M ATEMATICAS

A TWO-STAGE ESTIMATOR OF INDIVIDUAL
REGRESSION COEFFICIENTSIN
MULTIVARIATE LINEAR GROWTH
CURVE MODELS

por
Gabriela Beganu?

Resumen
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Se considera una familia de modelos lineales de curvas de crecimiento multivariadas con
efectos aleatorios. El prop6sito del articulo es describir un método de célculo parala estimacion
de coeficientes de regresion individual es cuando las componentes de covarianza sean conocidas o
no. En el segundo caso, la matriz de covarianza de los datos se estimarad usando una version
generalizada del método I11 de Henderson mediante proyecciones ortogonal es sobre subespacios
lineales que corresponden al modelo y se obtiene un estimador en dos etapas paralos coeficientes
individuales de regresion. Se presenta la estimacion de efectos fijos y aleatorios usando un
abordaj e bayesiano.

Palabras clave: Estimador empirico de Bayes estimado, estimador cuadréatico insesgado, pro-
yeccion ortogonal.

Abstract

A family of multivariate linear growth curve models with random effects is considered. The
purpose of this article is to describe a computational method required for estimation of individual
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regression coefficients when the covariance components are known or unknown. In the second case
the covariance matrix of the datawill be estimated by a generalized version of the Henderson method
111 using the orthogonal projections onto linear subspaces corresponding to the model and a two-
stage esstimator of individual regression coefficients is obtained. The estimation of fixed and

random effects is presented in a Bayesian approach.

Key words: Estimated empirical Bayes estimator, quadratic unbiased estimator, orthogonal

projection.

1. Introduction

This article is concerned with estimation of regression
cocfficients in a multivariate luear growlh curve model
with a multivariste random effect when cthe covariance
structure of the mode] is known or unknown. Since the
model also contains fixed effects, it is considered to be a
mixed linear model. The main emphasis of the proposed
analysis is on estimation of the regression coeflicients in
a Bayesian approach by means of & two-stage estimator
constructed with quadratic unbiased estimators of the
covariance components ([5]). A family of multivariate
linear growth curve models with random effects is con-
sidered as a generalized linear model of Potthoff and
Roy [22]. Reinsel [24] assumed that, for each of n in-
dividual sampling units having m characteristics mea-
sured at each of p occasions, the pm x 1 observable
random vector is

Wy = (x E'ITH]B&’;;-T_{X@IHB}}-A:"_ELH k= 1, ] {1}

The within-individual and between-individuals design
matrices X and A’ = (a;,...0,) are known px g

and r = n matrices of full column rank ¢ < p and
r < n, respectively and B is a gm ® 7 matrix of un-
known regression parameters. The assumption made by
Reinsel [24], [25] regarding the covariance structure of
the random effect can be changed without loss of gener-
ality as follows: A; isa gm x 1 vector obtained from
an m % ¢ random matrix having columns identically
distributed as N(0,Z,). Then the random vectors A

are independent of each other and of the error vectors
&y, which are distributed as N(0, [, ®E.), k=1...1.
I, is the m % m identity matrix and & denotes the
Kronecker matrix product (C ® D = (c:;0)). Then
the independent random vectors e have the normal
distribution with the expected value

E(y) = (X @ Ip ) Bag (2]

and the covariance matrix
coviye) =V =(XX")aoE+ ek, k=1,...n (3

where By and ¥, are m xm positive definite
matrices. The individual regression eocfficients

Hy=Boy + A, £=1...n (d)

may serve to characterize some aspects of an individ-
ual's growth [10] or in prediction of future observarions
for a given individual [25]. The problem of estimation
of individual regression cooificients is of particular in-
terest, & being composed of both fived and ran-
dom effects. Hence the estimation for model (1) can
be based either on ordinary least squares and maximum
likelihood methods, or on empirical Bayes methodology
[20]. The classical approach wses the mavimum like-
lihood estimation of the fixed effects B and of the
covariance components L, and Y, from the mar-
ginal normal distribution of ¥’ = (y1,...ya) having
the mean (X @ I;,)BA" and the covariance matrix of
vee ¥ opgiven by I, ® V, where 1V is the covariance
matrix in (3) and wvee Y' = (y],...y5)'. The realized
values of the random eifects A" = (A, Ay can be
estimnaced using the generalized version of the Gauss-
Markov theorem [13], [L4]. A possible alternative [13] is
based on a Bayesian estimation of the model parameters
(4) and it was used in [26], 23], [7], [27]. The empir-
ical Bayes estimators of B and Mg,k = 1,...n, will
be the estimated means of the posterior distribution of
¥’ When the covariance components of the obscrva-
tion vectors are unknown, the corresponding estimators
could be found in [10] and (18] by the EM salgorithm
(see [9]). ln [8] and [19] the ordinary least squares resid-
uals were uszed for computing the maximum likelihood
estimators (MLE) and the restricted maximum likeli-
hood estimators {(REMLE]) of the variance and covari-
ance components in linear models for serial messure-
ments that include both growth curves and repesated
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measures models. A generalized version ([5], [6]) of the
Henderson method III {also called the method of fitting
constants [13 ) was chosen to obtain the quadratic unbi-
ased estimators of E; and I, and it will be presented
in Section 2 for the specific case of model (1}, In order
to obtain the estimators of regression coeflicients when
the covarlance matrix of dete is unknown, a multistage
procedure is required. An estimated generalized least
squares estimator ((GLSE) of regression coefficients in
multivariate mixed linear models is caleulated in three
steps in [8]. 'I'wo-stage procedures are used in 16, [17]
and [23] to estimate the fixed effects and the realized
values of the random effects in some special cases of
general mixed linear models.

A fwo-stage procedure is emploved to estimate the
individual regression coefficients (4), when the covari-
ance components are unknown and the corresponding
estimators are obtained by the generalized Henderson
method III. Section 3 deals with determining of two-
stage estimators of regression coefficients (4), when the
multivariate growth curve model (1) is balanced and un-
balanced (missing data), respectively.

2. Estimation of the covariance components

Various methods of estimation of the covariance com-
ponents are available for mixed linear models, but [ con-
fine myself to the Henderson method IIT. Unlike ML and
REML estimations, the Henderson method 11T is a com-
putationally simple method and does not require the as-
sumption of normality. The development of this method
can be made if the model (1) is put into an appropriate
form using a coordinate-free approach ([2], [3], [1]). A
matriceal form of model (1) is

Y=AB'(X' @I+ AMX' &1, +E (5

where A’ = (M,...A;) and B = [(g....eq) are
gme xn oand pmeoxn random matrices, respectively,
From the relations (2) and (3} we obtain that

E(Y) = AB'(X' 21,

cov (vee Y =Val,

Some notations are required in the sequel [12]. Let
Lnm be the real vector space of linear transforma-
tions on R" to HA™ endowed with the ioner prod-
uct (O, D) = tr (CD') for every C, D € L),

and let R(C)  B™ be the linesr space spanned
by the columns of C € Ly, If A € Ly, and
X € Lyy are known design matrices of model (3), then

let Q={AB(X'®1,)|B € Lrym} be alinear mani-
fold of Lynn such that E{Y) e Q for Be Ly gn. In
a similar way the linear manifold © can be considered
such that E(Y) =AD" X'l )+ AX' e, 6
for every B € Lygm and A € Ly, when the ran-
dom effects are considered to be fixed effects. Ilence
Py = A[AAA and Py = [(X(X'X) ' X" \@l, are
the othogonal projections onte R{A} and R(X & I,),
respectively, it is easy to find that P = Pq & Py (see
[11]) and Py = I, @ Py (se= [6]) are the orthogonal
projections onto ) and 8, respectively. ''hen

Iﬂ;m_P2=In®MX [ﬁ)

and
Py,—P=Ms@& Py (7)

where My =T, — Py and Mx = I, — Px are the or-
thogonal projections onto the orthogonal complements
of R(A) and R{X & @), respectively. The quadratic
forms used in the generalized Henderson method III ([5])
corresponding to the model (5) will have the symmet-
rie matrices (8] and (7) and will be obtained from the
following

[':rﬂpm = Pﬂ]Ylﬂ[(rnpm = PE:]V]
= [(In & Mx)Y]'[{In ® Mx)Y] (8)
={¥YMx) (Y Mx)=MyY'VMy

and
(P2 — P)Y]' (P2 — P1)Y]
= [(M4 @ Px)Y)[(M4 & Px)Y] (9]
= (MY Px)(MaAY Px) = BxY'MaY Px

where there were used the definition of the Kronecker
operators product (P @ @)C = PCQ" (see [11]) and
the propertics of the orthogonal projections) Pa and
% to be symmetric snd idempotent operators, It is
also proved (|6]) that (8) and (7) are the matrices of
the quadratic forms corresponding to model {3) founded
by an iterstive method of estimation based on Gram-
Sclunidt orthogonalization process of design matrices in
mixed linear models. The expected values of the ran-
dom quadratic forms (8) and (9) can be found from [21]
and using [1] as

E{MxY'V My)

= Mx[(X @ I,) BAAB' (X' © I;) + n-V|My  (10)
=Mn- JHH 1‘2."4{{ =il J"r'f){ |:I;|;| & EE}MX
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faric
E(PxY M Y Px)
=Py [(X @ In)BAMAAB (X" & [m)
+itr My -V|Pyx=(n—v)-PxVPx (11}
=n—r)X &Il &E
XX @5 ® 1)

The Henderson method ITT consists in equating the qua-
dratic forms (8) amd (9) to their expected wvalues {10}
and (11), respectively. Tt was proved in [5] that the
equation obtained by this method are consistent. Then
the solution ¥, and Y. of the estimating equations

VY =n-(Iy&5)
[(XX)7 X @ L | Y MAY [X(XX)T @ L] {12)
={n—r)ly@E) + (X'X) ' 8L

are the quadratic unbiased estimatars of covariance com-
ponents. The difference between the solufion of (12) and
the estimators obtained in [24], [23] by ANOVA method
also comes from the assumption regarding the covari-
ance structure of the random effect.

3. Estimation of the individual regression coefli-
cients

a) Balanced case. Using the variability between and
within sampling units, the cstimators based on the data
from a single unit can be improved by an appropriate use
of data from the remaining units. Thus empirical Bayes
methodology will be used for finding the estimators of
fixed and random effects when the covariance matrix of
data is known or unknown by means of the posterior
expected value and posterior covariance. When the co-
varlanes components Ty and B, are konown, then the
fixed effects 5 aod che realized values of the random
vectors Mg k= 1,...1, are Lhe unknown paramelers of
model (1). The MLE of B, which is also Lhe ordinary
least squares estimator of 5,

B=[(X'X"'X @ I,]Y'A(AX A (13)

was given in [24] and [19]. Thus B is the best lin-
ear unhiased estimator of B because maximizes the
likelithood bascd on the marginal distribution of e,
k£ =1,...n The estimator of the realised value of A
is derived by the generalized Gauss-Markov theorem [13]
as

A= (X @)V — (X @ 1) Bay) {14)

which is also the cmpirical Bayes estimator of Ay, e
presacd by
Ae = E(Ag | .V, D) (15
that is the conditional mean of A given yi, the known
covariance V' of yp and the unkonown parameters 5
egtimated by (13) , & = L,...n. The expression (14)
of Ay can be found from (15) using formulas given
in [28]. Thus the estimator of the individual resression
coeflicients S, i=
G = Bap + Ay, k=1,...n (16)
with A and Ag givem by {13) and (14), respectively,
¥When the covariance matrix ¥V of data is unknown,
a two-stage estimator of S will be derived by the
following computational steps: - the covariance compo-
nents due to the random effect and the unobservable
ervora are estimatad using the peneralized version of the
Henderson method 1L Then E). and L are the snlu-
tion of (12); - the GLSE of the fixed effects B in model
(1) will be

B(V)
=[(X @ L)V HX @ L)X @ LV TV A4 4)
. {17)

where V' = (XX') &%, + 1,85, The estimated em-
pirical Bayes estimator of the realized values of random
effect Ay will be the following conditional mean
M(V) = B |y, V, B(V))
= (Xr & l‘:)t:lf'r_l [y;, = [X & Im}.g[f"r:lﬂk],
k=1,...n. The two-stage estimalor of individual re-
gression coefficients (4) of model (1) will be
Bel¥) = B(Wak + AelV), k=1,...n  (19)

Laird and Ware [18 showed that the use of a combi-
nation of an estimated empirical Bayes estimator (13)
correspouding to the random effects is agreed in the lit-
erature for some choise of V', ance ¥V is available.

(18)

b) Missing data case of model (5). The impor-
tance of studying the missing data models should be
clear to any researcher earrying out a large seale mul-
tivariate experiments. Such experiments do not alwaysa
yield complete data (i.e. with no missing observations).
Thus the researcher is frequently faced with the neces-
sity of analyzing the "ineomplete’ data. A generalisa-
tion of model (5) allows for missing data in the sense
that different individuals may not have observations at
thae same time points. In this case it is supposed that the
i individuals with m characteristics are divided into
¢ digjoint sets 5y,...5. with n,,...n. experimental
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units, respectively. On each individual in 5; measure-
ments are taken on p; < p response variates and two
different sets 5; and 5¢ can not have measurements
at the same time, although they have p; = py. Let ¥
ba the n; ® gy random matrix of observations in the
get Sy, f=1,...0. Analogous to model (§), we assume
that the growth curve model eorresponding to S, s

Y, = AB|(X'CY) @ L, + M(X'C)) @ L) + B, (20)

where Ay iz an ny % r  betwesn-individuals design
matrix, C; isan p; % p incidence matrix of (Vs and
Vsand A isan ng = gm matrix of random effocts,
i=1,...c. The rows of Y, are independent and nor-
mally distributed as

E(Y:) = AB'[(X'C)) ® I
cov(vec Yi) = Vi @ I,
= [GXX'C))oE,+I, 8%, |al,

snd ¥, and ¥ are independent for ¢ £ ', The
empirical Bayes estimators of individual regression co-
efficients in the multivariate growth curve model with
missing data can be obtained for every set 5 of obser-
valions using the formulae (16) and (19) corresponding
to model (200, or rewritting the model by means of the
VeC OpeTator as

vecY =Dvec B+ Gwvec A+vec B

whers
(X))@ Tm @Ay
D= : )
(CX)e I, 2 A,
(ChX) & 1 @ I,
0= ;

(C.X)ol,. w1,

and wvec B, wvec A and wvec E are obtained like
ver o= ((vec Yi), ... (vec ¥.)'Y. Then, assuming the
normality of the observations, the expected mean and
the positive definite covariance matrix are

Elvee Y) = Dvec B

cov(vec V) =diag (Vi & I,;)
Therefore the multivariate growth curve model with
missing data is of the form of the univariate linear re-
grossion model. A two stage estimator of individual re-
gresaion coeflicients is recommended to be used in mixed
linear models because it uses all the information con-

tained in data and takes into account the random nature
of the effecis.
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