INVERSE FINITE-TYPE RELATIONS BETWEEN SEQUENCES OF POLYNOMIALS

By

Francisco Marcellán1 & Ridha Sfaxi2

Abstract

Marcellán, F. & R. Sfaxi: Inverse finite-type relations between sequences of polynomials. Rev. Acad. Colomb. Cienc. 32(123): 245-255, 2008. ISSN 0370-3908.

Let ϕ be a monic polynomial, with deg $\phi = t \geq 0$. We say that there is a finite-type relation between two monic polynomial sequences $\{B_n\}_{n\geq 0}$ and $\{Q_n\}_{n\geq 0}$ with respect to ϕ , if there exists $(s,r)\in\mathbb{N}^2$, $r\geq s$, such that

$$\phi(x)Q_n(x) = \sum_{\nu=n-s}^{n+t} \lambda_{n,\nu} B_{\nu}(x), \ n \ge s, \text{ with } \lambda_{r,r-s} \ne 0. \quad (*)$$

The corresponding inverse finite-type relation of (*) consists in a finite-type relation as follows:

$$\Omega_s^*(x;n)B_n(x) = \sum_{\nu=n-t}^{n+s} \theta_{n,\nu}^* Q_{\nu}(x), \ n \ge t, \text{ with } \theta_{r+t,r}^* \ne 0,$$

where $\deg \Omega_s^*(x;n) = s, n \geq t$. When the orthogonality of the two previous sequences is assumed, the inverse finite-type relation is always possible [11]. This work essentially studies the case when only the sequence $\{B_n\}_{n\geq 0}$ is orthogonal. In fact, we find necessary and sufficient conditions leading to inverse finite-type relations. In particular, the structure relation characterizing semi-classical sequences is a special case of the general situation. Some examples will be analyzed.

Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain. Correo electrónico: pacomarc@ing.uc3m.es

² Département des Méthodes Quantitatives, Institut Supérieur de Gestion de Gabès, Avenue Jilani Habib 6002, Gabès, Tunisie. Correo electrónico: ridhasfaxi@yahoo.fr

²⁰⁰⁰ Mathematics Subject Classification: 42C05, 33C45.

Key words: Finite-type relations, recurrence relations, orthogonal polynomials, semi-classical polynomials.

Resumen

Sea ϕ un polinomio mónico, con deg $\phi = t \geq 0$. Decimos que hay relación de tipo finito entre dos sucesiones de polinomios mónicos $\{B_n\}_{n\geq 0}$ y $\{Q_n\}_{n\geq 0}$ con respecto a ϕ , si existe $(s,r)\in\mathbb{N}^2,\ r\geq s$, tal que

$$\phi(x)Q_n(x) = \sum_{\nu=n-s}^{n+t} \lambda_{n,\nu} B_{\nu}(x), \ n \ge s, \text{ with } \lambda_{r,r-s} \ne 0. \quad (*)$$

La correspondiente relación de tipo finito de (*) consiste en una relación de tipo finito como sigue:

$$\Omega_s^*(x;n)B_n(x) = \sum_{\nu=n-t}^{n+s} \theta_{n,\nu}^* Q_{\nu}(x), \ n \ge t, \text{ with } \theta_{r+t,r}^* \ne 0,$$

donde $\deg \Omega_s^*(x;n) = s, n \geq t$. Cuando se supone la ortogonalidad de las dos sucesiones previas, la relación de tipo finito inversa siempre es posible [11]. En este trabajo se estudia el caso en que solo la sucesión $\{B_n\}_{n\geq 0}$ es ortogonal. De hecho, encontramos condiciones necesarias y suficientes que conducen a relaciones de tipo finito inversas. En particular, la la relación de estructura que caracteriza a las sucesiones semiclásicas es un caso especial de la situación general. Se estudian varios ejemplos.

Palabras clave: Relaciones de tipo finito, relaciones de recurrencia, polinomios ortogonales, polinomios semi clásicos.

1. Introduction and background

Let \mathbb{P} be the linear space of complex polynomials in one variable and \mathbb{P}' its topological dual space. We denote by $\langle u, f \rangle$ the action of $u \in \mathbb{P}'$ on $f \in \mathbb{P}$ and by $\langle u \rangle_n := \langle u, x^n \rangle$, $n \geq 0$, the moments of u with respect to the polynomial sequence $\{x^n\}_{n\geq 0}$.

We will introduce some useful operations in \mathbb{P}' . For any linear functional u and any polynomial h, let Du = u' and hu be the linear functionals defined by duality

$$\langle u', f \rangle := -\langle u, f' \rangle, \qquad f \in \mathbb{P},$$

 $\langle hu, f \rangle := \langle u, hf \rangle, \qquad f, h \in \mathbb{P}.$

Let $\{B_n\}_{n\geq 0}$ be a monic polynomial sequence (MPS), $\deg B_n = n, \ n\geq 0$, and $\{u_n\}_{n\geq 0}$ its dual sequence, $u_n\in \mathbb{P}', \ n\geq 0$, defined by $\langle u_n,B_m\rangle:=\delta_{n,m},\ n,\ m\geq 0$, where $\delta_{n,m}$ is the Kronecker symbol.

Let recall the following results [11].

Lemma 1.1. For any $u \in \mathbb{P}'$ and any integer $m \geq 1$, the following statements are equivalent.

i)
$$\langle u, B_{m-1} \rangle \neq 0$$
, $\langle u, B_n \rangle = 0$, $n \geq m$.

ii) There exist
$$\lambda_{\nu} \in \mathbb{C}$$
, $0 \le \nu \le m-1$, $\lambda_{m-1} \ne 0$, such that $u = \sum_{\nu=0}^{m-1} \lambda_{\nu} u_{\nu}$.

As a consequence, the dual sequence $\{u_n^{[1]}\}_{n\geq 0}$ of the sequence $\{B_n^{[1]}\}_{n\geq 0}$, where $B_n^{[1]}(x)=(n+1)^{-1}B'_{n+1}(x)$, $n\geq 0$, satisfies

$$(u_n^{[1]})' = -(n+1)u_{n+1}, \ n \ge 0. \tag{1.1}$$

Definition 1.2. The linear functional u is said to be regular if there exists a monic polynomial sequence $\{B_n\}_{n\geq 0}$ such that

$$\langle u, B_n B_m \rangle = b_n \delta_{n,m}, \quad n, \ m \ge 0, \tag{1.2}$$

where

$$b_n = \langle u, B_n^2 \rangle \neq 0, \ n \ge 0. \tag{1.3}$$

Then the sequence $\{B_n\}_{n\geq 0}$ is said to be orthogonal (MOPS) with respect to u.

As a straightforward consequence we get

• The linear functional can be represented by $u = (u)_0 u_0$, and the following relations hold

$$u_n = b_n^{-1} B_n u, \ n \ge 0. \tag{1.4}$$

•• The sequence $\{B_n\}_{n\geq 0}$ satisfies the three-term recurrence relation

$$B_{n+2}(x) = (x - \beta_{n+1})B_{n+1}(x) - \gamma_{n+1}B_n(x), \ n \ge 0,$$

$$B_1(x) = x - \beta_0, \quad B_0(x) = 1,$$
(1.5)

where $\gamma_{n+1} \neq 0$, n > 0 (see [4]).

In the sequel and under the assumption of the previous definition, we need to put

$$b_{n,m}^{\nu} = b_m^{-1} \langle u, x^{\nu} B_m B_n \rangle, \quad (n, \nu, m) \in \mathbb{N}^3.$$
 (1.6)

In particular, one has

$$b_{n,m}^{\nu} = \begin{cases} 0, & \text{if } \nu + m < n, & 0 \le m < n, \nu \ge 0, \\ (b_n/b_m), & \text{if } \nu = n - m, & 0 \le m \le n. \end{cases}$$

Let ϕ be a monic polynomial, with deg $\phi = t \geq 0$. For any MPS $\{B_n\}_{n\geq 0}$ and $\{Q_n\}_{n\geq 0}$ with dual sequences $\{u_n\}_{n\geq 0}$ and $\{v_n\}_{n\geq 0}$ respectively, the following formula always holds

$$\phi(x)Q_n(x) = \sum_{\nu=0}^{n+t} \lambda_{n,\nu} B_{\nu}(x), \ n \ge 0, \tag{1.7}$$

where $\lambda_{n,\nu} = \langle u_{\nu}, \phi Q_n \rangle$, $0 \le \nu \le n + t$, $n \ge 0$.

Definition 1.3. ([12]) If there exists an integer $s \ge 0$ such that

$$\phi(x)Q_n(x) = \sum_{\nu=n-s}^{n+t} \lambda_{n,\nu} B_{\nu}(x), \ n \ge s, \tag{1.8}$$

and

$$\exists \ r \ge s, \ \lambda_{r,r-s} \ne 0, \tag{1.9}$$

then, we shall say that (1.8) - (1.9) gives a finite-type relation between $\{B_n\}_{n\geq 0}$ and $\{Q_n\}_{n\geq 0}$, with respect to ϕ .

When instead of (1.9), we take

$$\lambda_{n,n-s} \neq 0, \ n \geq s, \tag{1.9'}$$

we shall say that (1.8) - (1.9') is a strictly finite-type relation.

The corresponding inverse finite-type relation of (1.8) - (1.9) consists in establishing, whenever it is possible, a finite-type relation between $\{Q_n\}_{n\geq 0}$ and $\{B_n\}_{n\geq 0}$, as follows

$$\Omega_s^*(x;n)B_n(x) = \sum_{\nu=-t}^{n+s} \theta_{n,\nu}^* Q_{\nu}(x), \ n \ge t, \qquad (1.10)$$

 $\theta_{r+t,r}^* \neq 0$, where $\{\Omega_s^*(x;n)\}_{n\geq t}$ is a MPS $\deg \Omega_s^*(x;n) = s, n \geq t$, and

$$(\theta_{n,\nu}^*)_{\nu=n-t}^{n+s}, n \ge t,$$
 (1.11)

a system of complex numbers (SCN), with $\theta_{n,n+s}^* = 1$, $n \ge t$.

When both two sequences are orthogonal, the inverse relation is always possible. In this case, the polynomials $\Omega_s^*(x;n)$, $n \geq 0$, are independent of n, (see [12], Proposition 2.4). As a current example, we can mention the two structure relations characterizing the classical polynomials, (Hermite, Laguerre, Bessel, Jacobi, see [11]), which could solely be two inverse finite-type relations.

In other studies, we find several situations where one of the two sequences is orthogonal. For example, the structure relations characterizing semi-classical sequences associated with Hahn's operators $L_{q,\omega}$, with parameters q and ω , [9]. The Coherent pairs and Diagonal sequences are also examples of finite type-relations [7, 12, 13, 14]. But the inverse relations corresponding to other finite-type relations are not yet considered.

The paper essentially gives a necessary and sufficient condition allowing the existence of the inverse finite-type relations when the orthogonality of the sequence $\{B_n\}_{n\geq 0}$ is assumed. From now on, it would be necessary to study the case where the sequence $\{Q_n\}_{n\geq 0}$ is orthogonal. It would be very useful to deal with many other situations like General Coherent pairs, see [6,8] in the framework of Sobolev inner products.

2. A basic result

We use this section to introduce some auxiliary result for the proof of the main theorem in section 3.

Lemma 2.1. Suppose $\{B_n\}_{n\geq 0}$ is a MOPS and $\{Q_n\}_{n\geq 0}$ fulfils (1.8)-(1.9), where t=0 and $s\geq 1$. For any SCN $(\theta_{n,\nu})_{\nu=n}^{n+s}$, $n\geq 0$, where $\theta_{n,n+s}=1$, $n\geq 0$, and $\theta_{r,r}\neq 0$, there exist a unique MPS $\{\Omega_s(x;n)\}_{n\geq 0}$, $\deg \Omega_s(x;n)=s$, $n\geq 0$, and a SCN $(\zeta_{n,\nu}^{[0]})_{\nu=n-s}^{n-1}$, $n\geq 0$, such that

$$\sum_{\nu=n}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{i=n-s}^{n+s} \theta_{n,i}^{[0]} B_i(x)$$

$$=\Omega_s(x;n)B_n(x)+\sum_{\nu=n-s}^{n-1}\zeta_{n,\nu}^{[0]}B_\nu(x),\ n\geq 0\ ,\ (2.1)$$

where

$$\theta_{n,i}^{[0]} = \sum_{\nu = \max(n,i)}^{\min(n,i)+s} \theta_{n,\nu} \lambda_{\nu,i}, \quad n-s \le i \le n+s, n \ge 0, \quad (2.2)$$

$$\theta_{r,r-s}^{[0]} = \theta_{r,r} \lambda_{r,r-s} \neq 0,$$
 (2.3)

$$\sum_{\nu=n}^{m+s} \theta_{n,\nu} \lambda_{\nu,m} = b_m^{-1} \langle u, \Omega_s(x;n) B_n B_m \rangle + \zeta_{n,m}^{[0]},$$

$$n-s \le m \le n-1, n \ge 0, (2.4)$$

$$\sum_{\nu=m}^{n+s} \theta_{n,\nu} \lambda_{\nu,m} = b_m^{-1} \langle u, \Omega_s(x; n) B_n B_m \rangle,$$

$$n \le m \le n + s - 1, \quad n \ge 0.$$
(2.5)

Proof. Let $(\theta_{n,\nu})_{\nu=n}^{n+s}$, $n \geq 0$, where $\theta_{n,n+s} = 1$, $n \geq 0$, and $\theta_{r,r} \neq 0$, be a SCN. From (1.8) – (1.9), with t = 0 and $s \geq 1$, we get

$$\sum_{\nu=n}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{\nu=n}^{n+s} \theta_{n,\nu} \sum_{i=\nu-s}^{\nu} \lambda_{\nu,i} B_{i}(x)$$

$$= \sum_{\nu=n}^{n+s} \theta_{n,\nu} \sum_{i=n-s}^{n+s} \chi_{i,\nu} \lambda_{\nu,i} B_{i}(x), \ n \ge 0,$$

where, for each pair of integers (i, ν) such that $n - s \le i \le n + s$ and $n \le \nu \le n + s$, we took

$$\chi_{i,\nu} = \begin{cases} 1, & \text{if } \nu - s \leq i \leq \nu, \\ 0, & \text{otherwise.} \end{cases}$$

The permutation of these two sums yields

$$\sum_{\nu=n}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{i=n-s}^{n+s} \theta_{n,i}^{[0]} B_i(x),$$

where

$$\theta_{n,i}^{[0]} = \sum_{\nu = \max(n,i)}^{\min(i+s,n+s)} \theta_{n,\nu} \lambda_{\nu,i} ,$$

$$n - s \le i \le n+s, \ n \ge 0 , \qquad (2.6)$$

$$\theta_{r,r-s}^{[0]} = \theta_{r,r}\lambda_{r,r-s} \neq 0.$$

Hence, (2.2) and (2.3) are valid.

The Euclidean division by $B_n(x)$ in the right hand side in (2.6) gives

$$\sum_{i=n-s}^{n+s} \theta_{n,i}^{[0]} B_i(x) = \Omega_s(x;n) B_n(x) + \sum_{\nu=0}^{n-1} \zeta_{n,\nu}^{[0]} B_{\nu}(x), \ n \ge 0.$$

Multiplying by $B_m(x)$ and using the orthogonality of $\{B_n\}_{n\geq 0}$,

$$\sum_{i=n-s}^{n+s} \theta_{n,i}^{[0]} \delta_{m,i} = b_m^{-1} \langle u, \Omega_s(x;n) B_n B_m \rangle + \sum_{\nu=0}^{n-1} \zeta_{n,\nu}^{[0]} \delta_{m,\nu}.$$

In particular, for $0 \le m \le n - s - 1$ and $n \ge s + 1$, it follows that $\zeta_{n,m}^{[0]} = 0$. Hence, (2.1) holds. Moreover, for $n - s \le m \le n - 1$ and $n \ge s$, we recover (2.4).

Finally, for $n \le m \le n+s-1$ and $n \ge 0$, we deduce (2.5).

Proposition 2.2. Assume $\{B_n\}_{n\geq 0}$ is a MOPS and $\{Q_n\}_{n\geq 0}$ fulfils (1.8) - (1.9), with $t\geq 1$. For any SCN $(\theta_{n,\nu})_{\nu=n-t}^{n+s}$, $n\geq 0$, where $\theta_{n,n+s}=1$, $n\geq 0$ and $\theta_{r+t,r}\neq 0$, there exist a unique MPS $\{\Omega_{s+t}(x;n)\}_{n\geq 0}$, where $\deg \Omega_{s+t}(x;n)=s+t$, $n\geq 0$, and a SCN $(\zeta_{n,\nu}^{[t]})_{\nu=n-s-t}^{n-1}$, $n\geq 0$, such that for every integer $n\geq 0$

$$\phi(x) \sum_{\nu=n-t}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{i=n-s-t}^{n+s+t} \theta_{n,i}^{[t]} B_{i}(x)$$

$$= \Omega_{s+t}(x; n) B_{n}(x)$$

$$+ \sum_{\nu=n-s-t}^{n-1} \zeta_{n,\nu}^{[t]} B_{\nu}(x), \quad (2.7)$$

where

$$\theta_{n,i}^{[t]} = \sum_{\nu = \max(n,i)}^{\min(n,i)+s+t} \theta_{n,\nu-t} \lambda_{\nu-t,i},$$

$$n - s - t \le i \le n + s + t, \qquad (2.8)$$

$$\theta_{r+t,r-s}^{[t]} = \theta_{r+t,r} \lambda_{r,r-s} \neq 0,$$
 (2.9)

$$\sum_{\nu=n}^{n+s+t} \theta_{n,\nu-t} \lambda_{\nu-t,m} = b_m^{-1} \langle u, \Omega_{s+t}(x; n) B_n B_m \rangle + \zeta_{n,m}^{[t]},$$

$$n - s - t \le m \le n - 1, \quad (2.10)$$

$$\sum_{\nu=m}^{n+s+t} \theta_{n,\nu-t} \lambda_{\nu-t,m} = b_m^{-1} \langle u, \Omega_{s+t}(x;n) B_n B_m \rangle,$$

$$n \le m \le n+s+t-1. \quad (2.11)$$

Proof. The case t=0 was analyzed in Lemma 2.1. Let us take $t \ge 1$. Consider the MPS $\{P_n\}_{n\ge t}$ defined by

$$P_{n+t}(x) = \phi(x)Q_n(x), \ n \ge 0,$$
 (2.12)

From (1.8) - (1.9), we have

$$P_n(x) = \sum_{\nu=n-t-s}^n \tilde{\lambda}_{n,\nu} B_{\nu}(x), \ n \ge t,$$

where $\tilde{\lambda}_{n,\nu} = \lambda_{n-t,\nu}$, $n-t-s \leq \nu \leq n$, $n \geq t$, and $\tilde{\lambda}_{t+r,r-s} \neq 0$. Now, let $(\theta_{n,\nu})_{\nu=n-t}^{n+s}$, $n \geq 0$, where $\theta_{n,n+s} = 1$, $n \geq 0$, and $\theta_{r+t,r} \neq 0$, be a SCN. One has

$$\phi(x) \sum_{\nu=n-t}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{\nu=n-t}^{n+s} \theta_{n,\nu} P_{\nu+t}(x)$$

$$= \sum_{\nu=n}^{n+t+s} \tilde{\theta}_{n,\nu} P_{\nu}(x), \ n \ge 0, \ (2.13)$$

where $\tilde{\theta}_{n,\nu} = \theta_{n,\nu-t}$, $n \le \nu \le n+t+s$, $n \ge 0$. Obviously, $(\tilde{\theta}_{n,\nu})_{\nu=n}^{n+s+t}$, $n \ge 0$, is a SCN such that

$$\tilde{\theta}_{n,n+s+t} = \theta_{n,n+s} = 1, \ n \geq 0, \quad \tilde{\theta}_{r+t,r+t} = \theta_{r+t,r} \neq 0.$$

But from Lemma 2.1, there exist a unique MPS $\{\Omega_{t+s}(x;n)\}_{n\geq 0}$ and a SCN $(\zeta_{n,\nu}^{[t]})_{\nu=n-t-s}^{n-1}$, $n\geq 0$, such that

$$\sum_{\nu=n}^{n+t+s} \tilde{\theta}_{n,\nu} P_{\nu}(x) = \sum_{i=n-t-s}^{n+t+s} \theta_{n,i}^{[t]} B_{i}(x)$$

$$= \Omega_{t+s}(x;n) B_{n}(x) + \sum_{\nu=n-t-s}^{n-1} \zeta_{n,\nu}^{[t]} B_{\nu}(x), \quad (2.14)$$

for every integer $n \geq 0$, where

$$\begin{split} \theta_{n,i}^{[t]} &= \sum_{\nu = \max(n,i)}^{\min(n,i)+t+s} \tilde{\theta}_{n,\nu} \tilde{\lambda}_{\nu,i}, \ n-t-s \leq i \leq n+t+s, \\ \theta_{r+t,r-s}^{[t]} &= \tilde{\theta}_{r+t,r+t} \tilde{\lambda}_{r+t,r-s} \neq 0, \\ \sum_{\nu = n}^{m+t+s} \tilde{\theta}_{n,\nu} \tilde{\lambda}_{\nu,m} &= b_m^{-1} \langle u, \Omega_{t+s}(x;n) B_n B_m \rangle + \zeta_{n,m}^{[t]}, \\ n-t-s \leq m \leq n-1, \\ \sum_{\nu = m}^{n+t+s} \tilde{\theta}_{n,\nu} \tilde{\lambda}_{\nu,m} &= b_m^{-1} \langle u, \Omega_{t+s}(x;n) B_n B_m \rangle, \\ n < m < n+t+s-1. \end{split}$$

Finally, by using (2.13), (2.14), and taking into account the expressions of $\tilde{\lambda}_{n,\nu}$ and $\tilde{\theta}_{n,\nu}$, we find the desired results.

3. A matrix approach and main results

In this section, we will work under the assumptions of the Proposition 2.2 and we will give a matrix approach to our problem.

If $\Omega_{t+s}(x;n) = \sum_{\nu=0}^{t+s} v_{n,\nu} x^{\nu}$, $n \geq 0$, where $v_{n,t+s} = 1$, then relation (2.10) reads

$$\sum_{\nu=n}^{m+s+t} \lambda_{\nu-t,m} \theta_{n,\nu-t} = \sum_{\nu=0}^{t+s-1} b_{n,m}^{\nu} v_{n,\nu} + \zeta_{n,m}^{[t]} + b_{n,m}^{s+t},$$

$$n-s-t \le m \le n-1,$$

or, alternatively,

$$\begin{split} \sum_{j=1}^{m+s+t-n+1} \lambda_{j+n-t-1,m} \theta_{n,j+n-t-1} \\ &= \sum_{j=1}^{t+s} b_{n,m}^{j-1} v_{n,j-1} + \zeta_{n,m}^{[t]} + b_{n,m}^{s+t}, \end{split}$$

for every $n-s-t \le m \le n-1$..

Replacing m by i + n - s - t - 1, we get

$$\sum_{j=1}^{i} k_{i,j}^{n} \Theta_{n,j} = \sum_{j=1}^{t+s} t_{i,j}^{n} V_{n,j} + \zeta_{n,i+n-s-t-1}^{[t]} + b_{n,i+n-s-t-1}^{s+t}, 1 \le i \le s+t,$$

where for i, j = 1, 2, ..., s + t,

$$k_{i,j}^n = \left\{ \begin{array}{l} \lambda_{j+n-t-1,i+n-s-t-1}, \ 1 \leq j \leq i \\ 0, \quad \text{otherwise} \,, \end{array} \right.$$

and $t_{i,j}^n = b_{n,i+n-s-t-1}^{j-1}$,

$$\Theta_{n,j} = \theta_{n,j+n-t-1}$$
, and $V_{n,j} = v_{n,j-1}$.

So we can write it as

$$\mathbf{K}_n\Theta_n = \mathbf{T}_nV_n + W_n + E_n, \ n \ge 0, (3.1)$$

where

$$\mathbf{K}_{n} = \left(k_{i,j}^{n}\right)_{1 \leq i,j \leq s+t} , \quad \mathbf{T}_{n} = \left(t_{i,j}^{n}\right)_{1 \leq i,j \leq s+t},$$

$$\Theta_{n} = \left(\Theta_{n,1}, \Theta_{n,2}, ..., \Theta_{n,s+t}\right)^{T},$$

$$V_{n} = \left(V_{n,1}, V_{n,2}, ..., V_{n,s+t}\right)^{T},$$

$$W_{n} = \left(\zeta_{n,n-s-t}^{[t]}, \zeta_{n,n+1-s-t}^{[t]}, ..., \zeta_{n,n-1}^{[t]}\right)^{T}, \quad \text{and}$$

 $E_n = \left(b_{n,n-s-t}^{s+t}, b_{n,n+1-s-t}^{s+t}, ..., b_{n,n-1}^{s+t}\right)^T.$

In the same way, using $\theta_{n,n+s} = 1$, (2.11) can be written as

$$\sum_{\nu=m}^{n+s+t-1} \lambda_{\nu-t,m} \theta_{n,\nu-t} = \sum_{\nu=0}^{t+s-1} b_{n,m}^{\nu} v_{n,\nu} + b_{n,m}^{s+t} - \lambda_{n+s,m},$$

$$n \le m \le n+s+t-1,$$

or, equivalently,

$$\sum_{j=m-n+1}^{s+t} \lambda_{j+n-t-1,m} \theta_{n,j+n-t-1} = \sum_{j=1}^{t+s} b_{n,m}^{j-1} v_{n,j-1} + b_{n,m}^{s+t} - \lambda_{n+s,m},$$

for every $n \le m \le n+s+t-1$. Replacing m by i+n-1, we get

$$\sum_{j=i-1}^{t+s} m_{i,j}^n \Theta_{n,j} = \sum_{j=1}^{t+s} s_{i,j}^n V_{n,j} + b_{n,i+n-1}^{s+t} - \lambda_{n+s,i+n-1},$$

$$1 \le i \le s+t,$$

where for i, j = 1, 2, ..., s + t,

$$\begin{split} m^n_{i,j} := \left\{ & \quad \lambda_{j+n-t-1,i+n-1}, \ 1 \leq i \leq j \\ & \quad 0, \quad \text{otherwise}, \\ s^n_{i,j} := \left\{ & \quad b^{j-1}_{n,i+n-1}, \ 1 \leq i \leq j \\ & \quad 0, \quad \text{otherwise}. \end{array} \right. \end{split}$$

Thus, we can use the matrix representation

$$\mathbf{M}_n \Theta_n = \mathbf{S}_n V_n + F_n, \ n \ge 0, \tag{3.2}$$

where

$$\mathbf{M}_n = \left(m_{i,j}^n\right)_{1 \leq i,j \leq s+t} \quad , \quad \mathbf{S}_n = \left(s_{i,j}^n\right)_{1 \leq i,j \leq s+t},$$

and

$$F_{n} = \left(b_{n,n}^{s+t} - \lambda_{n+s,n}, b_{n,n+1}^{s+t} - \lambda_{n+s,n+1}, \dots, b_{n,n+s+t-1}^{s+t} - \lambda_{n+s,n+s+t-1}\right)^{T}.$$

Our data are Θ_n , E_n , F_n , M_n , S_n , T_n , K_n and our unknowns are V_n and W_n .

From (3.2), we get

$$V_n = \mathbf{S}_n^{-1}(\mathbf{M}_n \Theta_n - F_n).(3.3)$$

Thus, substituting in (3.1) we get $\mathbf{K}_n \Theta_n - W_n - E_n = \mathbf{T}_n \mathbf{S}_n^{-1} (\mathbf{M}_n \Theta_n - F_n)$, i.e,

$$W_n = (\mathbf{K}_n - \mathbf{T}_n \mathbf{S}_n^{-1} \mathbf{M}_n) \Theta_n + \mathbf{T}_n \mathbf{S}_n^{-1} F_n - E_n.$$

As a consequence, for every choice of Θ_n , we get W_n . From (3.3), we deduce V_n . On the other hand, there exists a one-to-one correspondence between the vectors W_n and Θ_n if and only if the matrix of dimension s + t, $\mathbf{K}_n - \mathbf{T}_n \mathbf{S}_n^{-1} \mathbf{M}_n$, is nonsingular.

Under such a condition, there exists a unique choice for Θ_n such that $W_n = 0$. Thus, we get

$$\Theta_n = \left(\mathbf{K}_n - \mathbf{T}_n \mathbf{S}_n^{-1} \mathbf{M}_n\right)^{-1} (E_n - \mathbf{T}_n \mathbf{S}_n^{-1} F_n),$$

and from (3.3), $V_n = \mathbf{S}_n^{-1} \mathbf{M}_n \Theta_n - \mathbf{S}_n^{-1} F_n$. Then,

$$V_n = \left(\mathbf{K}_n \mathbf{M}_n^{-1} \mathbf{S}_n - \mathbf{T}_n\right)^{-1} E_n$$
$$- \left[\left(\mathbf{K}_n \mathbf{M}_n^{-1} \mathbf{S}_n - \mathbf{T}_n\right)^{-1} \mathbf{T}_n + \mathbf{I}_{s+t} \right] \mathbf{S}_n^{-1} F_n,$$

where I_{s+t} is the unit matrix. Hence, the polynomial $\Omega_{s+t}(x;n)$ is explicitly given.

Let introduce

$$\Delta_n(t,s) = \det(\mathbf{K}_n - \mathbf{T}_n \mathbf{S}_n^{-1} \mathbf{M}_n), \ n \ge 0.$$

Thus, we have proved the following result

Proposition 3.1. Assume $\{B_n\}_{n\geq 0}$ is a MOPS and $\{Q_n\}_{n\geq 0}$ fulfils (1.8) – (1.9). For a fixed integer $p\geq t+1$, the following statements are equivalent.

- i) $\Delta_n(t,s) \neq 0, n \geq p$.
- ii) There exist a unique SCN $(\theta_{n,\nu}^*)_{\nu=n-t}^{n+s}$, $n \geq p$, with $\theta_{n,n+s}^* = 1$, $n \geq p$, and $\theta_{r+t,r}^* \neq 0$, if $p \leq r+t$, and a unique MPS $\{\Omega_{s+t}^*(x;n)\}_{n\geq p}$, $\deg \Omega_{s+t}^*(x;n) = s+t$, $n \geq p$, such that

$$\Omega_{s+t}^*(x;n)B_n(x) = \phi(x) \sum_{\nu=n-t}^{n+s} \theta_{n,\nu}^* Q_{\nu}(x), \qquad (3.4)$$

for $n \geq p$.

Our main result is

Theorem 3.2. Let $\{B_n\}_{n\geq 0}$ be a MOPS and $\{Q_n\}_{n\geq 0}$ be the MPS satisfying (1.8) – (1.9). For each fixed integer $p\geq t+1$, if we suppose that $\phi(x)$ and $B_n(x)$ are coprime for every $n\geq p$, then the following statements are equivalent.

- i) $\Delta_n(t,s) \neq 0, n \geq p$.
- ii) There exist a unique SCN $(\theta_{n,\nu}^*)_{\nu=n-t}^{n+s}$, $n \geq p$, where $\theta_{n,n+s}^* = 1$, $n \geq p$, and $\theta_{r+t,r}^* \neq 0$ if $p \leq r+t$, and a unique MPS $\{\Omega_s^*(x;n)\}_{n\geq p}$, $\deg \Omega_s^*(x;n) = s, n \geq p$, such that

$$\Omega_s^*(x;n)B_n(x) = \sum_{\nu=n-t}^{n+s} \theta_{n,\nu}^* Q_{\nu}(x), \ n \ge p.$$
 (3.5)

Proof. Taking into account $\phi(x)$ and $B_n(x)$ are coprime for every $n \geq p$, from (3.4) we deduce that ϕ divides $\Omega_{s+t}^*(x;n), n \geq p$. So, $\Omega_{s+t}^*(x;n) = \phi(x)\Omega_s^*(x;n), n \geq p$. Hence, the desired result follows.

The orthogonal polynomial sequence $\{B_n\}_{n\geq 0}$ and the polynomial sequence $\{Q_n\}_{n\geq 0}$ can be related by a general finite-type relation (see [1]). It reads as follows

$$F(Q_n, ..., Q_{n-l}) = G(B_n, ..., B_{n-s}),$$

where F and G are fixed functions.

When F and G are linear functions, some situations dealing with the inverse problem have been analyzed in [1,2]. There, necessary and sufficient conditions in order to $\{Q_n\}_{n>0}$ be orthogonal are obtained.

This kind of linear relations reads as follows.

There exists $(l, s, r) \in \mathbb{N}^3$, with $r \geq \tilde{s} = \max(l, s)$ such that

$$\sum_{\nu=n-l}^{n} \zeta_{n,\nu} Q_{\nu}(x) = \sum_{\nu=n-s}^{n} \lambda_{n,\nu} B_{\nu}(x), \ n \ge \tilde{s}, \quad (3.6)$$

with $\zeta_{r,r-l}\lambda_{r,r-s} \neq 0$. Here, $\zeta_{n,n} = \lambda_{n,n} = 1, n \geq \tilde{s}$.

More recently, in [5], A. M. Delgado and F. Marcellán exhaustively describe all the set of pairs of quasidefinite (regular) linear functionals such that their corresponding sequences of monic polynomials $\{P_n\}_{n\geq 0}$ and $\{R_n\}_{n\geq 0}$ are related by a differential expression

$$P_n(x) + s_n P_{n-1}(x) = R_n^{[1]}(x) + t_n R_{n-1}^{[1]}(x), \ n \ge 1,$$
 where $t_n \ne 0$, for every $n \ge 1$, and with the technical

condition $t_1 \neq s_1$.

Notice that in general $\{R_n^{[1]}\}_{n\geq 0}$ is not a MOPS.

In the same context of our contribution, we show that the corresponding inverse finite-type relation between two sequences satisfying (3.6) is possible under certain conditions.

Indeed, let consider the MPS $\{C_n\}_{n>\tilde{s}}$ given by

$$C_n(x) = \sum_{\nu=n-s}^{n} \lambda_{n,\nu} B_{\nu}(x), \qquad n \ge \tilde{s}. \tag{3.7}$$

With the finite-type relation between the sequences $\{C_n\}_{n\geq \tilde{s}}$ and $\{B_n\}_{n\geq \tilde{s}}$, we can associate the determinants $\Delta_n(0,s)$, $n\geq \tilde{s}$. So, we have.

Corollary 3.3. Let $\{B_n\}_{n\geq 0}$ be a MOPS and $\{Q_n\}_{n\geq 0}$ be the MPS satisfying (3.6). For each fixed integer

 $p \geq \max(s, l, 1)$, if $\Delta_n(0, s) \neq 0$, $n \geq p$, then there exist a unique SCN $(\zeta_{n,\nu}^*)_{\nu=n-l}^{n+s}$, $n \geq p$, where $\zeta_{n,n+s}^* = 1$, $n \geq p$, and $\zeta_{r,r-l}^* \neq 0$ if $p \leq r$, and a unique MPS $\{\Omega_s^*(x;n)\}_{n\geq p}$, $\deg \Omega_s^*(x;n) = s$, $n \geq p$, such that

$$\Omega_s^*(x;n)B_n(x) = \sum_{\nu=n-l}^{n+s} \zeta_{n,\nu}^* Q_{\nu}(x), \ n \ge p.$$
 (3.8)

Proof. From Theorem 3.2, with t=0, there exists the corresponding inverse finite-type relation associated with the relation (3.7) if and only if $\Delta_n(0,s) \neq 0$, $n \geq p$. Equivalently, there exist a unique SCN $(\theta^*_{n,\nu})^{n+s}_{\nu=n}$, $n \geq p$, where $\theta^*_{n,n+s}=1$, $n \geq p$, and $\theta^*_{r,r} \neq 0$, if $p \leq r$, and a unique MPS $\{\Omega^*_s(x;n)\}_{n\geq p}$, $\deg \Omega^*_s(x;n)=s$, $n \geq p$, such that

$$\Omega_s^*(x;n)B_n(x) = \sum_{\nu=n}^{n+s} \theta_{n,\nu}^* C_{\nu}(x), \ n \ge p.$$
 (3.9)

But from (3.6) and (3.7), the above expression becomes

$$\Omega_s^*(x;n)B_n(x) = \sum_{\nu=n}^{n+s} \theta_{n,\nu}^* \sum_{i=\nu-l}^{\nu} \zeta_{\nu,i}Q_i(x)
= \sum_{\nu=n}^{n+s} \theta_{n,\nu}^* \sum_{i=n-l}^{n+s} \tilde{\chi}_{i,\nu}\zeta_{\nu,i} Q_i(x), \quad n \ge p,$$

where, for each pair of integers (i, ν) such that $n - l \le i \le n + s$ and $n \le \nu \le n + s$, we took

$$\tilde{\chi}_{i,\nu} = \begin{cases} 1, & \text{if, } \nu - l \leq i \leq \nu, \\ 0, & \text{otherwise.} \end{cases}$$

The permutation inside these two sums yields

$$\Omega_s^*(x;n)B_n(x) = \sum_{i=n-l}^{n+s} \zeta_{n,i}^*Q_i(x),$$

where

$$\zeta_{n,i}^* = \sum_{\nu=\max(n,i)}^{\min(i+l,n+s)} \theta_{n,\nu}^* \zeta_{\nu,i},$$

if $n - l \le i \le n + s$, $n \ge p$, and

$$\zeta_{r,r-l}^* = \ \theta_{r,r}^* \zeta_{r,r-l} \neq 0,$$

if $p \leq r$.

4. The case: (t,s) = (0,1)

Let $\{B_n\}_{n\geq 0}$ be a MOPS with respect to the linear functional u and satisfying the three-term recurrence relation (1.5).

Consider the following finite-type relation between $\{B_n\}_{n\geq 0}$ and $\{Q_n\}_{n\geq 0}$, with index s=1, with respect to $\phi(x)=1$,

$$Q_n(x) = B_n(x) + \lambda_{n,n-1} B_{n-1}(x), \ n \ge 0, \tag{4.1}$$

$$\exists r \ge 1, \qquad \lambda_{r,r-1} \ne 0.$$
 (4.2)

From Lemma 2.1, for every set of complex numbers, $\theta_{n,n}$, $n \geq 0$, with $\theta_{r,r} \neq 0$, there exists a unique MPS $\{\Omega_1(x;n)\}_{n\geq 0}$, where $\Omega_1(x;n) = x + v_{n,0}$, $n \geq 0$, and a unique set of complex numbers, $\zeta_{n,n-1}^{[0]}$, $n \geq 0$, such that

$$Q_{n+1}(x) + \theta_{n,n}Q_n(x) = \Omega_1(x;n)B_n(x) + \zeta_{n,n-1}^{[0]}B_{n-1}(x), \ n \ge 0, \quad (4.3)$$

where

$$\begin{cases} \lambda_{n,n-1}\theta_{n,n} &= \zeta_{n,n-1}^{[0]} + \gamma_n, \ n \ge 1, \\ \theta_{n,n} - v_{n,0} &= -\lambda_{n+1,n} + \beta_n, \ n \ge 0. \end{cases}$$
(4.4)

The determinants associated with (4.1) - (4.2) are given by

$$\Delta_0(0,1) = 0, \quad \Delta_n(0,1) = \lambda_{n,n-1}, \ n \ge 1,$$
 (4.5)

where $\Delta_r(0,1) = \lambda_{r,r-1} \neq 0$. As a consequence of Theorem 3.2, when t = 0 and s = 1, we have the following result

Proposition 4.1. Let $\{B_n\}_{n\geq 0}$ be a MOPS and $\{Q_n\}_{n\geq 0}$ be the MPS satisfying (4.1) – (4.2). For every fixed integer $p\geq 1$, the following statements are equivalent

- i) $\lambda_{n,n-1} \neq 0, n \geq p$.
- ii) There exist a unique set of complex numbers $\theta_{n,n}^* \neq 0$, $n \geq p$, and a unique MPS $\{\Omega_1^*(x;n)\}_{n\geq p}$, $\deg \Omega_1^*(x;n) = 1$, $n \geq p$, such that

$$\Omega_1^*(x;n)B_n(x) = Q_{n+1}(x) + \theta_{n,n}^*Q_n(x), \ n \ge p.$$
 (4.6)

We write

$$\theta_{n,n}^* = \frac{\gamma_n}{\lambda_{n,n-1}}, \ n \ge p,$$

$$\Omega_1^*(x;n) = x + v_{n,0}^*,$$
(4.7)

where

$$v_{n,0}^* = \frac{\gamma_n}{\lambda_{n,n-1}} + \lambda_{n+1,n} - \beta_n, \ n \ge p.$$
 (4.8)

Example. In order to illustrate the result of Proposition 4.1, we study the structure relation characterizing a semi-classical polynomial sequence, $\{B_n\}_{n\geq 0}$, orthogonal with respect to the linear functional u solution of the functional equation

$$u' + \psi u = 0, (4.9)$$

where $\psi(x) = -ix^2 + 2x - i(\alpha - 1)$ and with regularity condition $\alpha \notin \bigcup_{n \geq 0} E_n$, where $E_0 = \{\alpha \in \mathbb{C} : F(\alpha) = 0\}$, $F(\alpha) = \int_{-\infty}^{+\infty} e^{\frac{ix^3}{3} - x^2 + i(\alpha - 1)x} dx$, and for each integer $n \geq 1$, $E_n = \{\alpha \in \mathbb{C} : \Xi_n(\alpha) = 0\}$. Here, $\Xi_n(\alpha)$ is the Hankel determinant associated with u. Notice that u is a semi-classical linear functional of class one [10].

The recurrence coefficients β_n and γ_{n+1} , $n \geq 0$, of the sequence $\{B_n\}_{n\geq 0}$ are determined by the system [10]:

$$\begin{cases} \frac{n+1}{\gamma_{n+1}} &= 2 - i(\beta_n + \beta_{n+1}), \ n \ge 0, \\ i(\gamma_{n+2} + \gamma_{n+1}) &= \psi(\beta_{n+1}), \ n \ge 0, \\ \gamma_1 &= -i\psi(\beta_0), \quad \beta_0 &= -i\frac{F'(\alpha)}{F(\alpha)}. \end{cases}$$
(4.10)

The sequence $\{B_n\}_{n\geq 0}$ is characterized by the following structure relation [10]:

$$B_n^{[1]}(x) = B_n(x) - \frac{i\gamma_n\gamma_{n+1}}{n+1}B_{n-1}(x), \ n \ge 1.$$
 (4.11)

Thus, taking into account $\lambda_{n,n-1} = -\frac{i\gamma_n\gamma_{n+1}}{n+1} \neq 0$, $n \geq 1$, we deduce a strictly finite-type relation between the sequences $\{B_n\}_{n\geq 0}$ and $\{B_n^{\{1\}}\}_{n\geq 0}$ with index s=1, with respect to $\phi(x)=1$,

From Proposition 4.1, we get the following inverse relation, for $n \ge 1$,

$$(x+v_{n,0}^*)B_n(x) = B_{n+1}^{[1]}(x) + \frac{i(n+1)}{\gamma_{n+1}}B_n^{[1]}(x), \quad (4.12)$$

where $v_{n,0}^* = \frac{i(n+1)}{\gamma_{n+1}} - \frac{i\gamma_{n+1}\gamma_{n+2}}{n+2} - \beta_n$, $n \ge 1$. The sequence $\{B_n\}_{n\ge 0}$ could be characterized by a relation as (4.12). It is the aim of the following result.

Proposition 4.2. Let $\{B_n\}_{n\geq 0}$ be a MOPS satisfying (1.5). Then the following statements are equivalent.

i) There exists a set of non-zero complex numbers $\{\lambda_{n,n-1}\}_{n\geq 1}$ such that, for $n\geq 1$,

$$B_n^{[1]}(x) = B_n(x) + \lambda_{n,n-1} B_{n-1}(x). \tag{4.13}$$

ii) There exists a set of complex numbers $\{\varrho_n\}_{n\geq 0}$, with $\varrho_n \neq 0$, $n\geq 1$, and $\varrho_0=0$, such that for $n\geq 0$.

$$(x + \frac{\gamma_{n+1}}{\rho_{n+1}} + \rho_n - \beta_n)B_n(x) = B_{n+1}^{[1]}(x) + \rho_n B_n^{[1]}(x). \quad (4.14)$$

Proof. Assume that i) holds. From Proposition 4.1, we get

$$(x+\frac{\gamma_{n+1}}{\varrho_{n+1}}+\varrho_n-\beta_n)B_n(x)=B_{n+1}^{[1]}(x)+\varrho_nB_n^{[1]}(x),\ n\geq 1,$$

where $\varrho_n = \gamma_n \lambda_{n,n-1}^{-1}$, $n \ge 1$. For n = 1, in (4.13), we obtain $\lambda_{1,0} = \frac{\beta_0 - \beta_1}{2}$. Then, $\frac{\gamma_1}{\varrho_1} = \frac{\beta_0 - \beta_1}{2}$. Hence,

$$(x + \frac{\gamma_1}{\varrho_1} - \beta_0)B_0(x) = x - \frac{\beta_0 + \beta_1}{2} = B_1^{[1]}(x) + \varrho_0 B_0^{[1]}(x),$$

i.e. $\varrho_0=0$. Thus, ii) holds. Conversely, let us take $\lambda_{n,n-1}=\frac{\gamma_n}{\varrho_n},\ n\geq 1$, and consider the MPS $\{A_n\}_{n\geq 0}$ defined by

$$A_n(x) = B_n(x) + \lambda_{n,n-1} B_{n-1}(x), \ n \ge 1.$$
 (4.15)

From Proposition 4.1, we get

$$(x + v_{n,0}^*)B_n(x) = A_{n+1}(x) + \theta_{n,n}^*A_n(x), \ n \ge 1,$$

where $v_{n,0}^* = \frac{\gamma_{n+1}}{\varrho_{n+1}} + \varrho_n - \beta_n$, $n \geq 1$, and $\theta_{n,n}^* = \frac{\gamma_n}{\lambda_{n,n-1}} = \varrho_n$, $n \geq 1$. From the assumption ii) and the previous relation, it follows that

$$A_{n+1}(x) + \varrho_n A_n(x) = B_{n+1}^{[1]}(x) + \varrho_n B_n^{[1]}(x), \ n \ge 1.$$
 Equivalently,

$$A_n(x) - B_n^{[1]}(x) = \left(\prod_{\nu=1}^n \varrho_\nu\right) \left(A_1(x) - B_1^{[1]}(x)\right) = 0, \ n \ge 1.$$

But, from (4.15) for
$$n=1$$
 we get $A_1(x)=x-\beta_0+\frac{\gamma_1}{\varrho_1}$. From (4.14), with $n=0$, we get $B_1^{[1]}(x)=x-\beta_0+\frac{\gamma_1}{\varrho_1}$. Hence, $A_n(x)=B_n^{[1]}(x), \ n\geq 0$. Thus according to (4.15), i) holds.

5. The case
$$(t,s) = (0,2)$$

Let $\{B_n\}_{n\geq 0}$ be a MOPS with respect to the linear functional u and satisfying (1.5). Consider the following finite-type relation between $\{B_n\}_{n\geq 0}$ and $\{Q_n\}_{n\geq 0}$, with index s=2, with respect to $\phi(x)=1$, for $n\geq 0$,

$$Q_n(x) = B_n(x) + \lambda_{n,n-1} B_{n-1}(x) + \lambda_{n,n-2} B_{n-2}(x), (5.1)$$

$$\exists r \ge 2, \qquad \lambda_{r,r-2} \ne 0.$$
 (5.2)

From Lemma 2.1, for every system of complex numbers $(\theta_{n,\nu})_{\nu=n}^{n+2}$, $n \geq 0$, where $\theta_{n,n+2} = 1$, $n \geq 0$ and $\theta_{r,r} \neq 0$, there exists a unique MPS $\{\Omega_2(x;n)\}_{n\geq 0}$, where $\Omega_2(x;n) = x^2 + v_{n,1}x + v_{n,0}$, $n \geq 0$, and a unique system of complex numbers, $(\zeta_{n,\nu}^{[0]})_{\nu=n-2}^{n-1}$, $n \geq 0$, such that

$$\sum_{\nu=n}^{n+2} \theta_{n,\nu} Q_{\nu}(x) = \Omega_2(x;n) B_n(x) + \zeta_{n,n-1}^{[0]} B_{n-1}(x) + \zeta_{n,n-2}^{[0]} B_{n-2}(x) , \ n \ge 0, \tag{5.3}$$

where

$$\begin{cases} \lambda_{n+2,n+1} + \theta_{n,n+1} &= \beta_{n+1} + \beta_n + v_{n,1}, \ n \geq 0, \\ \lambda_{2,0} + \theta_{0,1}\lambda_{1,0} + \theta_{0,0} &= \gamma_1 + \beta_0(\beta_0 + v_{0,1}) + v_{0,0}, \\ \lambda_{n+2,n} + \theta_{n,n+1}\lambda_{n+1,n} + \theta_{n,n} &= \gamma_{n+1} + \gamma_n + \beta_n(\beta_n + v_{n,1}) + v_{n,0}, \ n \geq 1, \\ \theta_{n,n+1}\lambda_{n+1,n-1} + \theta_{n,n}\lambda_{n,n-1} &= \gamma_n(\beta_n + \beta_{n-1} + v_{n,1}) + \zeta_{n,n-1}^{[0]}, \ n \geq 1, \\ \theta_{n,n}\lambda_{n,n-2} &= \gamma_n\gamma_{n+1} + \zeta_{n,n-2}^{[0]}, \ n \geq 2, \end{cases}$$
(5.4)

The determinants associated with (5.1) - (5.2) are

$$\Delta_0(0,2) = \Delta_1(0,2) = 0,$$

$$\Delta_n(0,2) = \lambda_{n,n-2}(\lambda_{n+1,n-1} - \gamma_n), \ n \ge 2.$$
 (5.5)

As a consequence of Theorem 3.2, where t = 0 and s = 2, we have the following result

Proposition 5.1. Let $\{B_n\}_{n\geq 0}$ be a MOPS and $\{Q_n\}_{n\geq 0}$ be the MPS satisfying (5.1) – (5.2). For every fixed integer $p\geq 2$, the following statements are equivalent

i)
$$\lambda_{n,n-2}(\lambda_{n+1,n-1}-\gamma_n)\neq 0, n\geq p.$$

ii) There exist a unique SCN $(\theta_{n,\nu}^*)_{\nu=n}^{n+2}$, $n \geq p$, with $\theta_{n,n+2}^* = 1$, $n \geq p$, and $\theta_{r,r}^* \neq 0$, if $p \leq r$, and there exists a unique MPS $\{\Omega_2^*(x;n)\}_{n\geq p}$, where $\deg \Omega_2^*(x;n) = 2$, $n \geq p$, such that, for $n \geq p$.

$$\Omega_2^*(x;n)B_n(x) = Q_{n+2}(x) + \theta_{n,n+1}^*Q_{n+1}(x) + \theta_{n,n}^*Q_n(x).$$
(5.6)

We write

$$\theta_{n,n+1}^* = \frac{\left[\lambda_{n,n-2}(\beta_{n-1} - \beta_{n+1} + \lambda_{n+2,n+1}) - \lambda_{n,n-1}\gamma_{n-1}\right]\gamma_n}{\lambda_{n,n-2}(\lambda_{n+1,n-1} - \gamma_n)},$$

$$\theta_{n,n}^* = \frac{\gamma_n\gamma_{n-1}}{\lambda_{n,n-2}},$$

$$\Omega_2^*(x;n) = x^2 + v_{n,1}^* x + v_{n,0}^*, \ n \ge p, (5.7)$$

where

$$v_{n,0}^* = \theta_{n,n}^* + (\lambda_{n+1,n} - \beta_n)\theta_{n,n+1}^* - \gamma_{n+1} - \gamma_n + \lambda_{n+2,n} + \beta_n(\beta_{n+1} - \lambda_{n+2,n+1}),$$

$$v_{n,1}^* = \theta_{n,n+1}^* - \beta_{n+1} - \beta_n + \lambda_{n+2,n+1}.$$

Example. Let $\{B_n\}_{n\geq 0}$ be the sequence of monic polynomials, orthogonal with respect to the linear functional u such that

$$\langle u, p \rangle = \int_{-\infty}^{+\infty} p(x)e^{-x^4} dx.$$

This sequence of polynomials was introduced by **P.** Nevai (see [15]) in the framework of the so-called Freud measures. These polynomials satisfy the three-term recurrence relation (1.5), with coefficients $\beta_n = 0$, $n \ge 0$, and where γ_{n+1} , $n \ge 0$, are given by a non-linear recurrence relation (see [3] and [15])

$$n = 4\gamma_n(\gamma_{n+1} + \gamma_n + \gamma_{n-1}), n > 1,$$

with $\gamma_0 = 0$ and $\gamma_1 = \Gamma(3/4)\Gamma(1/4)$.

The sequence $\{B_n\}_{n\geq 0}$ satisfies the following structure relation (see [3])

$$B_n^{[1]}(x) = B_n(x) + \lambda_{n,n-2} B_{n-2}(x), \ n \ge 2,$$
 (5.8)

where

$$\lambda_{n,n-2} = \frac{4}{n+1} \gamma_{n+1} \gamma_n \gamma_{n-1} \neq 0, \ n \geq 2.$$

From (5.3), with $Q_n(x) = B_n^{[1]}(x)$, $n \ge 0$, and the fact that the polynomial sequences $\{B_n\}_{n\ge 0}$ and $\{B_n^{[1]}\}_{n\ge 0}$

are symmetric, i.e, $B_n(-x) = (-1)^n B_n(x)$, $n \ge 0$, we get, for n > 0.

$$B_{n+2}^{[1]}(x) + \theta_{n,n}B_n^{[1]}(x) = (x^2 + v_{n,0})B_n(x) + \zeta_{n,n-2}^{[0]}B_{n-2}(x), \quad (5.9)$$

where

$$\begin{cases} \lambda_{2,0} + \theta_{0,0} &= \gamma_1 + v_{0,0}, \\ \lambda_{n+2,n} + \theta_{n,n} &= \gamma_{n+1} + \gamma_n + v_{n,0}, \ n \ge 1, \\ \theta_{n,n} \lambda_{n,n-2} &= \gamma_n \gamma_{n-1} + \zeta_{n,n-2}^{[0]}, \ n \ge 2. \end{cases}$$
(5.10)

Since we have $\lambda_{n,n-2}$, $n \geq 2$, the choice $\zeta_{n,n-2}^{[0]} = 0$, $n \geq 2$, is possible and yields the inverse relation

$$(x^2 + v_{n,0}^*)B_n(x) = B_{n+2}^{[1]}(x) + \theta_{n,n}^* B_n^{[1]}(x), \ n \ge 0, (5.11)$$

where

$$\theta_{n,n}^* = \frac{n+1}{4\gamma_{n+1}},$$

$$v_{n,0}^* = \frac{n+1}{4\gamma_{n+1}} - \gamma_n - \gamma_{n+1} + \frac{4}{n+3}\gamma_{n+1}\gamma_{n+2}\gamma_{n+3}.$$

Here, the determinants associated with (5.8) are

$$\Delta_n(0,2) = \frac{4}{n+1} \gamma_{n+1} \gamma_n^2 \gamma_{n-1} \left[\frac{4}{n+2} \gamma_{n+2} \gamma_{n+1} - 1 \right],$$

$$(5.12)$$

$$n \ge 2, \text{ with } \Delta_0(0,2) = \Delta_1(0,2) = 0.$$

From Proposition 5.1, we deduce that the uniqueness of the previous inverse relation requires that $\lambda_{n+1,n-1} - \gamma_n = \gamma_n \left[\frac{4}{n+2}\gamma_{n+2}\gamma_{n+1} - 1\right] \neq 0, \ n \geq 2$. Equivalently, $4\gamma_{n+2}\gamma_{n+1} \neq n+2, \ n \geq 2$. Indeed, by using (5.8), where n is replaced by n+1 and taking into account the orthogonality of the polynomial sequence $\{B_n\}_{n\geq 0}$, we get $B_{n+1}^{[1]}(x) = xB_n(x) + (\lambda_{n+1,n-1} - \gamma_n)B_{n-1}(x), \ n \geq 1$. On the other hand, if we suppose that there exists an integer $n_0 \geq 2$ such that $\lambda_{n_0+1,n_0-1} + \gamma_{n_0} = 0$, then $B_{n_0+1}^{[1]}(x) = xB_{n_0}(x)$. In this case (5.11), with $n = n_0$ will be written as $(x^2 + \alpha x + v_{n,0}^*)B_n(x) = B_{n+2}^{[1]}(x) + \alpha B_{n+1}^{[1]}(x) + \theta_{n,n}^*B_n^{[1]}(x)$, for all $\alpha \in \mathbb{C}$. This contradicts the uniqueness of the inverse relation.

Acknowledgements: The first author (FM) was supported by Dirección General de Investigación (Ministerio de Educación y Ciencia) of Spain under grant MTM 2006-13000-C03-02. The work of second author (RS) was supported by Entreprise Kilani at Gabès and Institut Supérieur de Gestion de Gabès, Tunisie.

References

- [1] M. Alfaro, F. Marcellán, A. Peña & M. L. Rezola, On linearly related orthogonal polynomials and their functionals, J. Math. Anal. Appl. 287 (2003), 307-319.
- [2] M. Alfaro, F. Marcellán, A. Peña & M. L. Rezola, On rational transformations of linear functionals. A direct problem, J. Math. Anal. Appl. 298 (2004), 171-183.
- [3] A. Cachafeiro, F. Marcellán & J. J. Moreno-Balcázar, On asymptotic properties of Freud-Sobolev orthogonal polynomials, J. Approx. Theory 125 (2003), 26-41.
- [4] T. S. Chihara, "An Introduction to Orthogonal Polynomials", Gordon and Breach, New York, 1978.
- [5] A. M. Delgado & F. Marcellán. Companion linear functionals and Sobolev inner products: a case study, Meth. Appl. Anal. 11 (2004), 237-266.
- [6] F. Marcellán, M. Alfaro & M. L. Rezola, Orthogonal polynomials on Sobolev spaces: Old and new directions, J. Comput. Appl. Math. 48 (1993), 113-131.
- [7] F. Marcellán & J. C. Petronilho, Orthogonal polynomials and coherent pairs: The classical case, Indag. Math. (NS), 6 (1995), 287-307.

- [8] F. Marcellán, T. E. Pérez & M. A. Piñar, Orthogonal polynomials on weighted Sobolev spaces: the semiclassical case, Ann. Numer. Math. 2 (1995), 93-122.
- [9] F. Marcellán & J. C. Medem, Q-Classical orthogonal polynomials: a very classical approach, Elect. Trans. on Numer. Anal. 9 (1999), 112-127.
- [10] P. Maroni, Un exemple d'une suite orthogonal semiclassique de classe un. In Publ. Labo. d'Analyse Numérique, Université Pierre et Marie Curie, Paris. 89033 (1989).
- [11] P. Maroni, Fonctions eulériennes. Polynômes orthogonaux classiques. In Techniques de l'ingénieur, A 154 (1994),1-30.
- [12] P. Maroni, Semi-classical character and finite-type relations between polynomial sequences. J. Appl. Num. Math. 31 (1999), 295-330.
- [13] P. Maroni & R. Sfaxi, Diagonal orthogonal polynomial sequences, Meth. Appl. Anal. 7 (2000), 769-792.
- [14] H. G. Meijer, Determination of all Coherent Pairs. J. Approx. Theory, 89 (1997), 321-343.
- [15] P. Nevai, Orthogonal Polynomials associated with $exp(-x^4)$. Proc. Canad. Math. Soc. 3 (1983), 263–285.

Recibido el 16 de diciembre de 2007 Aceptado para su publicación el 14 de marzo de 2008