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I am showing in this paper that it is possible to attain very high, including observable, values for
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1. we must ensure that we are in a perturbative regime so that the ¢ series expansion, and its truncation,
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we must satisfy the spectrum normalisation condition. 4. we must satisfy the spectral tilt constraint. 5.
we must have enough inflation to solve the horizon problem.
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Resumen

Muestro en este articulo que es posible obtener valores altos, incliso observables, para el nivel de
no gausianidad fn ., en un particular modelo inflacionario del tipo slow-roll con un potencial escalar
cuadratico de dos componentes y términos cinéticos canénicos. Lo anterior se hace teniendo en cuenta
correcciones de lazo tanto en el espectro P, como en el biespectro B, de la perturbacién primordial
en la curvatura ¢. Se obtienen valores grandes para fn, incluso si ¢ es generada durante inflacién. Se
tienen en cuenta cinco restricciones que reducen la ventana de pardmetros disponible: 1. debemos estar
seguros de estar trabajando en un régimen perturbativo de tal manera que la expansion en serie de ¢, y
su truncamiento, sean vélidas. 2. debemos aplicar la condicién correcta acerca del (posible) dominio
de las correcciones de lazo en B; y/o P;. 3. debemos satisfacer la condicién de normalizacién del
espectro 4. debemos satistacer el indice espectral observado. 5. debemos asegurar el monto mfnimo de
inflacidn para resolver el problema de horizonte.

Palabras clave: Perturbacién primordial en la curvatura, no gaussianidad, modelos inflacionarios

del tipo slow-roll.

1 Introduction

The primordial curvature perturbation ¢ (Dodelson, 2003;
Liddle & Lyth, 2000; Mukhanov, 2005; Weinberg, 2008),
and its § N expansion (Lyth, Malik, & Sasaki, 2005; Lyth &
Rodriguez, 2005a; Sasaki & Stewart, 1996; Starobinsky,
1985), was the subject of study in two recent papers (Co-
gollo, Rodriguez, & Valenzuela-Toledo, 20082; Cogollo,
Rodriguez, & Valenzuela-Toledo, 2008b). The authors
were interested in how well the convergence of the ¢ series
was understood, and if the traditional naive arguments to cut
out the ¢ series at second order (Lyth & Rodriguez, 2005a;
Zaballa, Rodriguez, & Lyth, 2006), keeping only the tree-
level terms to study the statistical descriptors of ¢ (Alabidi,
2006; Battefeld & Easther, 2007; Byrnes, Choi, & Hall,
2008; Byrnes, Sasaki, & Wands, 2006; Seery & Lidsey,
2007; Vernizzi & Wands, 2006; Yokoyama, Suyama, &
Tanaka; 2007; Yokoyama, Suyama, & Tanaka, 2008a;
Yokoyama, Suyama, & Tanaka, 2008b), were reliable?.
The authors argued that a previous study of the ¢ series
convergence, the viability of a perturbative regime, and the
relative weight of the loop contributions against the tree-
level terms, were completely necessary and in some cases
surprising. For instance, the levels of non-gaussianity fy
and 7y, in the bispectrum By (ki, ko, k3) and trispectrum
T¢(ki1,kz, ks, kyq) of ¢ respectively, for slow-roll inflation-
ary models with canonical kinetic terms (Liddle & Lyth,
2000; Lyth, 2008; Lyth & Riotto, 1999), are usually thought
to be of order O(e;, 1;) (Battefeld & Easther, 2007; Seery
& Lidsey, 2007; Seery, Sloth, & Vernizzi, 2008; Vernizzi
& Wands, 2006; Yokoyama, Suyama, & Tanaka; 2007),

31n this paper, I follow the terminology of Ref. (Byrnes, Koyama, Sasaki,

were ¢; and 7); are the slow-roll parameters with ¢;, |7;| < 1
(Lyth & Riotto, 1999). However, in order to reach such a
conclusion, only the tree-level terms were considered with-
out giving a satisfactory explanation of why the loop contri-
butions are comparatively suppressed, neither why ( is in-
deed represented by the §N expansion, nor why the trun-
cated SN expansion may be used. A couple of papers (Al-
abidi, 2006; Byrnes, Choi, & Hall, 2008) show that large,
and observable, non-gaussianity in B¢ is indeed possible
for certain classes of slow-roll models with canonical ki-
netic terms and special trajectories in field space, relying
only on the tree-level terms. Nonetheless, although the resul-
tant phenomenology from these two papers is very interest-
ing, a satisfactory argument about the tree-level dominance
over the loop corrections was still lacking. In Refs. (Co-
gollo, Rodriguez, & Valenzuela-Toledo, 2008a; Cogollo,
Rodriguez, & Valenzuela-Toledo, 2008b), the authors ad-
dressed these issues, and showed how important the require-
ments to guarantee the ¢ series convergence and the existence
of a perturbative regime are. Supported in Ref. (Cogollo,
Rodriguez, & Valenzuela-Toledo, 2008a), I show in this
paper that for a particular quadratic two-field slow-roll infla-
tionary model with canonical kinetic terms, the one-loop cor-
rection to B; might be much bigger than the tree-level terms,
giving as a result large, and observable, non-gaussianity pa-
rameterised by fyy. Based on the same grounds, the level
of non-gaussianity 7, for the same slow-roll model stud-
ied here will be the subject of study in a companion paper
(Cogollo, Rodriguez, & Valénzuela-Toledo, 2008¢).

& Wands, 2007) to identify the tree-level terms and the loop contributions, within

the SN formalism, in a diagrammatic approach. The associated diagrams are called Feynman-like diagrams.



RODRIGUEZ, Y.: NON-GAUSSIANITY AND LOOP CORRECTIONS IN A QUADRATIC TWO-FIELD SLOW-ROLL MODEL. . . 505

2 Basic definitions and observation

Given the probability distribution function f(¢), for the pri-
mordial curvature perturbation {(x.t), there are an infinite
number of standarized moments that work as statistical de-
scriptors of {(x, t):

the mean value : m¢(1) = (() = /Cf(()dg‘, (1

the variance : m¢(2)

/ (€~ {OPFOEC, @

the skewness : m¢(3) = J€- {mc( P/(f)dgy 3)
JC— (O F(Q)dc

the kurtosis : m¢(4) =

@@

and so on.

Departures from the exact gaussianity come either from
non-vanishing odd standarized moments m¢(n) with n > 3,
in which case the probability distribution function is non-
symmetric around the mean value, or from higher (n > 4)
even standarized moments different to products of the vari-
ance, in which case the probability distribution function con-
tinues to be symmetric around the mean value although its
“peakedness™ is bigger than that for a gaussian function, or
from both of them.

Working in momentum space, the standarized moments
of the probability distribution function have a direct con-
nection with the correlation functions for the Fourier modes
(e = [ d3k¢(x)e~ %> defined in flat space. As the n-point
correlators of i are generically defined in terms of spectral

functions of the wavevectors involved?:

two — point correlator — spectrum F :

(CaCiz) = (2m)°8° (ka + ko) Pc(k), (5

three — point correlator — bispectrum B :

(Cier CaCies) = (2m)°6% (kg + ko + kg) x

xBc(k1, ka, ks) , Q)

four — point correlator — trispectrum 7T¢ :
(Ckx Ckz Cks <k4> = (27‘-)363(1(1 +ka + ks + k4) X
xT¢ (ki ka, ks, ka), M

Il

and so on,

the standarized moments of the distribution are then written
in terms of momentum integrals of the spectral functions for
the modes (x:

37,
the variance : m¢(2) = %Pg(k), 8)
Lhy dka B (ky, ko, k:
the skewness : m¢(3) = f (%)6 (1, o 3), 9)
[f o Pc(k)]
J A ’{5,,)9 ST, (K1, ka, ks, ka)

the kurtosis : m¢(4) =

[ )] ’
(10)

and so on.

Non-gaussianity in ¢ is, therefore, associated with non-
vanishing higher order spectral functions, starting from the
bispectrum Bc.

Now I will parametrize the spectral functions of ¢ in
terms of quantities which are the ones for which observa-
tional bounds are given. Because of the direct connection
between these quantities and the standarized moments of the
probability distribution function f(¢), I may also call these

4Higher even standarized moments different to products of the variance mean more of the variance is due to infrequent extreme deviations, as opposed to

frequent modestly-sized deviations.

SStatistical homogeneity, i.e., invariance of the correlation functions under transtations, requires the presence of the Dirac delta functions (Ackerman, Car-
roll, & Wise, 2007; Carroll, Tseng, & Wise, 2008; Dimopoulos, Lyth, & Rodriguez, 2008). Statistical isotropy, i.e., invariance of the correlation functions
under rotations, requires that the spectrum P and bispectrum By are functions of the wavenumbers only (Ackerman, Carroll, & Wise, 2007: Carroll, Tseng,
& Wise, 2008; Dimopoulos, Lyth, & Rodriguez, 2008). For the trispectrum T and the other higher order spectral functions, the momentum dependence also

involves the direction of the wavevectors.
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quantities as the statistical descriptors for f(¢). The spec-
trum P is parametrized in terms of an amplitude ”Pé /% and a
spectral index n; which measures the deviation from an ex-
actly scale-invariant spectrum (Liddle & Lyth, 2000; Wein-
berg, 2008):

271'2 k ne—1
wram) a

where a is the global expansion parameter and H = a/a is
the Hubble parameter, with the dot meaning a derivative with
respect to cosmic time. The bispectrum B¢ and trispectrum
T are parametrized in terms of products of the spectrum %,
and the quantities fx, and 7y respectively® (Boubekeur
& Lyth, 2006; Maldacena, 2003):

Pc(k‘) =

6 .
fne [P<(k1)P<(k2) + cyclic

5

Bc(/ﬁl, k‘g. k)g) =
permutations] , (12)

Te(ky, ko, ks ka) = =7ns, [Pc(k1)Pc(k2)P<(|k1 +ky|) +

B[ —

+cyclic permutations] . (13)

Higher order spectral functions would be parametrized in
an analogous way. Given the present observational state-of-
the-art, n¢, fvr, and 7z are the statistical descriptors that
discriminate among models for the origin of the large-scale
structure once Pg/ ? has been fixed to the observed value.
Since non-vanishing higher order spectral functions such as
B and T; imply non-gaussianity in the primordial curvature
perturbation ¢, the statistical descriptors f; and T are
usually called the levels of non-gaussianity.

The COBE satellite’ provided us with a reliable value
for the spectral amplitude 794.1/ 2 (Bunn & White, 1997):

Pé/z = (4.957 & 0.094) x 10™° which is usually called
the COBE normalisation. As regards the spectral index,
the latest data release and analysis from the WMAP satel-
lite® shows that n = 0.960 + 0.014 (Komatsu et. al.,
2008) which rejects exact scale invariance at more than 2.
Such a result has been extensively used to constrain inflation
model building (Alabidi & Lidsey, 2008; Alabidi & Lyth,
2006), and although several classes of inflationary models
have been ruled out through the spectral index, lots of mod-
els are still allowed; that is why it is so important an ap-
propiate knowledge of the statistical descriptors fx; and

Ty L. Present observations show that the primordial curva-
ture perturbation ¢ is almost, but not completely, gaussian.
The level of non-gaussianity fy in the bispectrum By, af-
ter five years of data from NASA’s WMAP satellite, is in the
range —9 < fyp < 111 at 20 (Komatsu et. al., 2008).
There is at present no observational bound on the level of
non-gaussianity 7x in the trispectrum T although it was
predicted that COBE should either measure 75, or impose
the lower bound |7y, ] < 10° (Boubekeur & Lyth, 2006;
Okamoto & Hu, 2002). It is expected that future WMAP
data releases will either detect non-gaussianity or reduce the
bounds on fny and T, at the 20 level to | fy| < 40 (Ko-
matsu & Spergel, 2001) and |Ty] <2 x 10* (Kogo &
Komatsu, 2006) respectively. The ESA’s PLANCK satel-
lite? (The Planck Collaboration, 2006), whose launch is
currently scheduled in the spring of 2009, promises to re-
duce the bounds to |fn .| < 10 (Komatsu & Spergel, 2001)
and |7n | < 560 (Kogo & Komatsu, 2006) at the 20 level
if non-gaussianity is not detected. In addition, by study-
ing the 21-cm emission spectral line in the cosmic neutral
Hydrogen prior to the era of reionization, it is also possi-
ble to know about the levels of non-gaussianity fy; and
7nvLs the 21-cm background anisotropies capture informa-
tion about the primordial non-gaussianity better than any
high resolution map of cosmic microwave background radi-
ation: an experiment like this could reduce the bounds on
the non-gaussianity levels to |fx | < 0.2 (Cooray, 2006;
Cooray, Li, & Melchiorri, 2008), and |7x1,| < 20 (Cooray,
Li, & Melchiorri, 2008) at the 20 confidence. Finally, it
is worth stating that there have been recent claims about the
detection of non-gaussianity in the bispectrum B¢ of ¢ from
the WMAP 3-year data (Yadav & Wandelt, 2008). Such
claims, which report a rejection of fi; = 0 at more that
20 (26.9 < fnp < 146.7), are based on the estimation of
the bispectrum while using some specific foreground masks.
The WMAP 5-year analysis (Komatsu et. al., 2008) shows
a similar behaviour when using those masks, but reduces
the significance of the results when other more conservative
masks are included allowing again the possibility of exact
gaussianity.

SThere is actually a sign difference between the f;, defined here and that defined in Ref. (Maldacena, 2003). The origin of the sign difference lies in the
way the observed fy , is defined (Komatsu & Spergel, 2001), through the Bardeen’s curvature perturbation (Bardeen, 1980): ®8 = <I)§’ + fn L(<I>f )2 with
@B = (3/5)¢, and the way fi, is defined in Ref. (Maldacena, 2003), through the gauge invariant Newtonian potential: &~ = ¢>1,\f + fNL(lI>£’)2 with

ON = —(3/5)¢ (Komatsu, 2008).

"NASA’s COBE mission homepage: http://lambda.gsfc.nasa.gov/product/cobe/.

SNASA’s WMAP mission homepage: http://wmap.gsfc.nasa.gov/.
9ESA's PLANCK mission homepage: http://planck.esa.int/.
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3 The model

According to the classification of inflationary models pro-
posed in Ref. (Dodelson, Kinney, & Kolb, 1997), the small-
field models are those of the form that would be expected
as a result of spontaneous symmetry breaking, with a field
initially near an unstable equilibrium point (usuvally taken
to be at the origin) and rolling toward a stable minimum
(¢) # 0. Thus, inflation occurs when the field is small rel-
ative to its expectation value ¢ < {¢). Some interesting
examples are the original models of new inflation (Albrecht
& Steinhardt, 1982; Linde, 1982), modular inflation from
string theory (Dimopoulos & Lazarides, 2006), natural in-
flation (Freese, Frieman, & Olinto, 1990), and hilltop infla-
tion (Boubekeur & Lyth, 2005). As a result, the inflationary
potential for small-field models may be taken as

éi\"
E )] e

where the subscript ¢ here denotes the relevant quantities of
the ith field, p is the same for all fields, and A; and p; are the
parameters describing the height and tilt of the potential of
the ith field.

While Ref. (Ahmad, Piao, & Quiao, 2008) studies the
spectrum of ¢ for general values of the parameter p and an ar-
bitrary number of fields, assuming ¢ series convergence and
tree-level dominance, I will specialize to the p = 2 case for
two fields ¢ and o:

1 ¢ 1 o2
=Wll+=np—F + Ze— | » 15
where I have traded the expressions
A1 + A2 for V() B (16)
Ay Mo
— for —-Vo—%, Aan
ui 2m%
and A
2 No
— f - Vo—, 18
'LL% or 0 2m2P ( )

and defined mp as the reduced Planck mass. On doing
this, and assuming that the first term in Eq. (15) dominates,
7¢ < 0 and 7, < 0 become the usual 7 slow-roll parameters
associated with the fields ¢ and .

I have chosen for simplicity the o = 0 trajectory (see Fig.
1) since in that case the potential in Eq. (15) reproduces for
some number of e-folds the hybrid inflation scenario (Linde,
1994) where ¢ is the inflaton and ¢ is the waterfall field.
Non-gaussianity in the bispectrum B of { for such a model
has been studied in Refs. (Alabidi, 2006; Byrnes, Choi,

& Hall, 2008; Cogollo, Rodriguez, & Valenzuela-Toledo,
2008a; Enqvist & Viihkonen, 2004; Lyth & Rodriguez,
2005a; Lyth & Rodriguez, 2005b; Viihkonen, 2005; Za-
balla, Rodriguez, & Lyth, 2006); in particular, Ref. (Co-
gollo, Rodriguez, & Valenzuela-Toledo, 2008a) shows that
the one-loop correction dominates over the tree-level terms,
generating in this way large values for fp even if € is gener-
ated during inflation. Refs. (Alabidi, 2006; Byrnes, Choi, &
Hall, 2008), in contrast, work only at tree-level with the same
potential as Eq. (15) but relaxing the o = 0 condition, find-
ing that large values for fy, are possible for a small set of
initial conditions. Ref. (Cogollo, Rodriguez, & Valenzuela-
Toledo, 2008b) studies the trispectrum T¢ of ¢ in this model
considering dominant loop corrections with o = 0; its re-
sults show that large values for 7y, are generated even if ¢
is generated during inflation.

The slow-roll conditions for single-field inflationary
models with canonical kinetic terms read

¢ < V() (19)
lo] < [3H¢|, (20)
where ¢ is the inflaton field and V() is the scalar field po-

tential. On defining the slow-roll parameters € and n, as
(Liddle & Lyth, 2000)

H

€ = —ﬁ7 (21)
¢

= - =, 22

Né € Y (22)

the slow-roll conditions in Egs. (19) and (20) translate into
strong constraints for the slow-roll parameters: ¢, || < 1.
Multifield slow-roll models may also be characterized by a
set of slow-roll parameters which generalize those in Egs.
(21) and (22) (Lyth & Riotto, 1999):

2 2
= me (Vi
€@ = <V> , (23)
Vii
N = m%;-‘—/—. 24)

By writing the slow-roll parameters in terms of derivatives of
the scalar potential, as in the last two expressions, we realize
that the slow-roll conditions require very flat potentials to be
met.

Since I am considering a slow-roll regime for the model
given by the potential in Eq. (15), the evolution of the fields
in such a case is given by

(N) = ¢.exp(—Nmny), (25)

and
o(N) = o, exp(—Nn,), (26)
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Figure 1: My small-field slow-roll potential of Eq. (15) with 74,7, < 0. The inflaton starts near the maximum and moves away
from the origin following the o = 0 trajectory depicted with the solid black line. (This figure has been taken from Ref. (Alabidi,

2006)).

in terms of the amount of inflation /N since horizon exit, and
the field values ¢, and o, at the time when the relevant cos-
mological scales exit the horizon. Such expressions, together
with Eq. (15), seed the d N formalism in order to calculate
the spectrum and the bispectrum of the curvature perturba-
tion including the tree-level (see Fig. 2) and the one-loop
contributions (see Fig. 3)'° (see the respective calculational
details in Refs. Byrnes, Koyama, Sasaki, & Wands, 2007,
Cogollo, Rodriguez, & Valenzuela-Toledo, 2008a; Lyth &

Rodriguez, 2005a; Sasaki & Stewart, 1996):

tree  _ 1 H* ’
P = e \ar) o
P 1—loop - 7]3; AN v
§H e expldN (1] 6]}
O.*
H\*
X (5;) In(kL), (28)
1

. HN\ (kS
Biree = i (B} gpe (2R
= () 7 () @

3
1—loo Mo r
B( P 7]2(/)2 BXP[GN(1%| - |77¢!)] X

75\ . k3
* - T\ A4 7
X k;) In(kL)4dn (H:M) . (30)
where L is the infrared cutoff chosen so that the quantities
are calculated in a minimal box (Lyth, 2007), i.e. In(kL) ~

10For an adequate explanation of the Feynman-like diagrams in cosmology, and their application within the NV formalism, see Ref. (Byrnes, Koyama,

Sasaki, & Wands, 2007).
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Figure 2: Tree-level Feynman-like diagrams for (a) P¢, and (b) B;. The internal dashed lines correspond to two-point correlators

of field perturbations.

Figure 3: One-loop Feynman-like diagrams for (a) P, and (b) B¢. The internal dashed lines correspond to two-point correlators

of field perturbations.

O(l), and kl ~ k‘g ~ k?g.

The important factor in the loop corrections is the ex-
ponential. This exponential function is directly related to
the quadratic form of the potential with a leading constant
term. It will give a large contribution if |n,| > |nsl. I have
chosen the concave downward potential in order to satisfy
the spectral tilt constraint, which makes either n, < 0, if
P =~ P{e, orn, < 0, if P =~ ’P1 ~1ooP " while keeping
ns| > [77¢|

4 Constraints to have a reliable param-
eter space

4.1 Convergence of the ( series and existence of
a perturbative regime

It has been proved (Cogollo, Rodriguez, & Valenzuela-
Toledo, 2008a; Cogollo, Rodriguez, & Valenzuela-Toledo,
2008b) by means of a non-perturbative approach, that there
exist what are called two “coupling constants” z and y for
the potential in Eq. (15). Such coupling constants allow us
to obtain a necessary condition for the convergence of the ¢
series and work in a perturbive regime if they are much less

than one:
W AN |
lz] = *(Zj ~< >Zf<<1 @31
1/2
3 502
lyl = {g% ¢2* exp[ZN(ms—na)]}
4) *
3 9 1/2
Mo (He\™ 1 _
{T/;}i <27r> ¢E€XD[2N(77¢ 770)]} <1.

(32)

4.2 Tree-level or loop dominance

Because of the exponential factors in Eqgs. (28) and (30) it
might be possible that the loop corrections dominate over P
and/or B¢. There are three posibilities in complete connec-
tion with the position of the ¢ field when the relevant scales
are exiting the horizon. Here I will consider only the in-
termediate ¢, region, corresponding to the case when B¢ is
dominated by one-loop corrections and P is dominated by
the tree-level term, because this is the only possibility which
gives interesting ard observationally relevant results.
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B dominated by one-loop corrections and P dominated
by the tree-level term: the intermediate ¢, region

Looking at Egs. (27) and (30) I require in this case that

2 1
2 expdN (o] = Ins)] € ——g.  (33)
UFS = ( =
P37 \ 2w
7 1
T2 cxploN (ol ~ Inol)] > ——— . (4
% E)?(zﬁ)
which combine to give
P o *
TR epla (ol - ) < (£2)
77¢ mp
TP 15
<« =5 ;3 exp[6N(Ins| — Ingl)].  (35)
[

where the definition for the tensor to scalar ratio r (Lyth,
2008) has been employed:

8 (H.\2

PT @(2#)
= —=-£____ 36
=R Pe (36)

In the latter expression, ”P;/ 2 represents the amplitude of the
spectrum for primordial gravitational waves.

4.3 Spectrum normalisation condition

Since I am considering ¢ being generated during inflation,
I must satisfy the appropiate spectrum normalisation condi-
tion. According to Eq. (27) if P, is dominated by the tree-
level term, I have

1 H 2 1 mp 2‘7’P
tree * 9
243 _— | T = — | — — =P , 37

which reduces to
2
(_‘p_*> = %7_ (38)
mp ¢ 8

Notice that in such a situation, the value of the ¢ field when
the relevant scales are exiting the horizon depends exclu-
sively on the tensor to scalar ratio, once N has been fixed
by the spectral tilt constraint.

4.4 Spectral tilt constraint

The current observed value for the spectral tilt is ne — 1 =
~—0.040 £ 0.014 (Komatsu et. al., 2008), and again I will

consider only the case when P, is dominated by the tree-
level term. That means that the usual spectral index formula
(Sasaki & Stewart, 1996) applies:

_ViN,;N,;
n¢ — 1=—-2¢~ 2m%%7—2——1i\72—J,

giving the following result once the derivatives of N with
respect to ¢, and o, have been calculated:

(39

ne—1= -2+ 2n,. (40)

The efect of the € parameter may be discarded in the previous
expression since € is much less than |n|:

2 V24 V2 1 2
_meYs Ve 4l (¢
= TR — el [21%1 ()| <l
(41)
according to the prescription that the potential in Eq. (15)
p

is dominated by the constant term. Thus, using the central
value for ng — 1,1 get

ne = —0.020. 42)

4.5 Amount of inflation

It is well known that the number of e-folds of expansion from
the time the cosmological scales exit the horizon to the end
of inflation is presumably around but less than 62 (Dodel-
son, 2003; Liddle & Lyth, 2000; Weinberg, 2008). The
slow-roll evolution of the ¢ field in Eq. (25) tells us that such
an amount of inflation is given by

1 ¢end)
= In <62, 43
"’7¢’| < b ~ “3)

where ¢.nq is the value of the ¢ field at the end of inflation.
Because of the characteristics of the inflationary potential in
Eq. (15), there is no a definite mechanism to end inflation in
this model. It could not be by means of the violation of the
€ < 1 condition since this would imply extrapolating our re-
sults to a region where the potential in Eq. (15) is no longer
dominated by the constant term which, in addition, would
spoil the large non-gaussianity generated and could send the
model to an unknowable quantum gravity regime. Keeping
in mind the results of Ref. (Armendariz-Picon, Fontanini,
Penco, & Trodden, 2008) which say that the ultraviolet cut-
off in cosmological perturbation theory could be a few orders
of magnitude bigger than mp, I will therefore assume that
inflation comes to an end when |n|¢?/2m?% ~ 10~2. This
allows me to be in a safe side (avoiding large modifications to
the potential coming from ultraviolet cutoff-suppressed non-
renormalisable terms, and keeping the potential dominated
by the constant V4 term), leaving the implementation of a
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mechanism to end inflation for a future work''. Coming back
to Eq. (43), I get then

N L 1n<m”> <62, (a4)
|TI¢| (.b*
which leads to
> exp(~62Ing) . 45)
mp

5 fnr

In this section I will calculate the level of non-gaussianity
represented in the parameter fy; (Komatsu & Spergel,
2001) by taking into account the constraints presented in Sec-
tion 4 (Cogollo, Rodriguez & Valenzuela-Toledo, 2008a).
The level of non-gaussianity, according to the expressions in
Eqgs. (12), (27), and (30), is in this case given by

6 Bl—loop
ngL - E-Ck? t
47r4ﬁ_:_k_§_('p<,ree)2
e H. 2
15 explON e e (55 ) m(62)
770 Tn}) 2 TPC
=5 exp[6N (Ino] — |ng|)] —% In(kL)
1¢> 6. ) 8
=770 exp[6N(|na| - [%D]PC ln(kL) H (46)

= ngL ~ —2.457 x 107%n,|® exp [300 X
x In(5.657 x 1072~/ (|ny| — 0.020)] @7

where in the last line I have used expressions in Egs. (38),
(42), and (44).

In figure 4 1 show lines of constant fn in the plot r
v§ |1, | for the intermediate ¢, region in agreement with the
constraints in Egs. (31), (32), and (35). Notice that by imple-
menting the spectral tilt constraint in Eq. (42) to the spectrum
normalisation constraint in Eq. (38) and the amount of infla-
tion constraint in Eq. (45) I conclude that the tensor to scalar
ratio is bounded from below: r > 2.680 x 1074

6 Conclusions

As is evident from the plot, the WMAP (and also PLANCK)
observationally allowed 20 range of values for negative fxr.,

—~9 < fwnr, is completely inside the intermediate ¢, re-
gion as required. More negative values for fyr, up to
fnp = —20.647 are consistent within my framework for
the intermediate ¢, region, but they are ruled out from ob-
servation. Nevertheless, it is interesting to see a slow-roll
inflationary model with canonical kinetic terms where the
observational restriction on fn; may be violated by an ex-
cess and not by a shortfall. So I conclude that if B¢ is domi-
nated by the one-loop correction but P¢ is dominated by the
tree-level term, sizeable non-gaussianity is generated even if
¢ is generated during inflation. 1 also conclude, from look-
ing at the small values that the tensor to scalar ratio r takes
in figure 4 compared with the present technological bound
r > 107% (Friedman, Cooray, & Melchiorri, 2006), that
for non-gaussianity to be observable in this model, primor-
dial gravitational waves must be undetectable.
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