, it shows a form of correlations between such
subsystems that cannot be understood or explained in
any “classical” fashion because it points out exactly
what distinguishes the quantum from the classical world.
These correlations imply that each subsystem carries
some knowledge, some degree of information, about the
other parts. This degree of knowledge can be quantified,
as is shown below. This section introduces the basic el-
ements and definitions that are used to characterise the
degree of entanglement of a given quantum system. A de-
tailed review of the current developments regarding the
subject of entanglement can be found in (Horodecki et
al., 2001; Plenio & Virmani, 2007; Horodecki et al.,
2007; Amico et al., 2008; Vedral, 2008).

A. Quantifying quantum entanglement

It is well known how to quantify entanglement in the
case of a bipartite system (a system consisting of two
subsystems, namely A and B) in a total pure state. For
more than two subsystems, or mixed states, the situa-
tion is not so clear (for a survey of recent developments
see, e.g., (Horodecki et al., 2001; Plenio & Virmani,
2007; Horodecki et al., 2007; Amico et al., 2008).
Next, the basic tools and definitions are given. Consider
a bipartite system composed of subsystems A, and B.
The state vector for this system is in the finite dimen-
sional Hilbert space Hap = Ha ® Hp. This is to be
referred to as an n ® m system, where n and m are the
dimensions of the spaces H4 and Hp respectively. A
general pure state of the system can be written as

=Y cilida®li)g (19)

2%

W) A

where {|) 4}, and {|j) 5} are a complete orthonormal ba-
sis set for each subsystem.

Theorem (Schmidt decomposition): For any given pure
state |W¥) 4, it is always possible to find a complete set

of orthonormal vectors {|n) ,}, and {|n) 5}, in spaces H
and Hp such that

k
W) 4p = Z an n) 4 @In}p (20)

n=1

where the coeflicients o, > 0, and k£ < dimHag.
Eq. (20) is called the Schmidt decomposition of |¥) , 5.
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Note that this decomposition contains only one index, in
contrast to Eq. (19). The proof of this theorem is almost
straightforward (see, e.g., (Peres, 1993)). Note: i) There
is no Schmidt decomposition for a system of more than
two subsystems. ii) A bipartite pure state is said to be
entangled if at least two cofficients of the a;,’s do not
vanish (the number of non-vanishing coefficients is called
the Schmidt number of |¥) , 5)°.

Degrees of entanglement: The entanglement of a given
quantum state can be defined in terms of the concept of
separability: if a given state does not satisfy the sepa-
rability criterion, then the state is said to be entangled.
However, it is not so easy to find a unique separabil-
ity criterion that solves the problem of determining with
certainty whether a given quantum state is entangled or
not. In fact, this question has led to a very active field
of research: manipulation of entanglement, where quan-
tifying, concentrating and distilling entanglement, and
using mixed-state entanglement as a resource for quan-
tum communication are central subjects (Horodecki
et al., 2001; Plenio & Virmani, 2007; Horodecki
et al., 2007; Amico et al., 2008). One separability
criterion is based on the violation of Bell inequalities
(Werner, 1989), where separable states are required to
satisfy all Bell inequalities (Werner, 1989). However,
this is not a very strong criterion since there are some
entangled states that also satisfy all standard Bell in-
equalities (Popescu, 1994; Popescu, 1995; Zukowski
et al., 1998). A stronger and more useful criterion is
based on the concept of partial transposition of Peres
(Peres, 1996; Peres, 1999), in which he noted that a
separable state remains a positive operator if subjected
to partial transposition. For a detailed discussion of these
criteria, see, e.g., (Horodecki et al., 2007; Amico et
al., 2008) and references therein. Here, it is necessary to
introduce some definitions concerning the degree of en-
tanglement of a given quantum system. It follows from
the Schmidt theorem that for a bipartite system (each
subsystem having a two-dimensional Hilbert space)

“IJ)ABZQ‘O)A |0>B+/B|1}A|1)B . (22)

6 In a bipartite system, subsystems A and B are described by
density operators pa and pg. It turns out that these operators
have the same non-vanishing eigenvalues: they are equal to the
square of the Schmidt numbers. A state acting on Hilbert space
Hap is called separable (Horodecki et al., 2001) if it is of the

form
k

p=2> cirt@pl, (21)
i=1
for some k, where p,‘i’1 and ,ofg are states on H4 and Hp respec-
tively. If p is a pure state, i.e., p = |Tag) (¥4, then it is easy
to see whether is entangled or not: indeed, it is separable if and
only if |W) 415 = |¥) 4 @ |¥) 5.

Suppose that any present phase is absorbed by the
Schmidt vectors, such that we can define «, 3 € R, with
|ee] < |3|. Then, the following terminology is introduced:

Product state: A state is a product state if and only if
a = 0.

Entangled state: A state is entangled if and only if
a # 0.

Maximally entangled state: A state is maximally en-
tangled if and only if || = |3

The most famous entangled states are the maximally en-
tangled states [¢%) = 2.(|0)[0) & [1) [1)), and [p*) =
4(10) [1) £ [1)]0)). These four mutually orthogonal
states are so important because they exhibit the strongest
possible Bell-EPR correlations (Peres, 1993; Braun-
stein et al., 1992), the reason they are known as the
Bell-basis states. Also, as will be seen below, these states
are crucial to many communication protocols. It was
shown in Section II that these entangled states can be
generated and manipulated in terms of universal quan-
tum logic gates: suppose, for example, that a two qubit
state is initialised in the state |¥y) = |0) |0). Then, by
applying the two successive quantum gates CNOT 9 to
|Tg), the Bell state |¢7) is generated (the same sort of
unitary transformations can be applied to n-qubit sys-
tems in order to generate, for example, “Schrédinger cat
states”-like). In (Quiroga & Johnson, 1999; Reina
et al., 2000(B)), a solid-state based setup for producing
maximally entangled states of the Bell and Greenberger-
Horne-Zeilinger type is proposed; also, in (Reina &
Johnson, 2000(D)), a quantum teleportation protocol
of quantum dot excitonic states has been proposed. It
is interesting that once |¢T) has been generated, the re-
maining states of the Bell basis can be also generated by
applying only single qubit gates to it.

B. Entanglement measures

Two main questions are: Given an arbitrary state, can
we decide whether it is entangled? Given two quantum
states, can we decide which of them has more entangle-
ment?

As discussed above, the first question was partially
solved initially by Peres (Peres, 1996) and refined by the
Horodeckis (Horodecki et al., 1996): Peres observed
that if a matrix is entangled, it remains positive after
being partially transposed; subsequently, the Horodeckis
limited the criteria to the 2 x 2 and 2 x 3 case. For higher
dimensions, the problem remains open (Horodecki et
al., 2007; Amico et al., 2008) . The recognition of the
partial transpose positivity property would later lead to
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an important measure of entanglement called Negativity
(Vidal & Werner, 2002). Later, the formalism of en-
tanglement witnesses appeared (Terhal, 2000), based on
the structure of the density matrix space. This formal-
ism is of particular interest because it relies on operators
called “witnesses of entanglement” which take negative
expectation values whenever the state is entangled and
with positive values on separable states. They are, how-
ever, not effective as quantifiers of entanglement.

The second question, as to how to quantify entangle-
ment, is also quite an involved one, and it has been the
object of extensive research over the past decade. We
now give a brief review of several strategies that have
been adopted towards its solution. Omne could try to
solve this problem by using a particular protocol and
measuring the entanglement of the chosen state by the
success of the involved protocol or task. However, using
this method, different protocols would yield different hi-
erarchies of states, hence a different strategy should be
adopted.

The observation that local operations and classical
communication (LOCC) don’t create entanglement sug-
gests that if a state A can be transformed to B by
LOCC then A is at least as entangled as B. This leads
to a natural hierarchy of entangled states in the bipar-
tite (two qubits) case in the form of the majorization
process (Nielsen & Kempe, 2001). However, in the
qudit case, or the multipartite (many qudits) case, one
faces difficulties because of the existence of incompara-
ble states, namely states which cannot be transformed
into each other by LOCC means. These limitations can
in principle be overcome in the asymptotic limit where
many copies are used (Popescu & Rohrlich, 1997), or
even when the transformation among states is not re-
quired to be fully certain (SLOCC) (Bennett, et al.,
2001; Diir, et al., 2000). However, establishing a hi-
erarchy gets very complicated even in low dimensional
cases. Despite this, the LOCC hierarchy discussion has
raised several measures of entanglement, such as the dis-
tillable entanglement (Rains, 1999; Bennett, et al.,
1996), the entanglement cost (Hayden, et al., 2001),
and the entanglement of formation (Bennett, et al.,
1996).

Plenio and Virmani (Plenio & Virmani, 2007) have
proposed an axiomatic approach to entanglement. They
established the conditions that a quantity should exhibit
in order to quantify entanglement, which must be sat-
isfied even if one chooses to measure entanglement in a
“protocol-based” fashion (Horodecki et al., 2007; Am-
ico et al., 2008). This axiomatic approach is convenient
as it not only incorporates the operational approach to
entanglement, but goes further, avoiding the incompara-
bility limitations, and even set bounds for them. Such
basic conditions are (Plenio & Virmani, 2007)

& Mazimally entangled states exist.

§ There are states with no entanglement. —Separable
states, i.e., states that can be written as

W), n =D Pl @@ )y, (23)

have no entanglement. This is so because these states
can be created by local operations and classical com-
munications, namely they are classically correlated
states which do not violate any Bell inequality.

§ Non-separable states are entangled.—Essentially this

means that for any non-separable state there is a pro-
tocol in which the states outperform a separable state.

& Entanglement cannot increase under Local Operations

and Classical Communications.—This follows from
Bennett’s observation (Bennett & DiVincenzo,
2000): entangled states are those which can perform
tasks that states generated by local operations and
classical communications cannot; thus, LOCC can-
not create entanglement because it would imply that
LOCC could be used to perform the above mentioned
tasks. Mathematically, this means that given a mea-
sure of entanglement X',

M;pM]

X(p) 2> pX ( o ) : (24)
where 3" M;M] = 1 and p; = Tr[M;pM]]. In the bi-
partite qubit case, LOCC establishes a full hierarchy
in this sense: if a state can be transformed into an-
other by LOCC then it is at least as entangled as the
other one. The general qudit and/or multipartite case
has some subtleties, as there are states which cannot
be transformed into each other by LOCC operations
with certainty, and thus, are incomparable using this
criteria. However, this condition must still be satisfied.
This is, in general, the most difficult property to test,
although there are some simplifications (Vidal, 2000;
Horodecki, 2005).

§ Entanglement is invarient under Local Unitary (LU)

operations.—This reflects the freedom in the choice of
basis for every subsystem, entanglement is independent
of that choice and thus any measure of entanglement
should also satisfy this invariance condition. Also, as
local unitaries are invertible then, by the LOCC con-
dition, both states must have the same entanglement.

This follows, as it
can be shown that an arbitrary two-qubit state can
be built by LOCC from an EPR pair (Bennett, et
al., 1996). In the qudit/multipartite case, there is no
notion of a unique maximally entangled state in the
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LOCC sense, because of the existence of incompara-
ble states, as discussed above; however Bell inequal-
ities multipartite generalizations, such as the one by
Greenberger, Horne, and Zeilinger (Greenberger, et
al., 1989), lead to the notion of maximal multipartite
entanglement and generalize the EPR pair to higher
numbers of qubits.

A quantity satisfying the above-mentioned conditions
is called an entanglement monotone. There are some
other properties which can be demanded of entangle-
ment monotones when thinking in terms of axiomatic
measures, i.e., when obtaining the optimal conditions
for an entanglement measure. We give some of them
that are of relevance to the entanglement monotones
proposed in Paz-Silva and Reina (Paz-Silva & Reina,
2008; Paz-Silva & Reina, 2009).

[ADD] Additivity. Given two arbitrary states denoted by
pa and ppg,
X(pa® pp) = X(pa) + X(pp) - (25)

[SSA] Strong super additivity. Given a generic N-partite
state ,01""=N,

X(Pl’""N) > X(pl,...,m} _|_X(pm+1,...,N) . (26)

[CONT] Asymptotic continuity. There are ¢, ¢ > 0 such
that for all p, o with d(p, o) < ¢

|X(p) — X(0)| < celogd+ ¢ (27)

Another multipartite entanglement measure formulated
from pure geometric considerations has been proposed in
(Paz-Silva & Reina, 2007).

C. Examples

‘We now review some measures of entanglement which
have been extensively used and which are of great value
because of their implications, properties and relation to
quantum information.

Entanglement of Formation (EoF).— This is the
most cited and prominent measure of entanglement, since
for the bi-partite scenario it allows an exact, ambiguity
free, analytical expression. It is defined as

Eb(pap) = 111i112p2-8b(p1-), (28)

E%pap) = S(Trplpasl) = —TralpasllogTralpasll,
and the minimization is intended over pure state decom-
positions (pure-convex-roof (Uhlmann, 1998)). Fur-
ther, note that it can be rewritten as

Ep(pap) =min Y p; $1(ply : plp), (29)

where I(pa : pp) is the quantum mutual information
(Cerf & Adami, 1997). Although the minimization is,
in general, non-trivial, it has an analytic solution for the
two-qubit case (Wooters, 1998).

Consider, in decreasing order, the eigenvalues A; of the
matrix \/pappan, where pap = (oy ® 0y)pap(oy, @ o),
pap is the elementwise complex conjugate of p, and
o, is the Pauli matrix. The Concurrence is defined as
C(pap) = max{0, A\; — A2 — Ay — A4}, and hence the EoF
reads

1+\/1—0210g 14++1—-C?
_ 5 = 5 _

1—v1-C? 1—+1-0C?
2 2 '

Er(pap) =

(30)

log,

The general multipartite EoF is currently conjectured to
be additive, but a formal proof of it has, so far, been
elusive (Bennett, et al., 1997; Shor, 2002; Shor, 2004).

As pointed out in (Plenio & Virmani, 2007), due
to the fact that the two-qubit £%(p) and the two-qubit
Concurrence C'(p) are monotonically related, some
authors prefer to characterise entanglement using only
the Concurrence (instead of £4(p)). This said, it should
be stressed that it is only the entanglement of formation
that is an entanglement measure, and the Concurrence
gets its meaning via its relation to the EoF, and not the
other way around.

Squashed entanglement.— It is defined as (Chris-
tandl & Winter, 2004)

Eg, :=inf [%I(pABE :Tr [pABE] = pAB} ; (31)

where I(p?PF) = S(pAF) + S(pPF) — S(p*FF) — 5(p*)
is the quantum conditional mutual information, which
essentially measures how correlated two parties are,
according to a third one. This measure is important
because it was the first additive entanglement measure,
bounded by the entanglement of formation and the
distillable entanglement.

Relative entropy of entanglement.— Defined as (Ve-
dral & Plenio, 1998)

Ef(p) = inf S(pllo). (32)

where X is a set of states, usually the set of separable
states, distillable states, or positive partial transposed
states, chosen according to the definition of separable
states, such that LOCC maps X into X. It is not an
additive quantity.
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For other entanglement measures and a more detailed
treatment of entanglement quantification, the reader is
referred to (Plenio & Virmani, 2007; Horodecki et
al., 2007; Amico et al., 2008).

As we mentioned before, the LOCC constraint is very
strong in the bi-partite case. In the multipartite case,
however, there are complications. The main issue is the
existence of non LOCC-interconvertible states, which im-
plies the existence of incomparable states and thus the
impossibility of applying the LOCC constraint to ob-
tain a hierarchy. The LOCC non-increasing condition
must still hold for any measure of entanglement. This
complication is strongly related to the issue of having
many elements which can be entangled in different ways.
For instance, in the four qubit case we can have an

Bob oF

Conditional | V:2 — ©x ¥
rofation | w1, — -icy ¥s

time

Alice

@
Initial state ¥ ‘

FIG. 5 Schematics of the quantum teleportation process. For
simplicity the kets notation for the quantum states associated
with the 3-particle system has been omitted (see text).

[0 = |¢pT),®@[¢T),, state, which cannot be LOCC com-
pared to a GHZ state, say |Vanz) = %(|0000)+ 11111)),
and thus the problem of characterizing its entanglement
arises. Here, the axiomatic approach is valuable, as we
can build a quantity characterizing the entanglement of
a system. This liberty, however, implies that different
monotones may manifest different hierarchies, which, in
turn, means that each monotone characterizes a different
type of entanglement (Plenio & Virmani, 2007). Of
course, the more properties we require will narrow our
search space further.

A study of non-equilibrium multipartite entanglement
dynamics in an externally driven Dicke model has been
reported in (Bastidas et al., 2009). This has been
done for the driven single-mode Dicke model in the
thermodynamic limit, when the field is in resonance
with the atoms. There, the correlations for the atoms-
field ground state, and the linear entropy have been
analytically calculated as entanglement quantifiers. A
strong relation between the stability of the dynamical
parameters and the reported entanglement has been
found in (Bastidas et al., 2009).

Now that the basic framework to entanglement quan-
tification has been introduced, we discuss the main prac-
tical applications of entanglement as a communication
Tesource.

D. Quantum teleportation

This is arguably the most striking application of quan-
tum entanglement. Here, the quantum state |¥) of a
system can be transmitted from one spatial location to
another with neither physical transportation of the sys-
tem itself nor previous knowledge of |¥). This apparently
impossible task invokes only the use of a two-particle
maximally entangled state (e.g., |¢7))"— that has to
be shared beforehand between the two parties that wish
to transmit |¥)— assisted by the communication of two
classical bits of information. The details of the whole
teleportation protocol, as originally formulated in (Ben-
nett et al., 1993), are given below. This is perhaps
the most evident of the demonstrations of quantum en-
tanglement as a resource for the transmission of quan-
tum information. In (Reina & Johnson, 2000(D)), a
prescription for the teleportation of excitonic states in a
quantum dot molecule, and the generalization of the orig-
inal protocol in terms of using an N-partite Schrodinger
cat state has been reported.

The protocol that performs the teleportation process
is sketched in Fig. 5. In this scenario, the “arrow of time”
indicates how to carry out the protocol:

(to) At t =ty the EPR source prepares one of the entangled

states of the Bell basis By = {|¢™), o7 ), [vT), ™)}
between particles 2 and 3, let’s say, the state |¢T )2 3.

(t1) At ¢ = t; Alice sends the particle 3 of the EPR-pair

to Bob, and unites the other particle of the entangled
pair with the unknown qubit state |¥); = «|0); +3]1)y
(Ja|? 4+ |3|*> = 1) that she wants to transmit to Bob.
After this, she performs a Bell measurement on the
(uncorrelated) particles 1 and 2, which projects onto
one of the states of the By-basis (see Fig. 5). As this
stage, the whole system’s state can be written as fol-
lows:
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[W)1lot)as = 5 |[6T)1,2(l0)3+B81)3) + [¢T)12(al1)s+8[0)3) +¢ )1 2(al1)s—3]0)s) + |¢_)1,2(a|0>3—ﬁ|1)3)]- (35)

(t2) Next, Alice sends the result of her measurement, two
classical bits of information, to Bob via a classical
channel. These classical bits are represented by two
straight lines in Fig. 5. Eq. (35) can then be rewritten
as

W1l¢t )23 = 3|0 12(¥)s + [ )12(0x)[¥)s + (36)
[ ,2(=ioy ) W)s + |87 )1.2(0) W)

where the o; operators are the Pauli matrices in the
{]0),]1)} basis®.

(t3) After receiving Alice’s classical information, Bob per-
forms one of the following unitary operations [see Eq.
(37)] in order to transform the state of his particle’
into |W):

(6t )12 — 1 (do nothing) ,
(do bit flip) ,
(do bit- and phase-flip) ,

(do phase flip) . (37)

)

‘¢+>1,2 — Ox

‘¢_>1,2 — Ox0g
)

7 )12 — 02

Hence, Bob only needs to apply one of the unitary trans-
formations of Eq. (37), conditional on the outcome of Al-
ice’s measurement, in order to obtain the initial state | )
of particle 1 on his qubit (particle 3). Thus, the process
works without actual physical transportation nor previ-
ous knowledge of the state |¥). A few remarks regarding
this teleportation process: i) The Bell measurement es-
tablishes a correlation between the two initially uncorre-
lated particles 1 and 2. The outcome of this measurement
is completely random, as can be seen from Eq. (37). ii)
The protocol is consistent with the no—cloning theorem,
since the “copy” of the state |¥) obtained by Bob re-
quires the previous Bell basis measurement of particles 1
and 2 which destroys the original state |¥);. iii) Since
Bob has to wait for a classical signal to be sent to him
in order to perform the quantum state transmission, the
process has not been accomplished faster than light.

01 0 —i 1 0

8 _ _ _

Recall that o, = 10 ,o'yf(z. D)’Jzi([] _1).

9 Note that originally (¢ = #p), Bob’s particle 3 was mazimally
entangled with particle 2.

Teleportation as a quantum circuit

Next, it is shown that the above quantum teleportation
protocol can be described in terms of elementary gates for
quantum computation. In order to implement the quan-
tum operations needed for the description of the practi-
cal teleportation scheme proposed here, two elements are
employed: i) the Hadamard gate H, and ii) the cNoOT
(measurement) gate. As explained in Section II, in the
language of quantum circuits, qubits are denoted by hori-
rontal lines (“wires”), and the above-mentioned gates are
schematically represented as in Fig. (1), where the basis
states 7, 7 = 0 or 1. In addition, if the above set of gates
is to be used for universal quantum computation, another
single qubit gate, the phase shift P(yp) gate must be in-
troduced. This transforms: |0) + |0), and |1) +— e'®[1),
and is denoted as |z) —fe—— ¢?|z). The Hadamard
and phase gates are sufficient to construct any unitary
operation on a single qubit. Consequently, the Hadamard
transform, all phase gates, together with the cNOT gate
form an wuniversal set of logic gates, i.e., any given n-
qubit unitary transformation required in a certain quan-
tum computation scheme can be exactly simulated with
these gates (Barenco, et al., 1995(A)). A pure state
W) = a|0) + G|1), where a, 3 € C, and |af*> + 3> =1 is
also introduced in this Hilbert space. The circuit nota-
tion is now used in order to provide a description of the
quantum teleportation phenomenon in terms of quantum
computation.

The wunitarity of the Hadamard and the ¢NOT gates
has interesting implications: consider the action of the
following (Bell) circuit

S

LV

This transforms the states of the (disentangled) compu-
tational basis of two qubits By into a set of maximally
entangled states. This set is exactly the so-called Bell ba-
sis and, as we saw previously, is of fundamental relevance
to quantum teleportation. As a result of the two-qubit
register transformations of the circuit, we are left with
the states:

100) — Z5(100) + [11)) = [67) , (38)
01) — Z5(101) +[10)) = [¢F) (39)
[10) — —5(100) — [11)) = [¢7) , (40)
[11) — J5(01) — [10)) = [37) . (41)



220

REV. ACAD. COLOMB. CIENC.: VOLUMEN XXXIIlI, NUMERO 127-JUNIO DE 2009

Since the Hadamard transform is just a single qubit
gate, it is obvious that the CNOT gate is the one re-
sponsible for the generation of the entangled basis By =
{|6%), [1p*)}. Interestingly, the same CNOT gate can be
used to disentangle the Bell basis states: just apply the
circuit ¢NOT;oH; to the Bg-basis states and you shall
end up with the disentangled basis B! As discussed in
Sec. 11, this is because of the reversibility of this entan-
gling gate. In an n-qubit register, the Schrodinger’s cat
state |[Uy gar) = \%(\00 RNV ET S I B 1)1,,,_,n) can
be produced, for example, starting from the trivial in-
put state [00...0); . ,, and then applying a sequence of
n+ 1 cNoT gates (Reina & Johnson, 2000(D)).

Figure 6(a) shows the computational approach, which
is based on the work reported in (Brassard et al., 1998).
As usual, two parties are referred to, Alice and Bob. Al-
ice wants to teleport an arbitrary, unknown qubit state
|¥) to Bob. Alice prepares two qubits in the state |0)
and then gives the state |T00), as the input to the sys-
tem. By performing the series of transformations shown
in Fig. 6(a), Bob receives as the output of the circuit the
state %UO)Q + \1>G)%(|o>b + |1)3)|®¥),. This circuit by
itself is not a quantum teleportation machine, we next
show how to transform it into a quantum teleportation
device.

The circuit shown in Fig. 6(a) comprises the telepor-
tation protocol given above. As before, this uses three
qubits. The unitary transformations that are applied
during the computation process in Fig. 6(a) (from left to
right) are:

(t1) Preparation of the input state: this is initialized as the
direct product of the unknown state to be teleported,
[W), = al0), + #|1),, and the basis state of qubits 2,
and 3, [00),,.

(t2) Realization of the first two quantum gates gives

75 (a]0) +311)) (100) +[11)) =
75 (@]000) + o [011) + F[100) + 53 [111))

(42)

(t3) The oNOT12 gate produces

% (a|000) + « [011) + B |110) + F[101) ) (43)
(t4) After the Hadamard transform H; one gets
%{ 000) + [100) + « [011) + a [111) } +  (44)

7 {lo1) — 110) + oot) - j101)} |

which can be rewritten as

2{]00) (ar|0) + B[1)) +101) (|1} + 310) ) +
10} (r|0) — B[1)) + [11) (e [1) — B|0) )} =
24100y |v) +01) Gz [9) + [10) G o) + |11) (—ioy ) [¥) }

(45)

and we are done, since now we only need to make a mea-
surement in the computational basis over qubits 1 and
2 (at the dashed line) and the outcome will reveal the
transformation that Bob needs to perform over qubit 3
in order to obtain the desired quantum state [¢)). Note
that for the circuit to work as a teleportation device: i)
two bits of classical information have to be transmitted
from Alice to Bob, and ii) we have used the computa-
tional basis By which can be significantly easier to realise
in the laboratory than the Bell basis originally used in
(Bennett et al., 1993).

(t5) If we were to perform the second part of the circuit
(after the dashed line) the final result or outcome of
the computation is given at the right hand-side of Fig.
6(a). This process, however, can be simplified if we
notice that after Alice’s measurement (at the dashed
line), the four possible outcomes (left-hand side of Eq.
(46)) explicitly indicate the route of action to be fol-
lowed by Bob over his qubit (right-hand side of Eq.
(46)) in order to recover Alice’s original quantum state:

00) — T 0) + 3[1)) = |¥),

01) — Gua|l) +310) = [P),

110) — G.(a]0) — B1)) = [¥),

1) +— &.5a(all) - 5l0) =[¥);  (46)

This process can be summarised, in the language of
quantum circuits, as shown below. Each ‘detector box’
and double line means, respectively, the measurement
and communication of one bit of information:

) [} A

0y —{H]

Dy
N

|0) b Xz |w)

In Fig. 6(b), the analysis of the teleportation process
is extended to the case of a four qubit circuit (Reina &
Johnson, 2000(D)). As before, Alice wants to teleport
the state |¥); to Bob. She prepares three qubits in the
state |0} and gives the state |¥000) as the input to the
system. From Fig. 6(b) it is clear that the function of
the first three gates performed by Alice is to obtain the
maximally entangled GHZ state |Wgpz) = %(\000) +
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w ALICE BOB
) l [ H * e
(@  [0) El b o)
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FIG. 6 Circuit schemes to teleport an unknown quantum state from Alice to Bob using an arrangement of (a) 3, and (b) 4
qubits. The method employs (a) Bell, and (b) GHZ states respectively.

|111)) (Greenberger et al., 1989). The next two gates
realised by Alice (before the dotted line in Fig. 6(b)) leave
the system in the state

1{1000)(al0) + BI1)) + [011)(510) + of1)) +
1100)(al0) — BI1)) + [111)(=5I0) + alL)) ). (47)

By performing the operations shown after the dotted line
in Fig. 6(b), Bob gets as the output of the circuit the
state %ﬂ())l +|1)1)|¢" )23/ ¥)4. Again, for this to work
as a teleportation circuit, we notice from Eq. (47) that
a measurement (in the computational basis) of qubits 1
and 2 and its communication to Bob, who then realises a
unitary transformation over qubit 4 (as detailed for the
circuit of Fig. 6(a)), completes the process. A generali-
sation to the case of an n-QTC using Schrédinger’s cat
states is given in (Reina & Johnson, 2000(D)).

After the seminal work of (Bennett et al., 1993),
some remarkable experimental demonstrations of telepor-
tation have been achieved. The first one (Bouwmeester
et al., 1997), teleported the polarization state of a pho-
ton by using an additional pair of entangled photons.
Here, the measurement process explained above took
place in such a way that the second photon (that of Bob)
of the entangled pair acquired the polarization of the ini-
tial photon (that of Alice). The deterministic teleporta-
tion of a quantum state between two single material par-

ticles (trapped ions or atomic qubits) has now also been
achieved (Riebe et al., 2004; Barrett et al., 2004).
Remarkably, also the experimental quantum teleporta-
tion of a two-qubit composite system has been achieved
(Zhang et al., 2006).

The experimental teleportation between objects of a
different nature—light and matter, which respectively
represent flying and stationary media has also been re-
ported (Chen et al., 2008; Sherson et al., 2006). In
(Sherson et al., 2006), a quantum state encoded in a
light pulse is teleported onto a macroscopic object (an
atomic ensemble of caesium atoms). Here, the authors
point out that the use of a macroscopic atomic ensemble
is relevant for the practical implementation of a quan-
tum repeater. It is well known that an important fac-
tor for the implementation of quantum networks is that
the teleportation between transmitter and receiver can
be carried out over long distances. In this experiment,
the distance achieved was 0.5 metres. The authors claim
that their approach should be scalable to longer distances
since their experiment uses propagating light to achieve
the entanglement of light and atoms. In a more recent ex-
periment, (Chen et al., 2008) have achieved, following
the spirit of the teleportation between light and matter
states, a memory-built-in teleportation between photonic
(flying) and atomic (stationary) qubits. They succeeded
in teleporting an unknown polarization state of a single
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photon over a distance of 7 metres onto a remote atomic
qubit that also served as a readable quantum memory.
Interestingly, the teleported state was stored and success-
fully read out for up to 8 us. As pointed out in (Chen et
al., 2008), the combination of quantum teleportation and
quantum memory of photonic qubits paves the road for
future implementations of large-scale quantum communi-
cation, and measurement-based quantum computation.

E. Dense coding

Classical information can be transmitted by means of
a quantum channel, i.e., via the use of qubits. In princi-
ple, the task is very simple: if a sender, Alice, wants to
transmit a classical binary string, say 0110, to a physi-
cally distant receiver Bob, via quantum means, she sim-
ply prepares the state |0110) and send it to Bob who can
then extract the information by measuring the qubits in
the Bi-basis, therefore obtaining four bits of classical in-
formation, precisely the message sent by Alice. However,
communicating one bit per qubit is obviously not the
best thing that one can do with qubits. In fact, this way
of sending classical bits is actually more expensive than
sending them via a proper classical channel. It turns
out, however, that the qubits offer an additional advan-
tage over the classical bits: one can communicate two
classical bits by sending only one qubit.

Omnce more, the trick relies on the possibility of gener-
ating entangled states: suppose Alice and Bob are given
one particle each which has been previously prepared in
the maximally entangled state |¢*). They don’t know
each other and have never interacted previously, before
this entangled pair is given to them. Alice then can com-
municate to Bob two classical bits by sending him only
one qubit. This is the so-called dense coding, an idea
proposed by Bennett and Wiesner (Bennett & Wies-
ner, 1992; Barenco & Ekert, 1995). This is based on
the fact that the four Bell-basis states can be projected
onto the computational basis to convey two classical bits
of information. This can clearly be seen in terms of the
unitarity of the studied quantum logic gates. First, after
receiving the qubit that Alice has sent to Bob, he per-
forms cNOTy2(|¢T)), hence generating the disentangled
state [101) = 2(|0) + [1)) [0). Second, he realises the op-
eration Hi(|1)), thus obtaining the state |0), |0),. From
this output, qubit 1 is referred to as the phase bit (+ or
—), and qubit two as to the parity bit (this tells whether
the spins are aligned or anti-aligned: |¢) or |¢/)). Hence,
a measurement of this output in the computational basis
should give the result 00: Bob finishes with two classical
bits of information. In the same way, by using any of the
remaining states of the Bell-basis |¢~}, |[¢), [¢7), Bob

should obtain the following two classical bits output: 10,
01, and 11 respectively; thus, in any case, transmitting
two classical bits per qubit. Note that this process can be
seen as a way of performing secure communication: the
qubit trasmitted by Alice will convey two classical bits of
information only if the receiver has the other qubit of the
apriori distributed entangled pair. This is an example of
the information content of quantum entanglement and
the way it can be exploited for classical communication.

F. Quantum key distribution

Suppose that Alice and Bob now need to communicate
an extremely confidential message, such that the infor-
mation is not to be deciphered by a dangerous eavesdrop-
per “Sal.” This task can be accomplished with certainty
only if Alice and Bob are allowed to share a private cryp-
tographic quantum key K, a secret random bit string
known only to them, in order to encode and protect the
original message. The problem assumes that Alice and
Bob have at their disposal a public classical channel, and
a quantum channel that is insecure. Hence, the original
problem of communicating a message has been converted
into a cryptographic key exchange problem. This is often
referred to in the literature as quantum cryptography.

As in the previous cases of entanglement-assisted com-
munication, the key exchange can only be accomplished
with certainty by means of quantum entanglement. It
is to be added to this problem that Sal is an efficient
cavesdropper: he can interact with the quantum informa-
tion carriers used by Alice and Bob, and he can also tap,
without disturbing, any classical communication that Al-
ice and Bob may transmit during the process of sharing
the private key. The quantum key distribution schemes
are based on the no-cloning theorem, since, in contrast
to the situation of classical communication, the message
sent from Alice to Bob cannot be tapped and faithfully
copied by an eavesdropper. Any ‘excess’ of Sal’s eaves-
dropping should be easily detected by Alice and Bob,
who can then abort the protocol and create a new key.

Thus, any attempt by an eavesdropper to obtain relevant
information about K and remain undetected should be
negligible.

Let’s see how to establish such a secured shared ran-
dom key. Suppose that Alice and Bob share a supply of
entangled (singlet) Bell states |1/~). Then, they perform
the following protocol. Alice and Bob measure either o,
or o, over each qubit they have'®. Hence, each choice

10 Here, o; denote the Pauli matrices. These are single qubit trans-
formations that can be used for phase shifting and flipping the
qubits of the Bell basis: i) Apply o to qubit 1: |¢T) «— |¢7),
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occurs with probability 1/2. Once these measurements
are performed, the observables they measure are pub-
licly announced, but the obtained outcomes are not re-
vealed. If their qubits are measured along different axes,
the outcomes are uncorrelated, hence Alice and Bob dis-
card their results. In contrast, if their qubits are mea-
sured along the same axis, their results, though random,
are perfectly correlated, thus establishing a shared ran-
dom key. It is easy to check that this protocol is robust
against Sal’s attacks to the quantum information carriers,
where he can try, for example, to entangle his qubits with
those transmitted between Alice (A) and Bob (B) and
then perform a measurement of his qubits (after know-
ing the results announced by Alice and Bob). The result
is that Sal (S) does not obtain any significant informa-
tion from Alice’s and Bob’s and his own measurement
results. Hence, the generated random key K is secure.

To see why this is so, suppose that Sal has indeed at-
tacked the quantum channel in order to extract infor-
mation from that of Alice and Bob. The most general
possible state that describes A, B, and the intervention
of S can be written as

N) aps = 100) 45 |€00)s + 01) 43 le01) 5 +
|10>AB ‘610>s + |11>AB |311>s s (48)

where we can imagine the states e;; as the states of
a surrounding environment—=Sal (see Section IV). As
=) is an eigenstate of both ¢2c?, and ool (cigen-
value —1), hence Alice and Bob can verify that effectively
g2aB = —1 (the phase bit). Then, they must have

|N>ABS = ‘01),43 |601>s + |10}AB |€10>s ) (49)

and 0208 = —1 (the parity bit), which implies
) aps = \%(‘01),43 —[10) ap)le)s - (50)

Comparing Egs. (48), (49), and (50), it is clear that Sal’s
qubits must be unentangled from Alice’s and Bob’s if
their pair (or any of the Bell-basis) is to be an eigenstate
of crfaf , © = x,z. This means that despite Sal’s efforts,
the shared key is safe: even his knowledge of quantum
mechanics does not allow him to learn anything about
the secret random key! In contrast, if Alice and Bob
measure a part of the shared key and find that the re-
sults are not perfectly correlated, then Sal may have been

and ‘dt*) — |1;’)*> ii) Apply oz to qubit 1: |¢+> — ‘y{:*),
and |¢w’> — — |¢’>. The Bell-basis states can be characterized
as the simultaneous eigenstates of the commuting observables
odcB, and 020 B, where the eigenvalue of 620 F is the parity
bit, and the eigenvalue of O'ZAO'ZB is the phase bit. These operators
can in principle be measured simultaneously.

successful, in which case they have to abort this key and
try to generate a new secure one. Once more, it is evi-
dent that the capability to successfully perform a quan-
tum key distribution protocol relies on the generation
and distribution at will of particles in a highly entangled
pair (Ekert, 1991; Bennett et al., 1992(B); Bennett
et al., 1992(A)). Any state of the Bell-basis could serve
for this purpose.

This is not the only available quantum protocol. In
fact, the so-called BB84 protocol of Brassard and Ben-
nett (Bennett & Brassard, 1984) does not require the
entangled pairs to be shared by Alice and Bob: here, Al-
ice can prepare the pairs herself, from which she measures
one qubit of each pair and sends the other qubit to Bob.
Then Bob can measure and verify his results with Alice as
explained above. This scheme is as secure as the former.
The corresponding security proofs can be found in Refs.
(Mayers, 1998; Lo & Chau, 1999). The effects of the
insecurity of the quantum channel can also affect the re-
sults of Alice’s and Bob’s measurement. However, it can
be shown that the errors due to possible imperfections
in the channel can be distinguished from the errors that
occur because of Sal’s eavesdropping (Mayers, 1998; Lo
& Chau, 1999). Experimental demonstrations of quan-
tum key distribution are far more advanced than any
other QIP task. For an account of the main experimen-
tal achievements in this subject see, e.g., Refs. (Bennett
& Brassard, 1989; Hughes et al., 1995; Phoenix &
Townsend, 1995; Gisin et al., 2002).

G. Quantum data compression

A qubit is a useful measure of quantum information
content. Jozsa and Schumacher have shown that given
a system of n qubits, it is possible to find a subspace of
Hilbert space in which one can describe any state vec-
tor of the system, and that the dimension of this sub-
space is 275(P) for S(p) < 1 (Schumacher, 1995; Jozsa
& Schumacher, 1994). Hence, only nS(p) qubits are
required to represent the quantum information content,
where S(p) is the von Neumann entropy of the quantum
source,

S(p) = — Tiplogyp , (51)
p o= pi|W) (T .

Here, p is the density matrix representing the system,
|W;) are the states trasmitted by the source and p; their
probability of transmission. The von Neumann entropy is
a measure of the minimum asymptotic number of qubits
that are required to compress the initial state of a system
that is to be faithfully transmitted and finally recovered
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by a decoder. As can be seen, nS(p) < n, hence the
name quantum data compression.

This is to be compared with classical data compres-
sion, where redundant data can also be compressed and
then faithfully decoded. The main difference between
the two is that classical compression has allowed only
orthogonal states, while any superposition of states is al-
lowed quantum-mechanically. Hence, a general quantum
compression that involves non-orthogonal states does not
have any classical analogue. In fact, if the quantum states
to be compressed and transmitted are non-orthogonal,
the encoder cannot make a copy of them because of the
no-cloning theorem. The snag here is that a practical im-
plementation of these ‘compressions’ and ‘decodings’ is
extremely demanding. As pointed out in Ref. (Steane,
1998), this is the ultimate compression allowed by the
laws of physics.

H. Quantum algorithms and quantum games
Quantum algorithms

Deutsch’s quantum parallelism is an outstanding prop-
erty of a quantum computer. It points out that a quan-
tum computer can perform certain computational tasks
faster than any modern digital computer. This was
rigorously stated in the ‘Deutsch problem,” whose so-
lution gave birth to the first quantum algorithm, the
so-called Deutsch-Josza algorithm (Deutsch & Jozsa,
1992), where the interplay between interference effects
and quantum entanglement gives rise to a celebrated
speed up of the quantum computational process: this
leads to an exponential gap between the complexity class
of the quantum problem and the corresponding complex-
ity class of the classical problem. In other words, the
quantum parallelism leads to the solution of problems
that are otherwise intractable by any classical means. Af-
ter Deutsch’s, other quantum algorithms have been dis-
covered, the most remarkable one being Shor’s algorithm
for efficient factorisation of large numbers (Shor, 1994;
Shor, 1996; Ekert & Jozsa, 1996). This finding is one
of the main breakthroughs in the subject of quantum in-
formation theory. It established a solution to a problem
that, from the complexity point of view, was thought to
be intractable, and brings practical uses as a byprod-
uct, because it is exactly the same difficulty of factoring
a large number that holds up modern schemes for pub-
lic key cryptography, such as the RSA scheme (Rivest
et al., 1978; Cocks, 1973). Other relevant algorithms
are those of Simon (Simon, 1994), and Grover’s search
algorithm (Grover, 1997). A common element to all
these algorithms is the use of the quantum parallelism

property, where the linear superposition principle plays
a remarkable role when extracting a ‘global’ information
of a given function f. In this section we shall concentrate
on a generalisation of Deutsch’s algorithm (Deutsch &
Jozsa, 1992; Cleve et al., 1998). A detailed analysis of
Shor’s algorithm can be found in Ref. (Ekert & Jozsa,
1996).

Generalised Deutsch’s problem: Suppose we are given
a device oracle that computes the Boolean function f :
z € {0,1}" — f(x) € {0,1} that takes any n-binary
string x as input and produces a single bit f(z) € B
as output, in a single step. The problem assumes that
the function f is either constant or balanced depending
on whether the result of the 2 possible evaluations gives
the same output (0 or 1) or a situation where half of them
are 0’s and the other half 1's. The problem is to deter-
mine whether f is constant or balanced (we previously
analysed the simplest case n = 1, where f(0) = f(1) or
£(0) # f(1), in Subs. II(B)).

Before we give the solution to this problem, let us
first analyse its complexity class: if we attempt to solve
this problem with a classical computing device in the
worst possible scenario, we shall have to call the ora-
cle 21 + 1 times. Thus, the number of oracle queries
grows exponentially with n. But there is a much clev-
erer way to solve this problem. In doing so, we start
by replacing the classical oracle “f” with a quantum
oracle Uy which performs the unitary transformation
Ur o |z)|a) — |z) |a® f(z)) in a single step, where |z)
is an n-qubit state (input) such as the one given in Eq.
(2), and |a) is an ancilla single qubit state (a € By).
Thus, the solution of Deutsch’s problem is straightfor-
ward: Suppose the n-QR and the ancilla are initialised
in the states |z) = [0)®", and |a) = (|0) — |1))/v/2. Next,
perform the following protocol:

1. Apply the Hadamard transform H to |z). This leads
to the state

Yoo l@ o). (52)

For the sake of clarity, the qubit |z) is explicitly given
in Eq. (2).

2. Apply the quantum oracle to the quantum register:

Up(|¥1)). This yields

1
U2) = —— (1)@ a) (jo) = 1)) . (53)
2 W ontl a:e%l}"

3. Next, perform a measurent to determine whether f is

constant or balanced. This measurement can be re-
alised as follows: Apply the Hadamard transform to
all of the first n-qubits of the register given by Eq.
(53). This yields
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1

) =

> (=) EFEN ) (j0)—[1)) . (54)

z,ye{0,1}"

This reduces the measurement problem to that of find-
ing whether or not the first n qubits are in the state
|0), thus solving Deutsch’s problem.

The effect of the Hadamard transform over an arbi-
trary n-QR in a given state |z), x € {0,1}", is

2 = g X (D), (69)

ye{0,1}n

where the product x -y = (2p—1yn—1 + ... 2191 + ZoYo).
Here, j = (jn-1,...,J0), J = x,y. For example, if |z) =
010), hence H(|z)) = 37 {|000) +]001) —[010) —[011) +
1100) + [101) — [110) — [111)}.

To see why the third step solves the problem, note that
the probability of finding the system’s output |¥3) in the
initial state [0) ® [0) ® --- @ |0) @ |a) is

Z (,1)1"(03)

2€{0,1}n

2
1

22n

| 1 if f is constant

- { 0 if f is balanced (56)

The term inside the delimiters gives 27(—1)/(0) = f2n
when f is constant. Thus, a measurement of the first
n qubits output determines with a 100% success rate
whether f is constant or balanced. As said, this is actu-
ally a generalisation of Deutsch’s algorithm, which orig-
inally gave only a 50% of probability of success when
solving this problem (Cleve et al., 1998).

It is remarkable what has been done using this algo-
rithm: its massive quantum parallelism led to the com-
putation of all the 2™ possible values of f(x) in one single
run. This arises from the fact that the quantum oracle
can perform its task for any linear combination of possi-
ble basis states in a single step: this is to be physically
identified as an interference pattern. As to the complex-
ity class of this quantised problem, we require only O(n)
steps to obtain the final answer. Hence, if we compare
this result with that of the classical complexity class, it
is found that Deutsch’s algorithm leads to an exponen-
tial speedup of the computations. This is a wonderful
property that only a quantum computer can provide.

Deutsch’s and Grover’s algorithms have been imple-
mented in bulk liquid NMR experiments but only for
a few qubit register (Jones et al., 1998(A); Jones &
Mosca, 1998(B)). More recently, there has been the
more demanding implementation of Shor’s factoring algo-
rithm, also using NMR quantum computation. This has
been done in the simplest scenario: factorisation of the
number N = 15, by using n = 7 qubits (Vandersypen
et al., 2001).

Next, we examine very briefly the subject of game the-
ory, and discuss the role that quantum computation may
play when the players of a given ‘game’ are allowed to
play “quantum strategies.”

Quantum games

Game theory is a well established branch of mathemat-
ics whose tools and formalism, mainly developed by J.
von Neumann (von Neumann & Morgenstern, 1953),
aims to solve the conflict between two or more competing
parties (players) that hold particular interests. This has a
vast range of applications in many different subjects such
as social sciences, biology, and economics'!. By contrast,
quantum game theory (Meyer, 1999; Meyer, 2000; Eis-
ert et al., 1999; Eisert & Wilkens, 2000; Benjamin
& Hayden, 2001(A); Benjamin & Hayden, 2001(B))
has been born from motivations regarding QIP, where
information has been recognised as a physical quantity.
The usefulness of quantum games for ‘practical applica-
tions’ goes back to the idea that many physical, chemi-
cal, and biological quantum processes can be thought of
as games.

The initial motivation is the recognition of new effects
without classical analogue, which are associated with the
quantum character of the ‘games’. For example, a two-
player game (Meyer, 1999; Meyer, 2000; Eisert et
al., 1999; Eisert & Wilkens, 2000) can show a vanish-
ing of ‘predominant strategies’ when the allowed ‘moves’
are made quantum-mechanically: these strategies should
reappear only under the degrading of the quantum coher-
ence (Meyer, 1999; Meyer, 2000; Eisert et al., 1999;
Eisert & Wilkens, 2000). For multi-player quantum
games (Benjamin & Hayden, 2001(A); Benjamin &
Hayden, 2001(B)), it has been shown that when the
resources controlled by competing agents are entangled,
they can cooperate to perfectly exploit the ‘game’ (Ben-
jamin & Hayden, 2001(A); Benjamin & Hayden,
2001(B)). This has been performed for multi-player quan-
tum games in the cases of the “Minority game,” and a
game analogous to “Prisoner’s Dilemma” (Benjamin &
Hayden, 2001(A); Benjamin & Hayden, 2001(B)),
with the interesting result that such games can exhibit
forms of ‘coherent’ quantum equilibrium'® which have no
analogue in classical games, or even in two-player quan-
tum games. Thus, quantum players can exploit their

1 See, e.g., http://www.unifr.ch/econophysics/minority /.

12 An equilibrium is understood here as a set of strategies, such
that neither player can improve his probability of winning by
changing his strategy while the others do not.
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moves highly efficiently through the use of collaborative
strategies.

Because of the computational and physical rewards
when performing both quantum algorithms and quan-
tum games, one might be tempted to try to establish a
common framework that yields a connection between the
two. Many situations in nature, e.g., in biology, can be
thought of as games where the competing agents try to
establish a strategy that allows them to maximise their
pay-off (e.g., their energy efficiency). In this respect,
quantum algorithms may play an important role. They
could be viewed, for instance, as games played between
classical and quantum agents (Meyer, 1999; Meyer,
2000). One can imagine that a deeper understanding of
the underlying structure of certain “quantum strategies”
for performing quantum games may lead to the possi-
bility of finding a different approach to gain insight into
some fundamental physical and chemical processes in the
quantum regime. One may think, for example, of the de-
coherence phenomenon as a dynamic multi-agent quan-
tum game where at any given time ¢, we ask whether
or not a given quantum register has been driven by an
“environment strategy” to a situation where the QR co-
herence is lost. From a QIP perspective, we would like
to find a way to play this game such that the registers
answer is always “no.” This example is in contrast with
the above proposals (Meyer, 1999; Meyer, 2000; Eis-
ert et al., 1999; Eisert & Wilkens, 2000; Benjamin
& Hayden, 2001(A); Benjamin & Hayden, 2001(B)),
where the quantum games are played ‘statically,” in the
sense that they are played only once, and hence there
is no record of the players history. Dynamical quantum
games should be an interesting issue to address in the fu-
ture, in particular because it could give rise to a new view
of addressing quantum memory effects, and hence of un-
derstanding decoherence. Currently, there is an intense
search to find new quantum algorithms. Finding new
elements of the repertoire of the advantages of a quan-
tum computer over its classical counterpart would bring,
along with the possible development of novel quantum
strategies, new insight into the understanding of basic
processes in the interdisciplinary field of QIP.

The developments that came after the discovery of ef-
ficient quantum algorithms call for the need to solve an-
other outstanding matter: the stabilisation problem. It is
clear that environmental influences disturb the quantum
computers capability of generating reliable quantum in-
terference and quantum entanglement, hence destroying
the possibility of performing arbitrarily complex quan-
tum computations such as quantum algorithms. Fortu-
nately, it was shortly shown afterwards, by Shor (Shor,
1995) and Steane (Steane,1996(A); Steane, 1996(B);
Steane, 1996(C)), that quantum error-correcting codes

exist, thus alleviating this situation. Next, the environ-
mental problem mentioned above, and possible ways to
overcome it, including fault-tolerant quantum computa-
tion itself, shall be briefly discussed.

IV. QUANTUM DECOHERENCE AND QUANTUM
ERROR CORRECTION

The list of quantum hardware requirements to build
a quantum computer presented in Section II possess a
common difficulty. This is the problem of stability, which
spoils the unitarity of the register evolution, and hence
compromises the usefulness of any given computational
task. It can be defined by two main ingredients: noise,
the coupling that may exist between the state of the
computer and its surrounding environment, and impre-
cision, the inaccuracy with which elementary quantum
gates are performed in an arbitrarily complex computa-
tion (Preskill, 1998). As has been discussed, in order to
perform quantum computations, a coherent evolution of
the qubits is required. Noise causes the quantum com-
puter to evolve from a pure quantum state to a statistical
mixture of quantum states that exhibit no phase differ-
ence between them, the so-called decoherence (Zurek,
1991). Thus, decoherence implies that two of the main
properties of a quantum computer, say, 1) the capability
to maintain superpositions of its states, i.e., to perform
quantum interference reliably, and ii) the capability to re-
liably perform entanglement between its qubits, are lost
during a given computational process. This can be illus-
trated by stating that, e.g., if |S) is a superposition of
states @@) of the quantum computer, say

S) = 25 (|®1) + | ®2)) (57)
then, a coherent evolution of the QC state requires that
the |®;)’s and the phase ¢ of the superposition remain
unchanged by both noise and imprecision'®. In practice,
these criteria are very difficult to match. It is easy to
see that an imprecise operation could result in a rotation
of the state such that the phase ¢ becomes undefined.
Also, and perhaps more stringent, is the fact that the
coupling of |S) to the environment can result in a state

13 This can be seen in the case of quantum entanglement as follows:
suppose that the state |S) is created in an entangled state, say
|®1) = |01}, |®2) = |10), and ¢ = 7 (the singlet state |01) —|10)).
Hence, its phase bit (“—") and its parity bit (spin states are an-
tialigned, “|¢)”) should be guaranteed throughout the computa-
tional process if the system is to evolve coherently.
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of the type %{@1) ler) + € |®3) |e2)), which also af-
fects the phase ¢ when the states of the environment
le;) become orthogonal, i.e., when (ej|es) — 0. This
system-environment coupling—decoherence—results in a
leakage of the information such that superpositions of the
system’s states evolve into entanglements with the envi-
ronmental degrees of freedom, thus spoiling the unitarity
of the evolution.

In the case of a spin half quantum (qubit) system,
where |S) can be represented as a general state «|0) +
A1}, the qubit-environment interaction leads, in the
worst scenario, to a state of the type

le:) (@]0) + 3]1)) — a(coo|eoo) |0) + cor |eor) 1)) +
B (c1olero) 1) + 11 lenn) [0)),

where |e;) is the initial state, |e;;) are the final states of
the environment (not necessarily orthogonal), and ¢;; are
noise coefficients. It is interesting that this evolution can
be rewritten as
e} 1S) = {le,) T+ lex) o — i ley) ay + ez} 0:}1)
(58)
where |S)}) is the initial state of the qubit, €, = cqq |eqo) +
c1o le1n)s |ex) = co1 leor) + 11 lerr), and so on. The Pauli
operators oy, and the identity I, are written in the com-
putational basis B;. Recall that —ioy, = o,0.. It follows

from the Pauli matrices in Eq. (58) that the errors in-
volved on each qubit are basically of three types: “bit
flip” (o) errors, “phase flip” (o) errors, or “bit/phase
flip” (o,0,) errors (Steane, 1996(A); Steane, 1996(B);
Steane, 1996(C)). Thus, the problem of qubits error cor-
rection is reduced to the problem of correcting the above-
mentioned errors. In these terms, the physical processes
of phase decoherence and spontaneous emission can be
stated as:

i. Phase decoherence: (a|0) 4+ 3[1))]e) — «|0)
3]1) ler). This is given by { |e,),|es) # 0,
|ey) =0, (ele:) =0}

eo) +

€p) =

ii. Spontaneous emission: («|0) + 3|1)) |e) — |0} |eg) +

B3(11) lex) + [0) [e2)), (e, |ea) = 0. This is given by

e = —leghs  eales) = —{eales), ferles) =

{exles) }. If T' is the spontaneous emission rate, it

is found that (e;le;) = (eyley) = (e:lez) =La-e T,
and {e,|e,) =L(1+3e~1).

This latter process is referred to in the NMR. literature
as the T) (relaxation) process, and the former as the T,
(dephasing) process. In any case, it is clear that the de-
coherence interaction entangles qubits with the environ-
ment. To visualise, e.g., the case of phase decoherence, it
is useful to write the qubit evolution in terms of its den-

sity matrix operator. Thus, tracing out the environment
states yields the evolution

2 N 2 w1
( |O)i| (162 ) . ( . |(I| 05)8 <f'02 61) ) , (59)
a*3 |6 a*fe1] ep) 18|
where the off-diagonal elements “coherences,” vanish for
{egle1) — 0, in agreement with item (i). This is the ori-
gin of the term decoherence. Now that the problem has
been identified, it is necessary to find a way to avoid
or correct decoherence. In so doing, there is a pow-
erful though counter-intuitive method: quantum error
correction. By using this technique, a quantum com-
puter is able to compute an arbitrary number of quantum
logic gates—a complex quantum interference network
and produce the right answer even though the qubits in
the computer relax spontancously many times during the
computational process (Steane, 1996(A, B, C)). To un-
derstand why this is so, let’s start by noting that the
principles of quantum error correction (QEC) are based
on two main elements: the quantum states to be pro-
cessed and the type of noise to be corrected. In order to
describe the method, we follow (Steane, 1996(A, B, C)).
Suppose the coupling between an m-quantum system
(@) and its environment (FE) is described by

) 18) — Y les) M, |2) | (60)

where |e) (|®)) is the initial state of the environment
(system). The action of the “error operators” M, on the
system is unitary. These M,’s are a tensor product of
operators (one for each qubit of the whole register) that
belong to the set {I, 0,, —io,.0.}. The final states of the
environment |e;) need not be orthogonal nor normalised,
and it is clear that the noise process of Eq. (60) is irre-
versible because the environment cannot be controlled.
To perform QEC, the system () has to be coupled to an-
other system “ancilla” (a), which is composed of n —m
qubits in the definite state |0),, (the whole register “Q+a”
contains n qubits). The interaction A between @ and a,
the syndrome extraction, is unitary and satisfies

A(10)g M, @) =

s), M |®) YM,eS.  (61)

Here, the ancilla states |s), are mutually orthogonal, and
the syndrome s gives us information (bits) about the kind
of noise the register is experiencing. The set § is the
set of error operators My for which syndrome extraction
works—the set of correctable errors. This depends on
the encoding: a central part of QEC is to find the best
syndrome extraction operators (Steane, 1996(A, B, C);
Knill & Laflamme, 1997).

Next, the syndrome extraction A is applied to the com-
posite noisy-ancillary “Q) + E + o” state. This yields



228 REV. ACAD. COLOMB. CIENC.: VOLUMEN XXXIIlI, NUMERO 127-JUNIO DE 2009

A {Z les) \U)QMS |(I)>} - Z les) ‘5>a M, |®) .
S S

(62)
The next step is remarkable: by measuring the ancilla
state in the {|s) , }-basis, the ancilla is projected onto one
particular state |s),, and the outcome value s becomes
known to us. Thus, the whole system “QQ+ E +a” is pro-
jected onto the state |es) |s), M |®), where s is known.
Furthermore, from the measurement result (value of s),
one can identify the operator M 14, thus applying M !
to “Q + a” in order to obtain the final state'®

les) [$)a [ - (63)

This means that our problem has been solved: the origi-
nal (noise-free) state |®) has been recovered. Note: i) Af-
ter the syndrome extraction operation, the ancilla state
|5}, depends on the noise but not on the quantum state to
be corrected (see Eq. (61)). ii) After the projective mea-
surement, instead of the general noise of Eq. (60), one
is left with only one error operator, M, which is now
known to us. iii) The ancilla a can be again prepared
in the state |0}, for further corrections, thus allowing the
quantum computer to overcome decoherence and perform
further complex computations. iv) The last step, mea-
sure of the ancilla, can be avoided: this can be accom-
plished by defining another unitary interaction, namely
C, that acts between ) and a (after the syndrome extrac-
tion) as follows C(|s), |®})) = |s), M, |®). Then the final
state of the whole register becomes |®) >~ _les) |s),, thus
transferring the “Q) + E” entanglement onto an “a + E”
entanglement (this procedure is illustrated in the Exam-
ple 2; Appendix C.2).

The unitary operation that completes the QEC pro-
cess, namely recovery “R,” in general establishes that
for any |9),|ds) € “E + a”, R(|0) M, |®}) = [d5) |®). In
this sense, the main goal of QEC is to identify the set
{|®}}, and the syndrome extraction A, in order to cor-
rect the noise introduced by M. In so doing, it suffices to
find an orthonormal set of recoverable states (a subspace
of Hilbert space) to be able to have a recoverable Hilbert
space “RH”. Thus, QEC can be viewed as a projection
of Hilbert system’s space onto the recoverable Hilbert
space. A guantum codeword {|j)} is a set of orthonor-
mal quantum states that spans R'H. It turns out that A
and R are possible if and only if the codewords satisfy
(G M, My [k) = 0, and (j| M, My [k) = (k] M, My |j),

14 This is because s is in a one-to-one correspondence with M.

15 The transformation M Lis accomplished by means of a sequence
of single qubit quantum gates originated from the set {o;, o or
—ioy }.

V M € 8, and (jlk) = 0 (Knill & Laflamme, 1997);
see Example 1 given in Appendix C.1. For concrete ex-
amples of QEC code constructions, see, e.g., (Shor, 1995;
Steane, 1996(A, B, C); Calderbank & Shor, 1996;
Laflamme et al., 1996); see Example 2, Appendix C.2.

In Examples 1 and 2, the used codewords only al-
lowed for the correction of either bit-flip (o) or phase-
flip (o) errors. A general method that protects against
a more general noise, say a combination of ¢, o,, and
a0, errors, has been described in (Steane, 1996(A, B,
C); Calderbank & Shor, 1996; Knill & Laflamme,
1997), and is based on the ‘dual code theorem.” Here,
the essential point is to note that

BY === Y 1. (64)

ieC ieCL

where H = H,HsHs -+ H,, is the Hadamard transform
applied to all the members, say n states, of a linear clas-
sical error correcting code C' (Steane, 1996(A, B, C)).
The observation is that the action of H over C' produces
another linear classical error-correcting code, the super-
position of all the members of the dual code C*+. The
dual C+ is defined as the set of all vectors v such that
v-u = 0 VYu € C. Hence, as long as both C' and C*+
have good classical error correction properties, it can be
shown that it is possible to correct both ¢, and o, errors
(and hence errors involving the two of them, i.e., 0,0,)
by using states of the type given in Eq. (64). For more
details of this code construction, the reader is referred to
(Steane, 1996(A, B, C); Calderbank & Shor, 1996);
see Example 3, Appendix C.3.

In conclusion, the method of QEC is mainly a mat-
ter of finding sets of states |®), and the syndrome ex-
traction A that allows one to suppress the influence
of noisy environments M,;. Most of this work has
been done by revisiting existing classical error-correcting
codes. The theory of quantum error-correcting codes has
been established within a general framework in (Knill &
Laflamme, 1997). Quantum error-correction and sta-
bilisation schemes have been built on the work of Shor
(Shor, 1995), Steane (Steane, 1996(A, B, C)), Calder-
bank and Shor (Calderbank & Shor, 1996), and the
later work reported in (Ekert & Macchiavello, 1996;
Laflamme et al., 1996; Gottesman, 1996; Calder-
bank et al., 1997). There is an important issue that has
been left out of the discussion presented above: the effect
of the proper quantum gates, ancilla, and measurements
realised by the QEC method. How perfect must they be
in order to do a proper job of error correction instead of
introducing further noise and imprecision to the system
() +a? Fortunately, the answer to this problem has been
dealt with satisfactorily in what has been termed fault-
tolerant QEC (Shor, 1997; Kitaev, 1997; Steane, 1997;
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Preskill, 1998). It was initially proposed by Shor (Shor,
1997) and Kitaev (Kitaev, 1997), and the central idea
was to perform a convenient design of all the required
logic gates where the evolving states are verified wher-
ever possible, and the syndrome extraction repeated. In
this way it is guaranteed that the QEC method “corrects
more noise than it introduces.” These ideas have been
conveniently reviewed in (Preskill, 1998), where it has
been estimated that a requirement for reliable quantum
fault-tolerant computation is that the quantum hardware
used in the computations must have a decoherence per
qubit per gate below a finite threshold. This has been es-
timated at 10~ to 1072 (Steane, 1997; Preskill, 1998) .
In addition, fault-tolerant computation allows a quantum
computer that is built from qubits that undergo spon-
taneous emission decay with lifetime 7,..; to perform a
complex quantum computation: the quantum coherence
can be preserved for a period of order 10%7,.; (Steane,
1997). This counter-intuitive result means that quantum
coherence is preserved even though the qubits may have
relaxed (and been re-excited) 10* times during the exe-
cution of the computations (Steane, 1997).

Error-correction protocols have been implemented in
nuclear magnetic resonance experiments, but the inher-
ent limitations of this technique (see Sec. V for dis-
cussions) prevent its application to quantum information
processing. In (Chiaverini et al., 2004), an experimen-
tal realisation of quantum error correction using trapped
ions has been reported. They demonstrated quantum
error correction using three beryllium atomic-ion qubits
confined to a linear, multi-zone trap. They used a three-
qubit quantum error-correcting code in order to protect
a one-qubit (primary ion) state against ‘spin-flip’ errors.
In the experiment, the errors are induced simultaneously
in all qubits at various rates, and the encoded state is
decoded back to the primary ion one-qubit state, making
error information available on the ancilla ions, which are
separated from the primary ion and measured. Finally,
the primary qubit state is corrected on the basis of the
ancillae measurement outcome. The error correction is
verified by comparing the corrected final state to the un-
corrected state and to the initial state (Chiaverini et
al., 2004).

In this section, only the method of QEC for correct-
ing quantum noise has been presented. However, there
have been different, complementary, proposals for sup-
pressing, e.g., dynamical methods, or avoiding decoher-
ence, e.g., by resorting to the use of decoherence-free sub-
spaces (Reina et al., 2002). In the latter, the evolution
of a quantum register in a noisy environment is stud-
ied in detail. In particular, it is shown that under cer-
tain conditions —the collective decoherence coupling
it is possible to find a subspace of Hilbert’s system space

whose states evolve in a decoherence-free fashion (Reina
et al., 2002). From this point of view, one can argue that
for arbitrarily complex quantum computations to ever be
implemented in the laboratory, a combination of stabili-
sation schemes, such as fault tolerant QEC, decoherence-
free subspaces, and dynamical methods to overcome de-
coherence, must be incorporated to the quantum registers
dynamical evolution. In (Reina & Bririd, 2008), a nu-
merically exact real-time path-integral approach (Makri
& Makarov, 1995) has been used in order to account
for the non-Markovian dissipation of a solid-state qubit
system.

Next, we comment on some of the practicalities regard-
ing QIP implementations, with a particular emphasis on
solid-state technology.

V. PHYSICAL QUBITS

A quantum computation demands a coherent quan-
tum evolution, and an active control or manipulations
of the qubits, which are to be performed via unitary
operations. We next give a brief discussion of some of
the first hardware proposals (and/or demonstrations)
for quantum information processing.

Cavity QED: originally proposed in (Pellizzari et
al., 1995), this hardware design is based on the idea
of trapping neutral atoms inside a small high finesse
optical cavity. Here, the quantum information is stored
in the internal states of the atoms, which interact with
each other via the coupling to the normal modes of
the electromagnetic field in the cavity. By means of
pulsed lasers, a transition in one atom can be induced
as a result of the internal state of another atom, thus
performing conditional dynamics. The first experimental
attempt at producing these type of quantum gates was
realised by Turchete et al. (Turchete et al.,, 1995).
A variant of this scheme is that proposed by Cirac et
al. (Cirac et al., 1996; Cirac et al., 1997), allowing
a further step: quantum communication. Here, instead
of using a photon to couple the atoms, the quantum
information is stored in the polarisation of the photon,
and the trapped atoms are used as mediators of the
interaction amongst the photons via high-@Q} optical
cavities and optical fibres (Cirac et al., 1996; Cirac
et al., 1997): in this way, quantum information can be
transferred between separated atoms (e.g., ion traps, see
below), in order to produce photon based logic gates
(e.g., phase shift gates, see Ref. (Cirac et al., 1997)).

More recently, other proposals involving QED effects for
quantum logic have been given in (Imamoglu et al.,
1999; Rauschenbeutel et al., 1999; Rauschenbeutel
et al., 2001; Leuenberger et al., 2005).
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Ton traps: proposed by Cirac and Zoller, this scheme
has single ions confined in a linear Paul trap as the
qubit system (Cirac & Zoller, 1995; Cirac & Zoller,
2000). Thus, the qubit states can be represented as
lg) = |0}, and |e) = [1), the ground state, and a (long-
lived metastable) excited state respectively. This ion sys-
tem is very well shielded from the environment: almost
spontaneous decay is the main source of decoherence.
The preparation and measurement of corresponding (ini-
tial and final) states is easily accomplished by meth-
ods of optical pumping and laser cooling, and by means
of ‘quantum jump’ or ‘electron shelving’ measurement
technique, respectively (Monroe et al., 1995; Blatt &
Wineland, 2008).

Single qubit gates are performed via individually ad-
dressing the ions with pulsed lasers tuned at the transi-
tion frequency w. This originates Rabi oscillations be-
tween the qubit states |0), and |1}. Thus, arbitrary
single-qubit gates can be performed by an appropriate
timing and choosing of the laser phase.

Conditional logic gates rely on a beautiful but rather
more complicated effect. The interactions in the ion trap
are mainly given by the Coulomb repulsion between the
ions. This implies a spectrum of coupled normal modes
of vibration for the trapped ions, and the absorption or
emission of a laser photon by the ion can be tailored in
such a way that a normal mode involving many ions re-
coils coherently. The lowest frequency vibrational mode
(frequency ) is the centre-of-mass (e¢m) mode. Via laser
cooling, these ions can be kept at an energy kgT' << hy,
hence guaranteeing that each vibrational mode occupies
its quantum ground state. The next step, the generation
of a “cm phonon,” is crucial to this scheme: by shining
an ion, say the nth, with a properly timed laser pulse of
frequency w — p, the state |e), can be made to evolve
into |g),, at a cost of the transition |0), — |1),,, of the
c¢m oscillator. This operation transforms

|g>'l’l. |0>C‘l’l’l; - |g>7.’; |U>(!TH,; ‘8>7}, ‘U>C'.'H, - _II: ‘g>'ﬂ |1>{."be 1
(65

thus, inducing an interaction between the ions via the
collective state of motion of all the ions (the produced
cm phonon).  Next, the quantum information must
be transferred from the c¢m phonon to the internal
state of one of the ions, thus completing the logic gate.
This procedure must be tailored in such a way that
the e¢m mode returns to its ground state by the end
of the computational process. It has been shown that
this hardware design requires 5 appropriately tailored
laser pulses in order to produce conditional CNOT
gates (Cirac & Zoller, 1995; Cirac & Zoller, 2000).
The experimental preparation, single gate realisation,
and measurement for a single trapped ion was first
demonstrated in (Monroe et al., 1995). Another ion

trap-based scheme for quantum computation has led
to the experimental demonstration of up to four qubits
(atoms) entanglement (Molmer & Sorensen, 1999;
Sackett et al., 2000). In (Blatt & Wineland, 2008),
the state-of-the-art, as well as some of the original con-
tributions and developments of the ion traps computers
are highlighted.

Nuclear magnetic resonance: this hardware design pro-
vided the first few-qubit quantum processors realised in
the laboratory, and, up to some point, had the ‘lead’ as
to the achievement of a coherent manipulation of qubits
is concerned. One of the key experiments has involved
7 qubits, in order to demonstrate the simplest possi-
ble case of Shor’s factoring algorithm (Vandersypen et
al., 2001). This hardware scheme uses nuclear magnetic
resonance (NMR) technology. The qubits are now rep-
resented by the nuclear spins in a particular molecule,
where the spin states “up” or “down” serve as qubits.
By placing the molecule in a large magnetic field, these
nuclei spin states can be manipulated by applying os-
cillating magnetic fields in pulses of controlled duration.
These qubits have very long decoherence and relaxation
times (see table below). As said, Rabi oscillations of
the spin can be induced by applying a pulsed rotat-
ing magnetic field of frequency w (the energy splitting
between the spin-up and spin-down states). Arbitrary
single-qubit gates can be realised by an appropriate tim-
ing of this pulse. This process works in the presence of
all of the molecule spins because only the spins on res-
onance respond to such an excitation. Two-qubit gates
can be performed via the dipole-dipole spin interaction.
Since the energy splitting between qubit states |1}, and
||) for one spin depends on the state of neighbouring
spins, the application of a resonant pulse that affects one
spin is conditioned on the state of another spin. This pro-
duces the required conditional dynamics. For experimen-
tal demonstrations, see, e.g., (Gershenfeld & Chuang,
1997; Chuang et al., 1998(A); Chuang et al., 1998(B);
Cory et al., 1997; Knill et al., 1998; Jones et al.,
1998(A); Jones & Mosca, 1998(B); Vandersypen et
al., 2001).

Major drawbacks of the NMR computers stem from
their intrinsic scalability problems (the ratio of the
coherent signal to the background declines exponentially
with the number of spins per molecule), and from
the fact that individual qubits can neither be directly
prepared nor measured (only the average state of many
processors is detectable). In fact, most experts agree
that there is no chance that NMR-based qubits would
succeed as scalable systems for the implementation
of the controlled large-scale multipartite interference
required for quantum computing.
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Optical lattices & Bose-Finstein condensates: the re-
cent experimental observation of a quantum phase tran-
sition from a superfluid to a Mott insulator in an ultra-
cold gas has opened the way to a new hardware prospec-
tus (Greiner et al., 2002; Mandel et al., 2003; Gia-
marchi et al., 2008; Bloch, 2008; Brennen et al.,
1999; Jacksch et al., 1999). By creating an opti-
cal lattice (an array of microscopic trapping potentials
formed by laser light), a light-wave interference pat-
tern which gives rise to an energy landscape of moun-
tains and valleys, a gas of rubidium atoms has been re-
versibly switched from a superfluid to an insulating phase
(Greiner et al., 2002), where the rubidium atoms of the
condensate have two different behaviours. They can ei-
ther i) share the same quantum state in the superfiuid
phase and move freely between valleys, or ii) remain
trapped in an individual valley, as a result of an increase
in the intensity of the laser beams, which force the gas
into an insulating phase.

This phase transition was predicted to occur in an op-
tical lattice by Jaksch et al. (Jacksch et al., 1999),
where conditional dynamics and quantum entanglement
has been proposed in moving trap potentials as a result of
cold controlled collisions between two atoms. The exper-
imental possibility of switching back and forth between
superfluid and insulating behaviour brings an exciting
development and is the subject of intense experimental
activity (Bloch, 2008; Giamarchi et al., 2008). In par-
ticular, the ideal array of single atoms in the insulating
phase has become useful for multipartite entanglement
generation (Bloch, 2008). Here, the two internal states
(magnetic moment) of the rubidium atoms can represent
the qubit states |0), and |1). Scalability can be guaran-
teed due to the large number of rubidium atoms in the
optical lattice, which can serve as a quantum memory
(Bloch, 2008).

The storage of ultracold (nK temperatures) quantum
gases in in perfect large arrays of atoms (optical lattices)
has provided a good tool for investigating quantum
coherence and generating large-scale entanglement, and
thus also leading to quantum information processing
tasks in such artificial crystal structures . These arrays
can also function as versatile model systems for the
study of strongly interacting many-body systems on a
lattice (Bloch, 2008).

Quantum dots & solid-state qubits: There is much cur-
rent excitement about the possibility of using solid-state
based devices for the achievement of quantum compu-
tation tasks (Fushman et al., 2008; Robledo et al.,
2008; Clarke & Wilhelm, 2008). In particular, quan-
tum dots are advantageous due to the existing and well
developed nanofabrication technology and the ease of

incorporating them into current opto-clectronic devices.
The quantum mechanical nature, the high degree of engi-
neering and quantum control of individual wavefunctions
of solid-state systems, besides intrinsic scalability proper-
ties, make, for example, quantum dots (Fushman et al.,
2008; Robledo et al., 2008) and Josephson junctions
(Makhlin et al., 2001; Clarke & Wilhelm, 2008) very
promising candidates for the physical implementation of
QIP.

There are several proposals that consider different
physical degrees of freedom as representative of solid-
state qubit systems. Below we mention only some of
these design schemes for quantum computation proposed
to date: Kane (Kane, 1998) has proposed a scheme
which encodes information onto the nuclear spins of
donor atoms (like ) in doped silicon electronic devices
where externally applied electric fields are used to per-
form logical operations on individual spins. Privman et
al. (Privman et al., 1998) suggested controlling the
hyperfine electron-nuclear interaction via the excitation
of the electron gas in quantum Hall systems. Loss and
DiVincenzo (Loss & DiVincenzo, 1999; Burkard et
al., 1999) have presented a scheme based on electron
spin effects, in which coupled quantum dots are used as
a quantum gate. This scheme is based on the fact that
the electron spins on the dots have an exchange interac-
tion J which changes sign with increasing external mag-
netic field. Vrijen et al. (Vrijen et al., 2000) considered
electron spin resonance transistors in Silicon-Germanium
heterostructures: one and two qubit operations are per-
formed by applying a gate bias.

The above proposals, however, require the attachment
of electrodes or gates to the sample in order to manip-
ulate the nuclear spin qubit. Such electrodes are likely
to have an invasive effect on the coherent evolution of
the qubit, thereby destroying quantum information. In
reference (Reina et al., 2000(A)), an NMR solid-state
based mechanism for quantum computation free from
these shortcomings is proposed.

Possible quantum gate implementations have also been
proposed by Barenco et al. (Barenco et al., 1995(B))
by considering electronic charge effects in coupled QDs,
however this scheme has as the main disadvantage rapid
phonon decoherence, as compared with the above pro-
posals. Imamoglu et al. (Imamoglu et al., 1999) have
considered a quantum computer model based on both
electron spins and cavity QED which is capable of realis-
ing controlled interactions between two distant QD spins.
In their model, the effective long-range interaction is me-
diated by the vacuum field of a high finesse microcavity,
and single qubit rotations and CNOT operations are re-
alised using electron-hole Raman transitions induced by
classical laser fields and the cavity mode.
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A different scheme exploits the exciton degrees of free-
dom of a QD system in order to generate an entangling
network setup by exploiting (Férster) resonant energy
transfer processes between coupled QDs (Reina et al.,
2000(B); Quiroga & Johnson, 1999; Lovett et al.,
2003(A,B); Nazir et al., 2005). Related schemes, that
also exploit exciton degrees of freedom for quantum com-
putation, have been put forward in (Biolatti et al.,
2000; Troiani et al., 2000).

Quantum dots can be constructed from inorganic or
organic semiconductors, the latter being of special in-
terest since they can constitute actual molecular archi-
tecture arrays of organic heterostructures, the so-called
block copolymers (Mujica et al., 2009). They are eas-
ier to construct than the inorganic systems, since they
do not require expensive pieces of equipment as required
for molecular beam epitaxy or metal-organic chemical
vapour deposition. In principle, it is possible to construct
an unlimited variety of organic heterostructures, since
the interface between the materials is a chemical carbon-
carbon bond, in contrast to inorganic ones, where it is re-
quired that the materials exhibit similar lattice constants
to avoid interfacial stress, which notably limits the vari-
ety of heterostructures that can be synthesised. In (Mu-
jica et al., 2009) a global quantum computing scheme
that uses molecular architectures based on m-conjugated
block copolymers has been reported.

Within the quantum dots range of proposals, there
have been some recent experimental demonstrations of
controlled qubit gates, such as controlled phase shifts
(Fushman et al., 2008), and controlled-phase gates
(Robledo et al., 2008). In (Fushman et al., 2008),
the coupling between a single quantum dot and a pho-
tonic crystal nanocavity has allowed controlled phase and
amplitude modulation between two modes of light at the
single-photon level. As a perspective of such an exper-
imental realisation, the combination of quantum logic
devices and quantum nondemolition measurements on a
chip are expected (Fushman et al., 2008). In (Robledo
et al., 2008), a demonstration of conditional dynamics
for two coupled quantum dots is reported. Here, the logic
gate dynamics is induced by means of a transition to an
optically excited state which is controlled by the pres-
ence or absence of an optical excitation in the neighbor-
ing dot. The dots interact via a tunnel coupling between
optically excited states and can be optically gated by ap-
plying a laser field. Other recent demonstrations already
incorporate the design of robust optically programmable
quantum dots electron spin memories (Kroutvar et al.,
2004), and molecular ensembles as quantum memories for
solid state circuits in hybrid quantum processors (Rabi
et al., 2006) that are envisioned as devices for the gener-
ation, control, and communication of multipartite quan-

tum entanglement and for the realisation of large scale
conditional dynamics.

Superconducting circuits (see Fig. 7) are macroscopic
devices in size which can exhibit quantum behaviour,
such as quantized energy levels, superpositions, and en-
tanglement of of states (Makhlin et al., 2001; Clarke
& Wilhelm, 2008). The building blocks of such cir-
cuits are the so-called superconducting qubits, and elec-
tric charge and magnetic flux degrees of freedom are used
as quantum hardware for quantum computing (Makhlin
et al., 2001; Clarke & Wilhelm, 2008). Here, the
quantum states can be manipulated by using electromag-
netic pulses to control the flux, the charge or the phase
difference across a Josephson junction (Makhlin et al.,
2001). A generic superconducting qubit can be described
by the Hamiltonian ﬁq = —%e&z - %AEI, where € and
A denote the ‘longitudinal’ and ‘transversal’ parameters
of the corresponding qubit, and o; are the usual Pauli
matrices (Leggett et al., 1987). The charge qubit has

FIG. 7 Hybrid quantum circuit: charge (left) and flux (right)
qubits are effectively coupled due to the Josephson junction
FEjyo. Ej; denotes the Josephson energy of each junction
(crossed boxes). The charge (i = 1) and the flux (i = 2)
qubits are crossed by externally controlled magnetic fluxs ®;
(Montes et al., 2009).

the advantage of a more flexible controllability via exter-
nal parameters: it can be conveniently controlled by a
voltage gate or an applied magnetic flux (Makhlin et
al., 2001). These external control parameters appear in
the longitudinal (¢,) and transverse (o) terms of the
circuit’s reduced Hamiltonian. For the flux qubit, the
longitudinal term can be controlled by the applied mag-
netic flux, but it can be harder to control the transversal
term via an external parameter (Makhlin et al., 2001).

In (Montes et al., 2009), a hybrid quantum circuit,
a system that couples a charge and a flux qubit, as
schematically shown in Figure 7, has been studied. This
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exhibits an effective interaction due to a Josephson junc-
tion (a device with nonlinear inductance and no energy
dissipation) that binds them. This system has been pro-
posed in order to control the transversal term of the flux
qubit with the charge qubit. The interaction between
the qubits gives rise to an effective 0, ® o, geometric
term with a strength that allows the realisation of con-
trolled qubit gates for quantum computing (Montes et
al., 2009). Aside of their potential use as the building
blocks of quantum computers, superconducting qubits
are fundamental in the understanding of basic macro-
scopic quantum coherence related phenomena (Makhlin
et al., 2001; Clarke & Wilhelm, 2008).

Other solid-state based proposals involve quantum in-
formation processing with large nuclear spins in GaAs
semiconductors (Leuenberger et al., 2002), nanotubes
and fullerenes (Ardavan et al., 2003), molecular mag-
nets (Leuenberger et al., 2001), single molecule ar-
rays (Reina et al.,, 2004), graphene quantum dots
(Trauzettel et al., 2007), and organic polymers (Mu-
jica et al., 2009).

On a different front, there are fundamental coherence
control experiments being performed in soft-condensed
matter nanostructures, where there have been some re-
cent breakthroughs. In particular, regarding the quan-
tum coherence of biomolecular excitons, over the past
few years has been argued that quantum coherent dy-
namics at the initial stages of photosynthesis in com-
plex biomolecular structures promote the efficiency of
energy transfer from the light-harvesting antenna com-
plexes to the chemical reaction centres (Brixner et al.,
2005; Herek et al., 2002). This hypothesis has been
recently boosted by experimental results which reveal
long-lived quantum coherent excitonic dynamics in the
energy transfer among bacteriochlorophylls in photosyn-
thetic complexes (Engel et al., 2007; Lee et al., 2007).
This said, it is often claimed that coherent dynami-
cal processes in nanostructures for quantum information
processing are severely hindered by non-Markovian de-
coherence (Weiss, 2008; Zurek, 2002; Alicki et al.,
2002; Makri & Makarov, 1995). By using a numeri-
cally exact real-time path-integral approach (Makri &
Makarov, 1995), Thorwart et al. (Thorwart et al.,
2008; Eckel et al., 2009) have shown that quantum co-
herence of excitons created in photosynthetic biomolec-
ular complexes can be sustained over exceedingly long
times due to a constructive role played by the non-
Markovian surrounding environment. They provided ev-
idence that a sluggish quantum bath helps to sustain co-
herence in a single pair of Forster coupled excitons com-
pared to a Markovian environment. Furthermore, it has
also been shown that the quantum entanglement of ex-
citations in two pairs of coupled chromophores is more

stable against decoherence generated by a slow bath, and
that the entanglement robustness persists up to surpris-
ingly high temperatures (Thorwart et al., 2008). These
results can explain why naturally existing, correlated pro-
tein environments help to maintain electronic coherence
in light-harvesting complexes and could prove crucial in
the artificial design of robust multipartite biomolecular
entanglement or quantum memories (Kroutvar et al.,
2004; Rabi et al., 2006) for the control and conditional
dynamics of qubits.

Gating and decoherence time scales

The figure of merit M = Tyec/Tyase for comparing some
of the different technologies currently used in quantum
information processing is given in Table I. The ratio M
gives an estimation of the largest number of elementary
operations that can, in principle, be performed on the
register states before decoherence takes over.

The gating time Ty4¢e is the minimum time required
to execute an elementary gate. This has been estimated
in Table I as h/AFE, where AE is the energy splitting
between the qubit states |0), and |1). 7gec is the corre-
sponding qubit phase coherence time.

VI. CONCLUSIONS

A concise review of some of the basic concepts in the
field of quantum information and quantum computation

Quantum hardware 7gaie (8) Tgee (s) M
Trapped ions @ 107° 10T 107
Optical cavities® 107'*  10=°  10°
Nuclear spin® 1073 10% 107
Cavity QED? 107° 10—2 10
Electron spin® 107 1072 10t
QDs excitons’ 107 10710 104

“Blatt & Wineland, 2008; Monroe et al., 1995; Sackett et
al., 2000

YBloch, 2008; Mandel et al., 2003

“Jones et al., 1998; Luenbeerger et al., 2002

dTurchete et al., 1995; Rauschenbeutel et al., 1999
“Vrijen et al., 2000; Kroutvar et al., 2004

fBorri, 2001; Birkedal et al., 2001; Robledo et al., 2008

TABLE I Characteristic ‘gating,” and dephasing time scales
for comparing different physical systems currently used as
qubits. The figure of merit M gives an estimation of the
number of qubit operations that could be realised on a qubit
register before it decoheres.
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has been presented. Quantum registers, through to the
universal gate for building quantum circuits that are uni-
versal for quantum computation, were introduced. It has
been shown how two-qubit gates suffice for quantum com-
putation, and the power of the quantum circuit represen-
tation for entangling and disentangling quantum states
was emphasised, in terms of both local and global control
quantum computing. This led to a discussion of the no-
cloning theorem and its interesting implications. The
basic formulations of one-way quantum computation,
and holonomic or geometric computation—alternative
approaches for quantum computation—were also intro-
duced. Following this, the power of quantum entangle-
ment as a communication resource was highlighted in or-
der to describe some practical applications, such as quan-
tum teleportation, quantum cryptography, dense coding,
and quantum data compression. The problem of entan-
glement quantification was discussed and some examples
of entanglement measures were given. Deutsch’s concept
of quantum parallelism was introduced in order to gain
insight into the potential for efficiently solving certain
classically intractable algorithms. After this, two pro-
cesses fundamental to QIP, decoherence and ‘recoher-
ence’ (e.g., quantum error correction), were discussed.
The main qubit systems currently employed for the pro-
cessing of quantum information were also described.

As was shown, there have been some successful demon-
strations of few-qubit manipulations, and there exists a
vast and still growing range of proposals for realizing
quantum information processing. This intense experi-
mental and theoretical research activity has been ongo-
ing for more than a decade. The way forward is still very
open—the key routes to few-qubit and large-scale QIP,
which could well differ, have yet to be identified. In this
respect, proposals and implementations of hybrid sys-
tems that combine the so-called stationary (matter) and
flving (photon) qubits seem a perspective worth pushing
forward.

Whether the task of building a true (large scale)
quantum computer is ever going to be achieved remains
an open question. The final goal of building a quantum
computer will be extremely challenging, with basic
physical mechanisms needing to be addressed and fully
understood. As has been shown, due to their contact
with their reservoirs, the interacting qubit networks for
QIP are subjected to irreversible dissipation mechanisms
which spoil the required coherent qubit dynamics. Such
hardware-dependent noise sources are a major hurdle
that have to be understood and overcome if the dream
of efficient large scale quantum computing is to become
a reality.
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APPENDIX A: The no-cloning theorem

The no-cloning theorem (Wootters & Zurek, 1982)
is a consequence of the fundamental principles of quan-
tum physics. It leads to interesting applications such as
quantum cryptography (see Subs. IILF). To prove the
“no-cloning theorem” it suffices to note that, in order to
generate a copy of an arbitrary quantum state |¥), we
should be able to realise a unitary transformation U that
produces the evolution U(|T)|0)) = |T)|T). Consider
the state [T’} such that |[¥’) # |¥). Hence, U(|T'}]0)) =
|0y ['). Next, we make |®) = (|¥) + |¥'))/v/2, ob-
taining U(|®) [0)) = (%) [¥) + [¥) |¥))/V2 # |®) |®),
which fails the cloning operation since U must not depend
on any chosen |®). From this we can state that unless
we know beforehand the state of a qubit (which is to be
represented by classical information), it is impossible to
generate copies of a quantum state faithfully.

APPENDIX B: Cluster and graph states

A cluster state is a type of highly entangled state of
multiple qubits. Cluster states are generated in lattices
of qubits with Ising type interactions. A cluster C is a
connected subset of a d-dimensional lattice, and a cluster
state is a pure state of the qubits located on C'. They
are different from other types of entangled states such
as GHZ states or W states because it is more difficult
to eliminate quantum entanglement (via projective mea-
surements) in the case of cluster states. Another way of
thinking of cluster states is as a particular instance of
graph states, where the underlying graph is a connected
subset of a d-dimensional lattice. To define a cluster
state, the eigenstates |U) 5 = o¥ |G) of K¢, according to
the eigenvalues Uy, are introduced:

KZ|U)g=(-1)"|U)g, (B1)

or, in terms of the symmetric T' (N x N) matrix of ele-
ments

if {a,b} € E,

otherwise.

Ty = { (1) (B2)

For this we define a neighbourhood as the set of adjacent
vertices to a given vertex, and denote it as
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N, := {be V|[{a,b} € E}, (B3)

for a given vertex ¢ € V. The number of neighbours
|Ng| is the vertex grade of vertex a (Raussendorf &
Briegel, 2001). Thus, we write for the cluster state

K=o [[e") = ot @ ol = ot @ol". (B4)
beVv

A graph G = (V, E) is a collection of vertices V, and a
set of edges (one-dimensional line segments joining two
vertices) E. A graph state is usually represented by a
two-dimensional diagram, where each vertex is repre-
sented by a point and the edges by lines that join two
vertices. Formally, a graph state is defined as a pair

‘G) - (VE) = H Uab |+>®V, (B5)
{a,b}eE

where the operator U, is the interaction between the
two vertices (qubits) a,b

0
0
Ugp = 0 , (B6)

oo o=
(e R el S an ]
o OO

-1

and |4+) = %(lO) +[1)). An alternative and equivalent

definition is as follows. Define an operator K& for each
vertex a of G:

Ki=ol" ] o, (B7)
beEN,

Where N, is the neighborhood of a (the set of all b such
that (a,b) € E), and o; are the pauli matrices. Then, the
graph state |G) is defined as the simultaneous eigenstate
of the N = |V| operators {K%},cy with eigenvalue 1:
K7 1G)=1G).

APPENDIX C: Examples of QEC codes
1. Example 1: Bit-flip o,-error-correction

Suppose ) has three qubits, and a has two qubits. Let
M, be the bit-flip error generator o,. In this case, there
are two orthonormal recoverable states: |000), and [111},
thus dim(RH) = 2. The state |®) = « |000) + 3[111) is
a general recoverable state of ). The noisy environment
entangles the qubit register as follows:

leo) (o |000) 4 3 [111)) + |eq) (a [001) 4 3 [110))+
lea) (ex [010) 4+ F]101}) + |es) (e |100) + 5 [011}). (C1)

In this case, the syndrome extraction A consists of the
following four ¢NOT gates, with “Q” (“a”) as the con-
trol (target) system: CNOT14CNOT24CNOT15CNOTg5. Af-
ter this A-operation, the whole register “Q + E + a” is
left in the state

1¢0)100) (a]000) + BIT11)) + [ex)[01) (a]001) + 4]110)+
le2)|10) (2|010) + B|101)) + |es)[11) («|100) + 3|011})).
(C2)

Next, a measurement of the ancilla a is performed.
Hence, conditional to the measurement result, the fol-
lowing simple operations over the QQ-qubits project back
the system onto the noise-free state |®): “do nothing,”
O’;S;l)7 O‘;(E), 05%3), if the ancilla measurement gives 00, 01,
10, or 11, respectively. As said, in the above procedure,
the measurement step can be avoided by using Toffoli

gates (see below), but in this case, with “a” (“Q”) as the

control (target) (Steane, 1996(A, B, C)).

2. Example 2: Phase-flip o.-error-correction

A single-phase-error-correcting-code that uses three
qubits has the following two quantum codewords (encod-

ing)

H(|000)) = 5(10) +[1)) ® J5(10) +[1)) ® —5(10) +[1))
= |000) (C3)
H(|111)) = (10) - 1)) ® 75(10) — 1)) ® 5 (10) — [1))
= (111 (C4)

Next, let’s illustrate how to perform QEC without re-
alising the final ancilla measurement operation, i.e., by
means of quantum gates only. Suppose one is given the
state |®) = a|0) + B|1) (system “Q”) that needs to be
protected against phase decoherence (in this example it is
assumed that only single-qubit dephasing errors occur).
In so doing, an ancilla “a” of two qubits is introduced.
Next, the register “Q +a” is encoded following the code-
word given before. For illustrative purposes, let’s assume
that the environment interaction ‘dephases’ the second
qubit only. Then, the decohered state becomes (the nor-
malisation factor 27%/2 has been ommitted)

a(]0) +[1))(10) eo) + [1) lex))(10) + 1))+
B(10) = [1))(10) leo) — [1) e1))(10) = [1)) . (C5)

The syndrome extraction A (decoding) is then built
from two CNOT gates and a Toffoli gate, as shown
in the schematic below, thus correcting the phase er-
ror and recovering the original state |®). Note that
while |®) is a noise-free state, the final ancilla state
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|u), = [00) (leo) + [e1)) + [10) (Jeo) — |e1)) becomes en-
tangled with the environment.

@) |©)

oo {HH e
0) —&-+{H}-Puase DrconerENcEH HHD |
1
10) —&-{H] —{H]
CODEWORD SYNDROME
EXTRACTION

3. Example 3: o, 0., & oy0,-error correction

The construction of codes following the above recipe
are referred to in the literature as CSS codes (for Calder-
bank, Shor, and Steane). This method leads to a single-
error-correcting quantum code that has the following pa-
rameters: [[ n,2k — n,d || = [[7,1,3]]. The notation
indicates that the length of the codewords is n, there
are 225" orthonormal quantum codewords, and d is the
‘minimum distance’ of the code (the minimum number of
places in which each word differs from all others). Hence,
the prescribed code requires 7 qubits in order to store and
protect a single qubit. The simplest CSS code is obtained
from the classical Hamming code, and has the following
two orthogonal codewords (Steane, 1996(A, B, C))

lco) = 0000000)+[1010101)+[0110011) +|1100110) +
0001111)+|1011010)+]0111100)+|1101001) ,
G§:1111111) ‘C(J) . (CG)

le1)

The superscripts indicate that the bit-flip operation must
be performed on each qubit of each single codeword. It is
worth pointing out that the above description is not the
most general possible theory of QEC. The most general
treatment of QEC codes has been developed in (Gottes-
man, 1996; Knill & Laflamme, 1997; Calderbank
et al., 1997). It turns out that there are more effi-
cient quantum code constructions. In fact, Laflamme
et al. (Laflamme et al., 1996) and Bennett et al
(Bennett et al., 1996) have provided a 5-qubit single-
error-correcting code that produces the same control as
CSS’s code, but with the advantage that it requires only
5 qubits to do the job. This [[5,1,3]] code has been re-
ferred to as a “perfect quantum code” (Laflamme et al.,
1996; Bennett et al., 1996; Calderbank et al., 1997).
Hence, an arbitrary quantum state |®) = «|0) + 3|1)
that is encoded by using 4 additional ancillary qubits
(prepared in the state |0)), using a [[5,1,3]] encoding,
can evolve in the presence of a general quantum noise

(04, 0y, and —io.-errors) in such a way that by the end
of the computation it can be extracted completely free

of noise from the 5-qubit system: that is, if at any stage
of the computation, something ‘wrong’ happened to its
coherence, the encoding guarantees that by the end of
the computation, |®) is error-free, and completely disen-
tangled from the environment!
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