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The problems of the existence of the best linear unbiased estimators (BLUE) and of their
equality to the ordinary least squares estimators (OLSE) of the expected value of the
observations are treated in a coordinate-free approach using a multivariate growth-curve
model. It will be proved that the alternative forms of the necessary and sufficient conditions
used in solving of these problems are independent on the between-individuals design matrix
of the model.
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Resumen

Se discute el problema de existencia del mejor estimador lineal insesgado (BLUE) parael
valor esperado de unadistribucion en un contexto libre de coordenadas, usando un modelo de
curvas de crecimiento multivariado. Se presenta ademas la igualdad del estimador anterior
con el estimador de minimos cuadrados ordinarios (OLSE). Se prueba que las diferentes
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formas de expresar las condiciones necesarias y suficientes para demostrar las propiedades
anteriores son independientes de la matriz de disefio del modelo entre individuos.

Palabras clave: Estimador de minimos cuadrados ordinarios, mejor estimador lineal

insesgado, proyecciones ortogonales,

1. Introduction

For the general linear model y = X3 + e, where X is
an n % p known design matrix of rank r < p,fisapx 1
vector of unknown parameters and e is an n x 1 vector
of disturbances, it is assumed that y (vector of obser-
vations) has the expectation E(y) = u = X3 and the
covariance matrix cov(y) = o*V, with o > 0 a known
or unknown number and V' an n x n symmetric positive
definite known matrix. When V' = I, (the n xn identity
matrix) the classical Gauss-Markov theorem states that
the BLUE (or Gauss-Markov estimator) is the OLSE of

p which is obtained for any solution &;ng of the normal-

equations X' X3 = X'y.

When V' is a positive definite matrix and r = p,
Aitken (1] extended the former result proving that the
BLUE is the generalized least squares estimator of 1 ob-
tained for the solution Ggrse of the generalized normal
equations X'V-1X3 = X'V-1y,

Some other extensions of the Gauss-Markov theorem
have been made by Zyskind and Martin [30] for a non-
negative covariance matrix and Harville [15] for general
mixed linear model.

In the multivariate case of linear regression models
the covariance structure is more complicated than o2V
and it has to be also treated the existence of BLUE
of p. These problems: the existence of the BLUE and
the equality between OLSE and BLUE of E(y) in lin-
ear regression models represented important subjects in
statistics.,

Seminal contributions in their solving expressed in ge-
ometrical form were obtained by Kruskal [17], Eaton
[13], Milliken [19], Haberman [14], Arnold (2], KI-
effe [16]. Some alternative proofs were given: Seely
[27], (28] restricted the choice of the BLUE of E(y) to a
finite-dimensional linear space; Drygas [11], [12] dealt
with conditions under which the BLUE of p is inde-
pendent on V' for multivariate linear models in locally
convex topological vector space; Beganu [5], (7], [10]
considered the existence conditions of the BLUE for the
fixed effects in multivariate mixed linear models; Qian
and Tian [22] established some properties for the BLUE

of a subset of regression coefficients in general linear
model.

Developments of the several conditions for the OLSE
to be the BLUE have been made by Baksalary and
van Eijnsbergen [4] and Puntanen and Styan [20].
Puntanen et al. [21] introduced a new representation
for the rank of the difference between the covariance ma-
trices corresponding to the OLSE and the BLUE of p
in the general linear model.

The purpose of this article is to extend to a mul-
tivariate growth curve model some of the results ob-
tained for the general univariate linear model regarding
the existence of the BLUE and the equality between the
OLSE and the BLUE of g. Some necessary and sufficient
conditions for the OLSE to be the BLUE are obtained
using a coordinate-free approach and it will be proved
that the both problems do not depend on the between-
individuals design matrix of the considered model.

The article is structured as follows. In Section 2 the
necessary and sufficient condition obtained by Eaton
[13] is expressed in order to prove the existence of the
BLUE of g in a family of multivariate growth curve mod-
els with random effects proposed by Reinsel (23], [26].
In Section 3 some of the necessary and sufficient condi-
tions given by Zyskind [29] and Haberman [14] for the
OLSE to be the BLUE in the general linear model will
be verified in the considered multivariate linear model.
It will be proved by means of the orthogonal projec-
tions onto the corresponding linear manifolds that these
conditions can he expressed only in terms of the within-
individual design matrix. Two examples are presented
and it is proved that the BLUE of p exists and it is equal
to the OLSE independently on the between-individuals
design matrix of these models.

2. The existence of the BLUE

The problem of the existence of the BLUE is treated
in a specific multivariate linear model. This ques-
tion was approached by Eaton [13] who extended the
Kruskal's theorem [17] to the case of the general mul-
tivariate linear model.
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In the sequel it will be used a coordinate-free ap-
proach for which some algebraical notions are necessary
to be denoted (see [24]).

Let Ly, p, be the linear space of ps x p; real matrices
endowed with the inner product < C,D >= tr(C'D')
for all C,D € Lp, ;.. The Kronecker matrix product
is defined as usual: if C € L, ;,, and D € L, 4, then
C®D = (c;;D) is an element in £, 4, pags-

The same notation L, ,, will be used for the real
vector space of linear transformations on M; to Ms,
where M, and M> stand for p; and p;-dimensional real
inner product spaces, respectively. If T and S are lin-
ear operators in L, o, and £, ., , respectively, then the
Kroneker operators product T(©S is the linear transfor-
mation on Lp, p, to Ly, o, such that (T@S)Q = TQS*
where 5° is the adjoint of S relative to the inner product
in M;. The composition of two linear operators is

(T1©51) 0 (T2©8,) = (N 12)©(5152)

and the adjoint relative to the usual trace inner product
is

(T®S)* = T*@S".

The particular linear regression model used in the fol-
lowing belongs to a family of multivariate linear growth
curve models with random effects and it was considered
by Reinsel [25], [26] and Lange and Laird [18] as a
special case of the linear mixed models.

This model consists in m characteristics measured at
poccasions on each of n individual sampling units. If the
within-individual and the between-individuals design
matrices X € L, , and A € L, ,,, respectively, are known
matrices of full column ranks (g < p,r < n),B € Lom,r
is a matrix of unknown parameters and A € L, , is a
matrix of random effects, then the observable random
matrix is

Y=AB(X'@In)+AX'@I,)+ E (1)

where E € Ly n is the random matrix of errors. It
is assumed that the lines of E and A are independent
random vectors of each other and between them, identi-
cally distributed with zero expected means and the same
covariance matrices ¥, and Iy, respectively. Then the
expected mean of the observations is

p=E(Y)=AB(X'® I,) (2)
and the covariance matrix is

L=cov(vecY) =L, @((XX)RE\+ L, ®E,] (3)

where
V=(XX)®E\+I,® &, (4)

For Ae L, , and X € L, ,, of full column rank let
D= {p=AB(X' @ 1I.) | BE Ly} (5)

be a linear manifold in Ly, and X C RP™, A € R"
be the ranges corresponding to the operators X @ I,,, €
Lompm. and A € L., respectively.

The sets of symmetric and positive definite linear
mapings V' from L, , to L, , and £ from Lpmn to
Lpmn will be denoted by © and S, respectively, such
that Ipm € © and Ipm € S. V and £ are the covari-
ance operators in (4) and (3) respectively.

Then the description of the regression model (1) with
the assumptions (2), (3) and (4) in a coordinate-free
form is that E(Y) = pe Qandcov (V) =E = [,@V €
S, when V' € ©. Therefore the family of the modfel (1)
will be the set of all n x pm random matrix ¥ whose
expectation belongs to Q2 given by (5) and whose covari-
ance operator (or matrix) lies in a certain set § definite
above,

It is known (see [13]) that the linear operator in L,
to Lom.n

Pa = PA©Pxal,, (6)
is the orthogonal projection onto 02, where
Py = A(A'A)7'A (7)
and
Pxar, = [X(X'X) ' X'|©In (8)

are the orthogonal projections onto A and X, respec-
tively. It can be noticed that Pyg;, = Py ® I,,, where
Py is the orthogonal projection on the range of X.

Theorem 1. The linear manifold X' is invariant under
V' if and only if © is invariant under £ = I, ©V € § for
all vV e 0,

Proaf. 1t is assumed that (} is invariant under the linear
transformation £ which means (I,@V)Q = Q.

Let B € Ly, such that p = AB(X' @ I,,,) € €L
Then, using the definition of the Kronecker operators
product and the symmetry of V', it can be written that

(In@V)p=pV = AB(X'® Im)V € Q
The last relation means that
PolAB(X' @ I,,)V] = AB(X' & I,)V
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or
PAAB(X' ® I,,)VPxer,. = AB(X' ® I,)V

because Py given by (6) is the orthogonal projection on
2. But P4 being the orthogonal projection on the linear
space A, it can be obtained that

AB(X'® In)V Pxga1,, = AB(X' ® I'nn)
for all B € Lym . This relation is equivalent to
(X' ® Im)V Pxar,, = (X' ® In)V
which is the same as
Pxgr VX @Ip)a=V(X & I;)a

for all @ € R"™. Since Pxg,, is the orthogonal projec-
tion on A’ the last equality means that V(X @&/l )a € &,

which can be expressed as: for all o € R there is

8 e R% such that
VIX®In)a=(X®1,)8 (9)

and this is the property for &' to be invariant under V',
The proof is complete because the equivalent relations
were stated for all V' € 6.

Corollary 1. The BLUE of E(Y') exists in the family
of models (1) if and only if X' is invariant under V', for
allVe®8.

Proof. Eaton [13] proved that the BLUE of E(Y) ex-
ists in the general multivariate linear model if and only
if 20 = Q for all £ = I,@V € &, which is equivalent
to VA =&, for all V € & by Theorem 1.

Corollary 2. The linear manifold X is invariant un-
der V if and only if there exists the linear operator
Q € Lgm,gm such that

VX8 In)=(X&Im)Q (10)
for all V € ©.

Proof. The relation (9) is equivalent to the following
condition: for all o € RT™, there exists 7 = (J(a) € B'™
such that

V(X ® Inm)a = (X & I1n)Q(a)
for all V € 9.

Corollary 3. For the model (1) the linear transforma-
tion Q € Lym.qm verifying the condition (10) is

Q=(X'X)85\+1,® %, (11)

Proof. By means of Theorem 1 and Corollary 2, the ex-
istence of the matrix @ with the property (10} is equiv-
alent to the invariance of the linear manifold @ under
all £ = [, ©V € & Hence, for V' € © given by (4), we

have
i = (IL,@V)[AB(X’ ® )]
=AB(X'® I,)V
=AB(X' @) [(XX)2E,+ [, @ L]
AB[(XX")@E\+ [ ® E (X' ® Iy)
ABQ(X' '@ I,) e 0,

for all B € £, . Therefore ) expressed in (11) being a
grm % gm symmetric matrix, it verifies the relation (10).

3. The equality between OLSE and BLUE

The OLSE and the BLUE of E(Y') corresponding to
the model (1) are given in Reinsel [25], [26], Lange
and Laird [18] and Beganu [10] as

fiorse = A(AA)TTAYX(X'X)'X' @6, (12)
fipLue = A(AA)TTAYV X ® L)
(X' ®In)V HUX L) Y X ®1m). (13)

In the following some of the alternative forms of
the necessary and sufficient conditions for the OLSE to
equal the BLUE of p given by Rao (23], Zyskind [29]
and Haberman [14] will be verified. These conditions
were chosen for their accessibility and their geometrical
representation.

Theorem 2. In the model (1)
floLse = HBLUE (14)

if and only if the linear manifold A is invariant under V
forall Ae A and V € 8.

Proof. Tt is known ([17]) that the equality (14) holds if
and only if 2 is invariant under £ € &, which is equiv-
alent through Theorem 1 to VX = & for all V € 6.
It can be noticed that the proof of the relation (9) is
independent on 4 £ A.

Theorem 3. The equality (14) corresponding to model
(1) holds if and only if

Pxg1,V =VPxar, (15)
forall A e Aand V € 6.
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Proof. One of the necessary and sufficient conditions
proved by Zyskind [29] to establish (14) is written for
the model (1) as

PhpoX=%oPy (16)

for all £ = I,@V € §. Let B € Ly such that
g = AB(X' @ I;) € §. Then using Corollary 2, we
have that

(PaoE)u = [(Pa@Pxegi,) o (In@V)|u
= [Pa@(Pxa1.,V)u

= PapVPxer,,
= ABQ(X' ® Iy)Px @ I,
= ABQ(X'® Im)

and

(o Pa)p = [(I.©V) o (Pa@Pxer. )

= [PAa@V Pxgr. |1
= PapPxgr, V
= PiAB(X @ 1) Pxar, V
=AB(X'® I,V =ABQ(X'®I,).

Therefore the equality (16) is accomplished for all
A€ A and V € B, which means that

Pa®©(Pxe1.V) = PA©(V Pxer,,)
Then the equality (15) is obtained for all A € .4 and
V € © using Lemma 1 in [3].

If the covariance operator V' is of the form (4), then
the condition (15) becomes

PX@I,,V = {Px @-’m}[(XXF] & EJ\ + Ip & Ee]
=(PxXX')® L), +Px 2L,
=(XX'Px)2E\+ Py ®E,
= |{XX’:] & By + -lrp & Egi{Px & Im)
=VPxeal,

because Py is the orthogonal projection on the range of
X.
Examples. 1. A particular form of the model (1) is
the multivariate linear growth curve
Y=AB(X'®@In)+Al,@I,)+ E (17)
where the within-individual design matrix X is parti-
tioned as (1, £) with its first column being a column
of ones since X includes a constant term for each of the

m variables. The matrix Z of order p x (g —1) is such
that 1,Z = 0.

The observations in (17) have the mean (2) and the
covariance matrix (3) with

where J, = 1,1,

Then the linear manifold @  is invariant under
means that

Sp=pV = AB(X' @ I,)V = ABQ(X’ @ I,,) (18)

if and only if there exists a matrix @ satisfying (10) for
all V € ©® and p € £, Such a matrix corresponding to
the model (17) s Q = R& E, + I, ® E, with

_(#» 0
R=(40)
if and only if 1,Z = 0.

Hence BQ = B € L4y, means that (18) is an ele-
ment of & for all V € © and p € €. It can easily see
that this condition stands independent on A € A4 and
that it can be replaced by the relation (9) with 8 = Qs
which means XA = X for all V € 6,

Therefore the BLUE of p exists in the model (17)
and it is equal to the OPLSE if and only if X is in-
variant under all V € © and this is equivalent to the
condition for 1, and £ to be linearly independent for
all A e A

2. A generalized growth-curve model considered in
[25] is

Y = AB(X' 8 Inn) + MX' ®Ip) +T(W' @ In)+ E (19)

where W is a p x s design matrix of full eolumn rank
and T is an n x sm random matrix. Besides the as-
sumptions of the model (1) it is supposed that the lines
of T' are independently and identically distributed with
zero means and the same covariance matrix I, ® Ep.
They are also mutually independent on the random lines
of A and E.

Then the expected value of ¥ in (19) is (2), an el-
ement of the linear manifold 2 given by (5), and the
covariance matrix (3) with

V=(XXYal,+ (WW)eZr+,0%,

The condition for the invariance of 1 becomes
Su=pV =AB(X'®I1,)V = AB(X'®I,) (20)
if and only if X'W = 0, where B = BX'X)®E\ +

I, @ E.] € Lym It can be easily seen that (20) is an
element of &2 for all V € © and A € A if and only if
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X'W = 0. Therefore the necessary and sufficient con-
dition for the BLUE of g to exist in the model (19) is
that € is invariant under all £ € §, which is equiva-
lent to the invariance of & under all V € © and this is
the same as the condition for the equality (14). In the
case of the model (19) the relation (14) holds if and only
if X and W are linearly independent as it was already
known.

It is also easy to see that B can be written as BW
which means that the element (20) lies in £ is an equiv-
alent condition of (10) and it is independent on A € A.

It follows that this results obtained for the family
of the model (1) with a particular form (17) and a
generalized form (19) are verified independently on the
between-individuals matrix A € A.

The necessary and sufficient conditions in Theorems -

1, 2, 3 are verified by the model (1), hence the BLUE
(13) of p exists and it is the OLSE (12). These two ques-
tions are equivalent in the multivariate growth-curve
maodel (1) because of its special covariance structure.

Corollaries 1, 2, 3 assert that for the family of multi-
variate growth curve models (1) the necessary and suf-
ficient conditions for the existence of Jigryp and its
equality with JioLsg are independent on the between-
individuals design matrix A and they have to be im-
posed only on the within - individual design matrix X.
The special form of the orthogonal projection onto )
allows these conclusions.
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