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A linear functional is said to be weakly-regular if it is not a finite sum of Dirac masses and their
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Introduction

Let u be a non-zero linear functional satisfying the
following first-order linear differential equation

(Eu) + Fu=0 (%)

where E and F are non-zero polynomials, with E a
monic polynomial.

When the linear functional u is regular then it is said
to be semiclassical [6,7].

Notice that a linear functional u is said to be regular
[4, 7} if there exists a monic polynomial sequence (MPS)
{Bn}n>o where deg B, =n, n > 0, such that

(,BnBm) =rpndpm, n, m>0, r #0, n>0.

Besides regular functionals, the equation (*) can have
as solutions linear functionals defined as a finite sum
of Dirac masses and their derivatives. In such a case
there exists a non-zero polynomial ¢ such that ¢u = 0.
More precisely, if u = Y7_, 2?‘:51 M; ;69 (z—x,), then
Hx) = H:zl(a: — x;)*. Obviously, such linear function-
als u are not regular. For this reason, we introduce in a
natural way the concept of weak-regularity linear func-
tional u as follows.

A non-zero linear functional v is said to be weakly-
regular if for a polynomial ¢ such that ¢u = 0, then
¢ = 0. Regular linear functionals are weakly-regular (in
general the converse is not true, see Remark 1.6).

In this paper, we are dealing with weak-semiclassical
linear functionals, i.e., when the linear functional u sat-
istying (x) is weakly-regular. The aim of our contri-
bution is to give essentially a necessary and sufficient
condition for the weak-regularity of a non-zero linear
functional u satisfying (x).

The paper is organized as follows. In Section 1, we
introduce the basic notations and tools that will be
used througliout the paper. Next, we define the weak-
regularity of a linear functional and we analyze some
properties like the stability by the shifting perturbation
of the linear functional as well as the left multiplication
of the linear functional by a polynomial. We conclude
this section introducing the notion of admissible pair of
polynomials. In section 2, our main results are proved.
We obtain a necessary and sufficient condition in order
to a non-zero linear functional u satisfying a first-order
linear differential equation (Eu)’ + Fu = 0 be weakly-
regular. This yields the definition of weak-semiclassical

functional. In section 3, we prove (Proposition 3.2)
that the classical functionals are the only weakly-regular
functionals satisfying (Eu) + Fu = 0, where £ and F'
are two polynomials, F monic, degE < 2, deg F = 1,
and the pair (E, F) is admissible. This result general-
izes one by Geronimus on classical functionals, see [5].
In section 4, the results of section 3 are used to char-
acterize semiclassical polynomial sequences, which are
orthogonal with respect to regular functionals v given
by Au = ABv, where A and B are two monic polynomi-
als, A € C*, and v is a classical linear functional.

1. Definitions and background

Let P be the linear space of complex polynomials in
one variable and [ its topological dual space. We de-
note by {u, f) the action of u € P/ on f € PP and by
(W)em = {u,(z — )™}, n > 0, the moments of « with
respect to the sequence {{z — ¢)"}n>0. In particular, if
¢ = 0, then we will denote (4)n 1= (#)on, n > 0.

We define the following operations in P, For any lin-
ear functional u, any polynomial k, and any ¢ € C, let
Du =/, hu, (x ~ ¢) u, and o(u) be the linear func-
tionals defined by duality

(W, fra=—(u, [, feP,
(hu, £ = (u, hf), fEP,
(z— ), f) = (u, 0.0, fEP,
(o(u), )= (w, o(f)) f€P,
where 8()(@) = L1 and o(1)(a) = 7(a%). No-
tice that
f@ow) = a(f@®), fER.  (L1)

Let {Bn}n>0 be a monic polynomial sequence (MPS),
degB,, = n, n > 0, and {un}n>o its dual sequence,
un € P, n >0, defined by {tun, Bm) :=dpm, 7, m >0,
where 8, r, is the Kronecker symbol.

The linear functional ug is said to be the canonical
functional associated with the MPS {Bp},>o0.

We remind the following results [2,4, 7].

Lemma 1.1. For any v € P’ and any integer m > 1,
the following statements are equivalent

i) {u,Bm-1) #0, {(u,Bn)=0,n>m.
ii) Thereexist A, € C,0<v<m—-1,An1 #0
such that w= Y"1 A u,.

v=>0
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#) = 1). Let ¢ be a polynomial such that ¢u = 0.
We can always write ¢(z) = A(z?) + zB(a?) where A
and B are polynomials. For every p € P, one has

0 = < ¢u,p(z?) >=< u, ¢(z)p(z?) >
= < u, A(a?)p(z?) >=< o(w), Alz)p(z) >
= < Ao(u),p{z) > .
Then, Aco{(u) = 0. So, from the weak-regularity of o(u)
we deduce A = 0. On the other hand,
0 = < ¢u,zp(z’) >=< u,z(z)p(z%) >
= < u, 22 B(z®)p(x?) >=< o(u), zB{z)p(x) >
= < zBe(u), p(z) > .

Then, zBo(u) = 0. So, B = 0 taking into account the
weak-regularity of o(u). Thus ¢ = 0. 0

Notice that if © is a symmetric regular linear func-
tional then xru is a weakly-regular functional that is not
regular.

1.2, Admissibility pair of polynomials. Let (E, F)
be a pair of polynomials, where E monic, deg E = t,
deg F =p > 1, and s(E, F) := max{t—2, p—1). Notice
that (s(F, F) = 0, because deg F' > 1). For this pair of
polynomials, we introduce

¢ the admissibility coefficients
An(E, F) = nECT2(0)—(s+2)FF(0), n > 0; (1.6)
ee the sequence of polynomials
Fp=F—-(m-1E, mZ>1 (1.7)

Definition 1.8, The pair (F, F) is said to be admissible
when its admissibility coefficients satisfy

An(B,F)#0, n>0. (1.8)

From an admissible pair of polynomials, we can deduce
other admissible pairs. Indeed, we have the following
result.

Lemma 1.9. When (E, F) is admissible, then for each
integer m > 1, we have

i) degF >1, where Fp, =F~(m-1)E', m > 1.
i) s(E,Fy)=s(E,F):=s.
iii) The pair (E, F,) is admissible and

An(E F, ) = An+(m—l)(s+2)(E1 F), n 2 0.

Proof. Assume there exists an integer, m > 1, such that -
F.. is a constant polynomial. Since degF > 1, then
m > 2, In this case, s =t - 2 = p — 1 and the coefli-
cient of z? in Fy, is (p!) "1 F®(0)} — (m — 1)t = 0. Then
Aim—1%(E, F) =0, and this contradicts the admissibil-
ity condition of the pair (E, F'). Hence, i) holds. The
admissibility condition of the pair (E, F) yields

deg(F,,) = max(p,t—1)=s5+1, m>1 (1.9

Thus,
s(E, Fin)
Hence, ii) holds.

=maz(t —2,s) = 5.

From i), ii}, and (1.6), one has
An(E, Fp) = nECT2(0) — (s + 2)Fs+H)(0)
= (n+ (m—1)(s +2)) E#*2(0)
— (5+ 2)FleT(Q)
= Apiim-1)(s+2)(E, F), n>0.

Thus, the admissibility condition of the pair (E, Fy,)
follows from the admissibility of the pair (E, F). Hence,
iii) holds. u

For each fixed (a,b) € C* x C, we can consider the
shifted pair (&, F) given by

E(x):=a"'Elaz +b) ; F(z):=a''Flaz +b).

(1.10)
Let denote § = max(t - 2, § - 1), where £ = deg(£) and
7 = deg(F’). Thus

i=t P=p 35=3s. (1.11)
As a consequence the following result holds.

Lemma 1.10. If (E, F) is admissible, then (E,F) is
also admissible. Furthermore,

AE F)=a*t?2 AL (E F), n >0, (1.12)

Proof. If (a,b) € C* x C, then
Ap(E, F) = nECFD(0) — (s + 2)FEH10)
— as+2—t(nE(s+2)(0) —(s+ 2)p(s+1)(0))
=a*t AL (B, F), n > 0.
Hence, i) follows. O

When the pair of polynomials (F, F) is admissible
and deg £’ > 1, we deduce the following results.
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Lemma 1.11. Let (E, F') be an admissible pair of poly-
nomials, where deg ¥ > 1, and ¢ is a zero of . Then
for each integer m > 1, we get

i) degl:?tn > 1, where E,, = F — (m — 1)6.(E).
il) s(E,Fy) = s(E,F) = s.
iii) The pair (E, Fy,} is admissible, and

An(EB, Fp) = A1 (B, F), n>0.

Proof. Assume there exists an integer m > 1 such that
ﬁ‘m is a constant polynomial. Since deg 7" > 1, then
m > 2. In this case, s =t — 2 = p — 1 and the coefli-
cient of z? in Ey, is (p!)"*F®(0) — (m — 1) = 0. Then
Ap-1(E,F) = 0, and this contradicts the admissibil-
ity condition of the pair (E, F'). Hence, i) holds. The
admissibility condition of the pair (£, F') means that

deg(F) =max(p,t —1)=s+1, m=>1 (113)
Thus,
$(E, Fp) = max(t—2,5) =s, m>1
Hence, ii} holds. For m > 1, from i), ii), and (1.6) one
has
AL(E, Fr) = nE@D(0) - (s + 2)E1(0).
Since t < s + 2, it follows that

Es+2) (s +2)(90(E))(s+1).

Thus,

AE Bp) = (n+m —1DEEYD(0) — (s + 2)FEEHY(0)
= An+m—1(E,F),~ n>0.

Hence, iii) holds. n

For the sequel, we need the following results.

Lemma 1.12. Let (E,F) be a pair of non-zero poly-
nomials, where E monic, degE > 1. If E and F are
coprime, then

i) There exists an integer p > 1 such that E and
Fpn=F — (m — 1)E’ are copritue, . > ji.

ii) For each zero ¢ of E, there exists an integer
¥ > 1 such that E and F,, = F — (m — 1)0.(E)
are coprime, m > 9.

Proof. Assume that for each integer y > 1, there exists
an integer m, > p such that £ and F — {(m, — 1)E’
have a common zero. Then there is a zero ¢ of F and
two different integers m,, > 1, v = 1,2 respectively,
such that (F — (m,, ~ 1)E')(c) = 0, v = 1,2. This

yields F'{c) = 0, that contradicts the fact that ¥ and F
are coprime. Hence, 1) holds. Let ¢ be a zero of E. Two
cages must be analyzed.

Casel. Let assume ¢ is a simple zerc of E. Sup-
pose that for each integer ¢ > 1, there exists an in-
teger my > ¥ such that E and F — (my — 1)8.(E)
have a common zero. Then it will exist a zero ¢ of E
and two different integers myg, > 1, ¥ = 1,2 such that
(F — (mg, — 1)8:.(E))(c) = 0, v = 1,2. This leads to
F(¢) = 0, in contradiction with the fact that E and F
are coprime.

Case2. c is a zero of E with multiplicity at least two.
For every zero £ of E, we have

Fn(€) = F(€) — (m — 1)0(E)E) = F(§) #0, m > 1.
Hence, ii) holds. O

As a consequence, for a pair of non-zeroc polynomials
(E, F), where E is a monic polynomial, deg F > 1, and
where E and F are coprime, we can associate the integer

p(E, F):=min{k > 1: Eand F,, are coprime,m > k}.
(1.14)

2. Main Results

Let {E, F) be a pair of polynomials, with E monic,
degE =t, degF = p € NU {00}, and s := s(E, F).
Consider the functional equation

(Eu) + Fu=0, uelP™ (2.1)

Lemma 2.1. Let u € P'* a solution of (2.1). When the
pair (E, F) is admissible and the (s+1)— first moments
(w)o, ..., (u)s are fixed, then u is unique.

Proof. The admissibility condition of the pair (E, F) re-
quires that p > 1. Then, s > 0. The functional equation
(2.1) is equivalent to the following recurrence relation
for the corresponding morments

“’f An (E,F)

S Wty =0, 120, (2.2)

r=0
where A, (E,F) == nE®(0) — vF-D(0), 0 < v <
s + 2. Suppose that v € P'* is other solution of {2.1).
Then, the linear functional w = v — u satisfies

a+2 An,u E,F
3 (B, F)

V' (w)n+u—] = 0’ {1 2 01

v=0
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where F), = F — (v —1}E’. Notice that A’'E — AF, #0,.
Otherwise, A’E = AF,,.. Since E and F, are coprime £
divides A, a contradiction. Taking into account ¢ is a
polynomial of minimal degree such that ¢u = 0 then
¢ = AEY divides E¥"1(A'E ~ AF,). So, E divides AF,,.
But FE and F, are coprime then £ divides A, a contra-
diction. Thus,

#(x) = E*(z).
From (2.5) and from (2.1) , we get

EF g = 0.

Since F and F), are coprime, there exist two polynomials
S;, i = 1,2 such that

Sl(m)E(.’E) + Sz(fE)Fk(m) =1.
Then,
S1(2)E*(z) + Sa(z) E* ! (z) Fi() = EF Ya).

Multiplying by u, we get E*~1ly = 0. This contradicts
the fact that ¢ = E* has minimal degree and satisfies
¢u = 0. Hence, the weak regularity of u follows. (]

Ass. F and F are coprime and p(E, F) > 2.

Lemma 2.8. Let u € P'* satisfy (2.1), with pseudo-
class t > 1, E and F coprime polynomials, and
#(E, F) = 2. Then the following statements are equiva-
lent.

i) u is weakly-regular.
i) E#(EFI=1y o,

Proof. From the assumption, let consider the linear
functional v = E#EF)=ly From Property 1.5, i), u
is a weakly-regular linear functional if and only if v £ 0
and v is weakly-regular. From (2.1), when v # 0, it
satisfies

(E'U)' -+ F“(E‘F)U =10,

where E and Fp(E‘F) - (m - l)E" = Fm+u(E,F]—1 arc
coprime, m > 1. Since E and E' + F;(g py = Fy(5,r)-1
are coprime, then the pseudo-class of v is ¢ > 1. There-
fore, from Lemma 2.7 v is weakly-regular. Hence, u is
weakly-regular if and only if E#(E:F)-1y £ 0, 3

Ao 3. E and F are not coprime. Let denote A the great-
est common divisor of E and F, with £ = AE and
F = AF, deg & > 1. Moreover, we can associate with
the pair of polynomials (£, F) the integer u(E, F).

Proposition 2.9. Let u € P™* be a linear functional
such that (2.1) holds with pseudo-class t > 1, and G be
the greatest common divisor of E and F, with E = GE
and F = GF. The following statements are equivalent.

i) u is weakly-regular.
ii) (i), If deg E = 0, then deg F' > 1 and Gu # 0.
(il). Ifdeg £ > 1, then GE#(EF)~-1y A4 q,

Proof. Consider v = GE#EF =1y The linear func-
tional « is weakly-regular if and only if v # 0 and v
is weakly-regular. But, if v # 0, then
(EU)’ + ‘Fy’u(é,fj‘)v =0,

where F and FF(E:,F) —~(m — })E’ = Fmﬂ(éf)*l are
coprime, m > 1. Since F and £/ + Fp(é,ﬁ) = Fﬁ(ﬁ,ﬁ)q
are coprime, then { = degE is the pseudo-class of v.
Two cases appear.

(i). £ = 0. According to Lemma 2.6 the non-zero linear
functional v is weakly-regular if and only if deg # > 1.
In this case, u is weakly-regular if and only if Gu £ 0
and deg F' > 1.

(ii). # > 1. The non-zero linear functional v is weakly-
regular, from Lemmas 2.7 and 2.8. In this case, u is
weakly-regular if and only if GEREF) -1y = . O

Remark 2.10. When the linear functional » solution of
(2.1) satisfies (u)p # 0, and is weakly-regular, then we
must have deg £ > 1. If not, F(z) = A € C, then
(Eu) + Au = 0 holds. So, from {(Eu) + Au,1} = 0,
we get AM{u)g = 0. Hence, A = 0, and, as a consequence,
Evw = 0. This contradicts the weak-regularity of u.

2.2, Weak-semiclassical and semiclassical func-
tionals. Let introduce the following definitions.

Definition 2.11. The linear functional 4 is said to be a
weak-semiclassical functional when it is weakly-regular
and satisfies (2.1), where the pair (E, F) is admissible.

Notice that every semiclassical linear functional u is
also regular [7]. A weak-semiclassical functional u sat-
isfies an infinity number of first-order linear differential
equations: for x € P, u also fulfils

(Eru) + Fru =0,
with Ey(z) = x(z)E(z), and Fi(z) = x(z)F(z) —
x'(z)E(z). So, if s = 8(E,F) = max{t — 2,p — 1)
and taking into account the admissibility condition of
the pair (E,F), i.e Ag(E,F) # 0, then we get 51 =
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s(Ey, F1} = s + g. Hence, we can associate with the
weak-semiclassical functional © a subset h(u) of nonneg-
ative integers such that m belongs to hk(u) if and only
if m = s(Es, F») where (Es, F») is an admissible pair of
polynomials satisfying (2.1).

Definition 2,12. The minimum element s of h{u) is
said to be the class of u. When s = 0, the weak-
semiclassical (resp. semiclassical) functional is called
weak-classical {resp. classical) functional.

Lemma 2.13. Let u be a weak-semiclassical functional
such that

(Esu)'+Fu =0, with s; = max(¢;,—2,p;~1), i=1,2.

Let denote by E the greatest common divisor of E; and
E». Then, there exists a polynomial F' such that

(Eu)' + Fu =0,

with s = max(¢ —2,p—1) = §; — &; + ¢, 1 = 1,2, where

t=deg F and p = deg F.

Proof. See in [8] Lemma 3.3 and replace regularity by
weak-regularity. O

Proposition 2.14. For each weak-semiclassical func-
tional u, the pair (E, F') that realizes the minimum of
h(u) is unique.

Proof. See in [8] Proposition 3.4 and replace regularity
by weak-regularity. .

Proposition 2.15. The class of the weak-semiclassical
functional u satisfying (2.1) is s if and only if

H(IF(C)+E’(c) |+ | (u,0.F + 62E) | ) >0,

where ¢ belongs to the set of zeros of E.

Proof. See in [8] Proposition 3.5 and replace regularity
by weak-regularity. O

Proposition 2.16. Let u be a weak-semiclassical func-
tional satisfying (Ew) + Fu = 0, where E monic,
t=degE, p=degF > 1, and 5 = max(t — 2,p — 1).
The following statements are equivalent.

1) The pseudo-class of u Is t.
i) The class of u is s.

Proof. Tt is a straightforward consequence of Lemmas
2.3 and 2.13. O

Remark 2.17. Let u be a weak-semiclassical functional
satisfying (2.1}, with deg £ > 1. For each zero ¢ of E
and an integer m > 1, let consider the following linear
functional

)mAl

v{m,e) = (z ~¢ .

Obviously, v(m,¢) is weakly-regular and satisfles
(Ev{m, e)) + Emu(m,c) = 0.

From Lemma 2.9, the pair of polynomials (F, F) is ad-
missible and has associated a nonnegative integer num-
ber s. Thus, there exists an integer number & > 1 such
that (v(k,c}), # 0. Otherwise, one has {(u, (z~¢)™") =
0, m > 1. Then v = 0, a contradiction.

3. Classical Case.

It is well known that if s = 0 and the linear func-
tional » is regular then we recover the classical function-
als (HHermite, Laguerre, Bessel, and Jacobi) [1,9, 10]. By
a shift we get the following canonical classical function-
als

Ci. E(z)=1, F(z) = 2zx.
The functional u is the Hermite functional denoted H.
Cao Elxy=z, Flz)=z—a-1.

The functional u is the Laguerre functional denoted
L{a). Tt is regular if and only if @ # —n, n > L.

Cs. E(z) = 2%, F(z) = —2(ax + 1).

The functional u is the Bessel functional denoted B(a).
It is regular if and only if o # —g, n > 0.

Cy E(z)=2"-1, Flz)=—(a+f+2)x+a— 3.

The functional u is the Jacobi functional denocted
J (e, ). Tt is regular if and only if & # —n, 5 # —n,
andoa+F#-n—-1n>1

Notice that the polynomials (E, F') in the above four
canonical classical cases, C;, i = 1,...,4, are coprime,
m > 1.

In the theory of first-order linear differential equa-
tions, the weak-regularity of the functional could reach
its regularity, what is true here. First, we need to show
the invariance of the weak-semiclassical character by
shifting.
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Lemima 3.1. When u is a weak-semiclassical functional
of class s, satisfying (2.1}, then @i == (hy-1 07_p)u is also
a weak-semiclassical functional with the same class s. It
satisfies (B)' + Fii = 0, where E(z) = a"tE(az + b)
and F(z) = a'~*F(az + b).

Proof. The weak-regularity of @ and the admissibility
conditions of the pair (E,F) follow from Property 1.5,
b} and Lemma 1.10, respectively. Finally, for the func-
tional equation and the class of &, see {1]. [l

Proposition 3.2. Let v be a linear functional satisfving
(Eu) + Fu =10, where E monic, degE < 2,degF =1,
and the pair of polynomials (E, F) is admissible. The
following statements are equivalent.

i) u is regular.
ii} For each integer m > 1, E and Iy, are coprime.
iii} w is weakly-regular.

Proof. 1) = 1i)=> iii). It is straightforward.

iii) = 1i). It is sufficient to show that u is regular. So
the following four situations must be analyzed:

Cy. deg{FE} = 0. We can write E{x) = 1 and
F(z) = exr+d, ¢ # 0. The shifted functional v =
{(hq-107_p)u, where (@,b) € C*x C such that a® = (2/c)
and b = —(d/c), satisfies

v+ 220 =0, (v)p= L (3.1)

The Hermite functional is the unique solution of (3.1).
Hence, u is regular as the shifted of a regular functional.

Cs. deg(E) = 1. We can write E(z) = z + & and
F(z) = ex+d, c# 0. Let v = (hy—: o 7_p)u, where
a= (1/¢), b= —& and oo = ¢£ —d — 1. The functional
v satisfies

(v +(z-a-1lv=0, (v)o= 1 (3.2)
Applying (3.2) to 2™, n > 0, we get
Whn+1= = (a+)](¥)n, n20, (v)o= 1. (3.3)

Notice that o # —n, n > 1. Otherwise, there exists
an integer ng, ng = 0, such that @ = —ng — 1. From
(3.3), one has x™*!y = 0. This contradicts the weak-
regularity of v, as the shifted of a weakly-regular func-
tional. Therefore, v is the Laguerre functional. Thus, u
is regular.

Cs. deg(E) = 2 and E has a double zero. We
can write E(z} = (z + £)? and F{(r) = cz + d. Since

deg({F) = 1 and taking into account (K, F'} is an ad-
missible pair we get c#n, n > 0. If a = —{¢/2), then
—d

a# ~(n/2), n > 0. Let a = % Then, e # 0.
Otherwise, the functional v = T¢u satisfies

(z%v) — 20mv = 0, (3.4)
and applying (3.4) to z™, n > 0, we get (n+2a)(v)ne1 =
0, n > 0. Since o« # —{n/2), n > 0, then zv = 0, and
this leads to a contradiction. So, it is possible to con-

sider the functional v = (h,-107_p)u, where g = c—g——;—E

and b = —£. The shifted functional v satisfies
(%) - ez + 1w =0, (v) = 1, (3.5)

where a # —(n/2), n = 0. Thus, v is the Bessel func-
tional and u is regular.

Cy. deg(E) = 2 and E has two different zeros. We
can write E(x) = (z + &)z + &), with & # &, and
Flzy=cr+d, wherec #n,n > 0. Let v = (hy-10

& — &

T_p)u, where ¢ = =—2= and b = 51dj‘z_&z.V\l’e take
o = elb—a)+d—2a and § = _c(a+b)2+d+2a‘
a

The shifted fungtional v satisfies
((xz—l)v)’—I—(—(a+ﬁ+2)x+a—ﬁ)v =0, (v)o =1, (3.6)

witha+ 5 =—c—2# —n—-2n>0. Applying (3.6)
to(z— 1" n>0

(n+a+ﬁ+2)'vl.n+l - _2(’n+,3+1)’l)1,n, n >0, (37)

Onr the other hand, applying (3.6} to (z + 1), n > 0,
we get

(nta+B8+2)v_1n41 = 2(nta+1v 14, 7> 0. (3.8)

Suppose there exists an integer ng, ng > 0, such that
8 = —ng—1 (resp. o = —ng — 1}. Since a +
B # -—n—2n >0, from (3.7), (resp. (3.8)), then
(z —1)™*ly =0, (resp. (z+ 1)™*'v = 0). This con-
tradicts the weak-regularity of v.

As a consequence, a+ 3 # —n,n>2 a# —nn>1,
and 3 # —n, n > 1. The functional v is the Jacobi fune-
tional, then u is regular. O

Proposition 3.3. Let {C), },>0 be a sequence of monic
polynomials with dual sequence {cy}n>0, such that
E(@)Cii(x) — F(2)Chyy(x) = Any1Cria(z), n > 0,
where FE monic, deg £ < 2, deg ¥ = 1, and the pair of
polynomials {F, F) is admissible. The following state-
ments are equivalent.

i) {Cn}nzo is orthogonal with respect to cq.
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i) For each imteger m > 1, E and F,, are coprime.
ili) ¢ Is weakly-regular.

Proof. From the higher degree coefficients in the second-
order differential equation, and the admissibility condi-
tion of the pair (E, F), we get

0)

Anc1 = (R4 1) (n==L —F'(0) #0, n>0. (3.9)

On the other hand, we get
(Eco) + Fep = 0. (3.10)

i)= ii). It is a consequence of (3.10), the regularity
of ¢y, and Proposition 3.2.

ii)=> iit). It follows from Proposition 3.2.

lii}= i). From Proposition 3.2, the linear functional
co is regular. Thus, the sequence {Cp}n>o will be
orthogonal with respect to ¢g, see in [8] Proposition
2.9. O

4. Applications.

A ;. Assume that v is a classical functional. Let u be a
regular functional such that

Au = ABuv. (4.1)

Here A € C* and A, B are two monic polynomials. This
kind of perturbations have been analyzed in [11]. The
linear functional v is semi-classical, Indeed, if we assume
that the functional v satisfies Ev’ + Fv = 0, where F
monic, deg £ < 2, deg FF = 1, and the pair {E, F) is
admissible, then it is easy to prove that u satisfies

(ABu)' + A(BF ~ 2B'E\)u = 0. (4.2)
From Proposition 3.2, we can characterize in a natural

way the MOPS with respect to u. Indeed

Proposition 4.1. Let B be a monic polynomial,
degB = t, and {By,}n>q be the sequence of monic or-
thogonal polynomials with respect to w. The following
statements are equivalent.

i) There exist a monic polynomial A, a non zero-
constant A, and a classical functional v such that

Au = ABwv. {(4.3)

ii) There exist a integer s > 0, & MPS {IIno4;}n>s,
degll, s = n+t, n > s, and non zero-constants
B, n > 8, such that

B(z)}Bns1(z) = E(2) T (z)— F(2)Ia (),
n>s, (4.4)

where (E, F) is an admissible pair of polynomials, E
monic, deg E < 2, deg FF = 1, and E and F,, are co-
prime, m > 1.

Proof. i)= ii). Let {Cy}n>0 be the MOPS with respect
to the functional v. From Lemma 2.1, if s = degA, then

= (4, AC,11 B,
B@)Brsafa) = 3 e Pet)
v+1

r=mn—a

CU+1($C), n 2 8.

(4.5)
On the other hand the classical sequence {C,},>0 sat-
isfles a second-order differential equation [3]

E(z) u+1($) F(x)C,’,H(m) =A1Copa(z), v 20,

(4.6)
where Ay = (v + 1)(,,15’;&0_) ~F'(0) £0, v > 0.

Using (4.6), from (4.5) we deduce (4.4}, with

Antet1
nE i e 4.
n+t+1 =" (4.7)
() = LAL W {u, ACy4+1Bni1) o)
" v=n—s Al MU’CE-H)(” +t+1) pH1VES
(4.8)
for n = s.

ii) = 1). From the assumption ¢{) and Proposition
3.2, let consider the classical functional v satisfying
(Ev) +Fv = 0. From (4.4), we get (Bu,B,.1) = 0, n >
&. Thus, there exists an integer r, 0 < v < s, such that
(Bu,By) # 0. Otherwise, since {Buv,B,) =0, n > 0,
then Bv = 0. This contradicts the regularity of v. As a
consequence, {Bv, Bn11) =0, n > s, and {Bv, B,) # 0.

From Lemma 2.1, we get By = Z {Bv, B,) u,, and by

v=20

using (1.4), we finally obtain (4.3), with
_ B
~ (Bv,B,)’
_ N~ (Bv,By) {u,BY)
A(I)*‘;(BD,B)@ Bz Brlo)- =

As. For each fixed p € C*, let u{u) be the linear func-
tional satisfying

(Bu(p)) +Fu(p) =0, (u(p)), = 1, (U(u ), =0, (4 9)

with E(z) = z and F{z) — (2 + 1).
(w(p)),» n > 0, denote the moments of u(), we get

(u(#))m—g _ (n+2,u+1 ( ) >0,

(), =0, () = 1 (4.10)
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Clearly u(p) is a symmetric linear functional.

Proposition 4.2. For each fixed u € C*, let u{1) be the
linear functional satisfying (4.9). The following state-
ments are equivalent.

i} u(y) is regular.
il} u{p) is weakly-regular.
iti) The linear functional o (u(u)) is weakly-regular.

Proof. 1) = it). The regularity of u(p) vields weak-
regularity.

) => #ii). According to Proposition 1.7 and taking
into account that u(p) is symmetric and weakly-regular,
we deduce that o(u(u)) is weakly-regular.

i) = i). From (4.9) the linear functional o (u(u))
satisfies

(:w(u))' +(z-—a-1ouy)y=0a=pn— é (4.11)

From Proposition 3.2, and taking into account the weak-
regularity of ¢(u) and the admissibility condition of the
pair {z,z — o — 1), the regularity of o(u), ie, a #
—n, n > 1 follows. Therefore, 4 # —n — (1/2), n > 0.
Thus, u(x) will be a semiclassical linear functional of
class one. More precisely, it is the generalized Hermite
functional denoted H{u) and o(u) is the Laguerre linear
functional [1,2,4]. O
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Clearly u(p) is a symmetric linear functional.

Proposition 4.2, For each fixed 1 € C*, let u{) be the
linear functional satisfying (4.9). The following state-
ments are equivalent.

i} w(p) is regular.
i} w{p) is weakly-regular.
iil} The linear functional o{u(p)) is weakly-regular.

Proof. 1) = it). The regularity of u(p) yields weak-
regularity.

1) = iii). According to Proposition 1.7 and taking
into account that w(u) is symmetric and weakly-regular,
we deduce that o (u(p)) is weakly-regular.

i4) = i). From (4.9) the linear functional o (u(p))
satisfies

(:w(u))’ +(x-a-1)o(u) =0, =pu~ é— (4.11)

From Proposition 3.2, and taking into account the wealk-
regularity of o(u) and the admissibility condition of the
pair (z,z — a - 1), the regularity of o(u), Le., a #
—n, n > 1 follows. Therefore, 4 # —n — (1/2), n = 0.
Thus, u(p) will be a semiclassical linear functional of
class one. More precisely, it is the generalized Hermite
functional denoted H(u) and o(u) is the Laguerre linear
functional [1,2,4]. O
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