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Let ¢ be a monic polynomial, with deg ¢ =t > 0. We say that there is a finite-type relation
between two monic polynomial sequences {Bn}n>0 and {Qnr}n>0 with respect to ¢, if there
exists (s,7) € N, r > s, such that
n+t
(x)Qn(x) = Z AnpBu{x), n > s, with Arres 0. (%)
v=n—s .
The corresponding inverse finite-type relation of (x) consists in a finite-type relation as

follows:
n+s

Q(z;n)Ba(@) = ) 6,.Qu(x), n 2 t, with 674, #0,

v=n-t

where degQ;(z;n) = s, n > t. When the orthogonality of the two previous sequences is
assumed, the inverse finite-type relation is always possible {11]. This work essentially studies
the case when only the sequence {Bn}n3o is orthogonal. In fact, we find necessary and
sufficient conditions leading to inverse finite-type relations. In particular, the structure
relation characterizing semi-classical sequences is a special case of the general situation.
Some examples will be analyzed.
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Resumen

Sea ¢ un polinomio ménico, con deg¢ = ¢ > 0. Decimos que hay relacién de tipo finito
entre dos sucesiones de polinomios ménicos {Bn}azo ¥ {@n}n>0 con respecto a ¢, si existe
(s,r) € N?, r > g, tal que
1+t
H@)Qu(@) = ) AnpBu(z), n 25, with Aoy # 0. (%)
Y=T—§
La correspondiente relacidn de tipo finito de () consiste en una relacin de tipo finito como

sigue:
n+ts

Qi(z;7)Balz) = Y 67,Qu(T), n 2 ¢, with67,,, #0,
v=n—t

donde deg Q5 (x;n} = s, n = t. Cuando se supone la ortogonalidad de las dos sucesiones
previas, la relacidn de tipo finito inversa siempre es posible [11]. En este trabajo se estudia
el caso en que solo la sucesién {Bn}.>0 es ortogonal. De hecho, encontramos condiciones
necesarias v suficientes que conducen a relaciones de tipo finito inversas. En particular, la
la relacién de estructura que caracteriza a las sucesiones semicldsicas es un caso especial de
la situacién general. Se estudian varios ejemplos.

Palabras clave: Relaciones de tipo finito, relaciones de recurrencia, polinomios ortog-

onales, polinomios semi cldsicos.

1. Introduction and background

Let P be the linear space of complex polynomials in
one variable and P’ its topological dual space. We de-
note by (u, f) the action of © € P on f € P and by
(u)y := {u,z™), n > 0, the moments of u with respect
to the polynomial sequence {z™},>¢.

We will introduce some useful operations in P’. For
any Hnear functional v and any polynomial h, let Du =
u’ and hu be the linear functionals defined by duality

(u”f> ;:-(u,f'% fEIP,
{hu, f) =(u, hf), fLheP.

Let {By}s>0 be a monic polynomial sequence {MPS),
deg B, = n, n > 0, and {un}n>o its dual sequence,
un € ¥, n >0, defined by (up,Bp) = bnpm. 7, m 20,
where &, ;,, is the Kronecker symbol.

Let recall the following results [11].

Lemma 1.1, For any u € P’ and any integer m > 1,
the following statements are equivalent.

1) {4, Bmo1) #£0, {u,Bp) = 0. n>m.

il) There exist A, € C,_O <v<m-—1, Apm- #0,
stch that u = $.7 " ALu,.

v=0

As a consequence, the dual sequence {u1[q1 ]}nzo of the

sequence {BLI]}RZ[), where B,[Il](z) ={n+1)"'B, ., (z),
n > 0, satisfies

('u,Ll])' = —(n+ Dupqr, n>0. (1.1)

Definition 1.2, The linear functional u is said to be
regular if there exists a monic polynomial sequence
{Bn}n>0 such that

{, BpBm) = bpdpm, n.m >0, (1.2)

where
by = {u, BXY #£ 0, n 2 0. (1.3)

Then the sequence {Bn}n>o is said to be orthogonal
(MOPS) with respect to u.

As a straightforward consequence we get

o The linear functional can be represented by u =
(u)oug, and the following relations hold

un = b, Bau, n>0. (1.4)
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ee  The sequence {Bp},>0 satisfies the three-term re-
currence relation

Bri2(x) = (7 — Ba+1)Bnt1(2) — Yn+1Bu(z), n >0,
Bi(z)=z—fb, Bolz) = 1, (L5)

where v,41 # 0, n > 0 (see {4]).

In the sequel and under the assumption of the previ-
ous definition, we need to put

b:,m = br_nl (ua mmeBn): ('"'1 v, m) € Ns- (16)
In particular, one has

o= 0, fr+m<n, 0<m<n, v20,
P (bafbm), fv=n-—m, 0<m<n.

Let ¢ be a monic polynomial, with deg ¢ = ¢ > 0. For
any MPS {Bp}n>o and {Qn}n>o with dual sequences
{tn}n>0 and {vn }n>o respectively, the following formula
always holds

n+t

= AuBu@. n20, (17

v=0

where A, = (U, $Qn), 0< v <n+t, n>0.

¢(x)Qnlz

Definition 1.3. ([12]) If there exists an integer s > 0
such that

n-tt
H@)Qulz) = D IuBu(a),n>s,  (18)
v=n-—3a
and
dr > s, Apr_s #0, (1.9)

then, we shall say that (1.8) — (1.9) gives a finite-type
relation between {B,}n>0 and {Qn}a>o, with respect
to 9.

When instead of (1.9), we take
Ann—s #0, n >3, (1.9")

we shall say that (1.8) —
relation.

(1.9') is a strictly finite-type

The corresponding inverse finite-type relation of
(1.8) — (1.9) consists in establishing, whenever it is
possible, a finite-type relation between {Qn}n>0 and
{Br}nxo0, as follows

n+s

= Y 6,Qua) nxt,  (110)

v=n—t

Q(x;n}Br(z

Oper # 0, where {((zin)lny: s a MPS,
deg €} (z;n) = s, n 2 ¢, and

(On o )oin_n 2t (1.11)

a system of complex numbers (SCN), with 8}, .
1, n>t.

When both two sequences are orthogonal, the inverse
relation is always possible. In this case, the polynomials
Q;(z;n), n > 0, are independent of n, (see [12], Proposi-
tion 2.4). As a current example, we can mention the two
structure relations characterizing the classical polyno-
mials, (Hermite, Laguerre, Bessel, Jacobi, see [11}),
which could solely be two inverse finite-type relations.

In other studies, we find several situations where
one of the two sequences is orthogonal. For example,
the structure relations characterizing semi-classical se-
quences associated with Hahn's operators Lq ., with pa-
rameters ¢ and w, [9]. The Coherent pairs and Diago-
nal sequences are also examples of finite type-relations
[7,12,13, 14]. But the inverse relations corresponding to
other finite-type relations are not yet considered.

The paper essentially gives a necessary and sufficient
condition allowing the existence of the inverse finite-
type relations when the orthogonality of the sequence
{Byu}n>o is assumed. From now on, it would be neces-
sary to study the case where the sequence {Qn}n>0 is
orthogonal. It would be very useful to deal with many
other situations like General Coherent pairs, see {6, 8] in
the framework of Sobolev inner products.

2. A basic result

We use this section to introduce some auxiliary result
for the proof of the main theorem in section 3.

Lemma 2.1. Suppose {Bpln>o Is a MOPS and
{@n}nzo fulfils (1.8) — (1.9), where t = 0 and 5 > 1.
For any SCN (8,,,,)722, n > 0, where 8, pys = 1,0 2 0,

and f., # 0, there exist a unique MPS {Qs(z5 1) }nz0.

degQ,(z;n) = 8, n >0, and a SCN (¢L)ynzL_ n >0,
such that
n-+ts n+s
Zgn,uQv(:r) = Z B[O]B
=1 i=n—3a
n—1
= Qu(z;n)Bo(z) + Y M B.(z), n>0, (21)
V=n—3
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where
min{n,i)+s
= 3 B, n-s<i<n4s,n>0, (22)

v=max(n,i}

6% = Orp s £ 0, (2.3)
m+a
Z Bn v Avm = bt {(u, (25 n) By By} + CEE]m,
v=n
n-s<m<n-1,n>0, (2.4)
n+3
Z Brwdvm = b {1, s (z;n) By B},
y=m

n<mIn+s—1, n=0. (2.5)

Proof. Let (6,,)2%%, n > 0, where f,n4s = 1, n > 0,
and 8, # 0, be a SCN. From {1.8) - (1.9), with ¢ =0
and s > 1, we get

n+s n+3

ZenyQy Zew Z v, Bi(z)

i=r—g
n+s n+3

= Zen,u Z XiwAu,i Bi(z), n >0,
v=n i=n-—-5

where, for each pair of integers (i, ) such that n - s <
i<n+sandn<v<n+ s we took

)1, ifv—s<ig<y,
Xiw = 0, otherwise.

The permutation of these two sums yields

n+s n+s
D 6nuQu(z) = Y 6NLBi(®),
v=n t=n—g
where
min{i+as,n+3)
ng'], = Z gn,vAv,i 3

v=max(n,i)

n—s<i<n+s,nz20, (2.6)
9[0] = e'r,r/\f',r—s ’/" 0.

r,r—a
Hence, (2.2) and (2.3) are valid.
The Euclidean division by By (z) in the right hand side
in (2.6} gives

n+ts

Z 35?.}131'( ) =

t=n—g

Qs (z; 1) n(a:)—i-z <P B,(2), n>0.

Multiplying by Bn(z) and using the orthogonality of
{Bn}n?_()a

n+s n—1
> 08 s = b5, Qi ) BrBra) + > (L6
it=n—s p=0

In particular, for0 Sm <n—-—s—landn>s+1, it
follows that ¢}, = 0. Hence, (2.1) holds. Moreover, for
n—s<m<n—1andn > s, we recover (2.4).

Finally, for n <m < n+s5—1 and n > 0, we deduce
(2.5). ]

Proposition 2.2. Assume {B,}n>o is a MOPS and
{@n}n>o fulfils (1.8) ~ (1.9), with t > 1. For any SCN
(Bno)ots .o n > 0, where 6y n4s = 1, n > 0 and
Or+er # 0, there exist a unique MPS {Q,;(2;7)}n>0.
where degfl,i(zsn) = s+¢t, n > 0, and a SCN
(¢n, 1l e h_e_z» 1 > 0, such that for every integer n > 0

n4+3 n+s+i

z) Z On, Quiz) = Z BEL‘Bt(I)

V=n—t f=n—s8—t

= Qe ) Ba(x)

+ Z (¥ B.(z), (27)

v=n—§—t
where
min(n,i}+s+t
9,[-1:], = Z gn,u—tAu—t,'i ]
v=max{n,i)
n—s—t<i<n+s+t, (2.8)
91[2.3 r—s — r+£,1-/\r.r—s ?é 0} (29)

m4s+t
Z 9""”_")\”—‘:"‘ = br_nl (u'a Qs+t (:5; n‘)Ban> 7+ dtt,lm ’

v=n

n—s—t<m<n-1, (2.10)

n+s+t
Z Bn.u—t/\u—t,m = b;;l (u) Qs+t($; n)Ban) )

v=m

n<m<n+s+i-—1 (2.11)

Proof. The case t = 0 was analyzed in Lemma 2.1. Let
us take ¢ > 1. Consider the MPS { P, },>; defined by

Pryi(z) = ¢(z)Qn(z), n 20, (2.12)
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From (1.8) — (1.9), we have

n
Puz)= Y. AswBu(z), n2t,

v=n—1—2s

where 5\,,‘,, =A_ty, n—t—s<v<nn >t and
Atyrr—s # 0. Now, let (8, )012 ,, n > 0, where

Pnnts =1, n 2 0, and G4 # 0, be a SCN. One
has

n+3 n+s
Z en uQu Z en upv+t
ve=n—t ve=n—t
n+i+s 5
= Y bnuPu(z), n 20, (2.13)
v=mn

where 9,3',, =bpp—t, n<v<n+t+s n >0, Obvi-
ously, (0, )0257t n >0, is a SCN such that

v=n

Baunts =1, n 20, §r+t.r+t = Bryer # 0.

9n,n+s+t =

But from Lemma 2.1, there exist a unique MPS
{Qrs(z;n)}nzo and a SCN (C[t] o) .. m >0, such
that

n+t+s__ n+i+s
Y buPum = Y. 0UBi=
v=mn t=n—t—3

n—1
= Qt+s($; n)Bn(x) + Z Clzt.]uBV(I)v (2‘14)

wEn—-t-5
for every integer n > 0, where

min{n,i)}+i+s
GE:L= Z en‘uAy!i’n_t_SSiSn+t+3,

v=max(n,i)

9r+t r—s — 91"+t.’r‘+tAr+t.,r—s "7‘""' 0;

m+t+s - _
Z g"v”A”vm = br_nl (u! Qt+s(m§ n)Ban> + C:[f,]m )
v=n
n—t—-s<m<n-—-1,
n+i+s . .
Z gn,yAy,m = b'r_n1<“’ QH.S(:E; n)Ban> y
v=m

nsm<n+tt+s—1

Finally, by using (2.13), (2.1&), and taking into account
the expressions of A, and 8, ., we find the desired re-
sults. 0

3. A matrix approach and main results

In this section, we will work under the assumptions of
the Proposition 2.2 and we will give a matrix approach
to our problem.

If Gyolzin) = Zf;so T, n > 0, where vp g4 =
1, then relation (2.10) reads

m-+s+t t+s-1
§ Avut.man,v-—t = E b
v=n =0

n-s—t<m<n-1,

mUnw + C[t] + strt

,m

or, alternatively,

mtys+t—n+1
Z Aj-+n—t—1.'mgﬂ‘j-i-n.—t—1
=1
t-+s
= Z Bmtn,j—1 + (M + b5
J=1

foreveryn—s—t<m<n-1.
Replacing mby i +n —s—t — 1, we get
t+s

IR E:t
3=1

n,J + g 1+11—s——t—1+

bitl 1<i<s+t,

n,i+n-—s5-4-1"

where for 4,7 = 1,2,...,8 + ¢,

no_ Ajtn—t—litn—s—t—1, 1 <7 <1
e 0, otherwise,

and 7, = bi:z-i-n s—t—11
Onj = Bnjin—t—1, and Vo 3 = _1.
So we can write it as
KnO,= TV, + W, + E,, n>0,(3.1)
where

K, T,

(k”t.?)lﬂ‘.: GEs+t (tn )1<1j<a+t‘

T
en: (en,lsen,%---'en.s+t) )
T
Vn= (Vn,lyvn,'z-.---avn,a-%t) )
T
(Cnn —3— t!d;f,!n+1—s—t!"‘!CE,]TL—I) ’ and

E, = (bs+s ptt e )T

nna—-s—t*Ynnt+l—a—tr* n,n—1
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In the same way, using 8, n4+s = 1, (2.11) can be written
as

n+s+t—1 t+s—1
ERS
E /\u—t,mgn,v—t = E b;mvn,v +bnfm - ’\n+s,m1
v=1m v={0

n<m<nt+s+t—1,

or, equivalently,

s+1
Z Aj+n—t—1.:":'zgn.,j-t—n—-t—1 =
j=m-n+l
t+as
Z Un,g 1+ b - /\n+s,ma
i=1

forevery n < m < n+s+t—1. Replacing m by i+n—1,
we get

t+4s t+s

n —
D MOn; =

j=i—1 j=1

n s+
84,7 Vn,j + bn,i+n—1 - Aﬂ+s.é+n—1a

1<i<s+d,

where for i,7 = 1,2,...,5 + £,

n Ajtn—t—Llitn-1, 1 1 <7
mi. = )
0, otherwise,

= b-z’l._’l.-f-n l’lsiSj
0, otherwise,

Thus, we can use the matrix representation

M,On =8,V + F, n 2 0, (32)
where
M, = (m?‘i)lsi,js-m > Sn= (531)19:,::‘53“*
and

3 s+1
Fn == (bf:n - )\n+s 'mbn nt+l T )\n+s,n+la

T
bn R I An+8-n+5+t—1) :

Our data are ©,,, Fn, Fn, My, 5,, T, K, and our
unknowns are V,, and W,,.

From (3.2), we get
Vo= S;I(Mn@n — Fy).(3.3)

Thus, substituting in (3.1} we get K,0n, — W, — E, =
TS, ! (Mn©, — Fp), ie,

Wy = (Kn — TuS2'M,)0,, + TaS; Fy — En.

As a consequence, for every choice of &,, we get Wh.
From (3.3), we deduce V.

On the other hand, there exists a one-to-one corre-
spondence between the vectors W,, and ©,, if and only
if the matrix of dimension s + ¢, K, — T,8,;'M,,, is
nonsingular.

Under such a condition, there exists a unique choice
for ©,, such that W, = 0. Thus, we get
On = (Kn— TnS;'M,) ' (En — TnS; ' Fn),
and from (3.3), V,, = 8,;'M,,0, — S 1F},. Then,

Vo= (KaM;'S, ~T,) ' En
- [(KnM;ISn Tn)_l Tn + Is+t] Sf_;ana

where I, is the unit matrix. Hence, the polynomial
Qs4¢(zyn) is explicitly given.

Let introduce
An(t, 5) = det(Kn — TnS,'M,,), n > 0.
Thus, we have proved the following result

Proposition 3.1. Assume {B,}.>0 is a MOPS and
{@n}n>o fulfils (1.8)—(1.9). For a fixed integer p > t+1,
the following statements are equivalent.

i) Ap(t.s) #0, n2>p.

ii) There exist a unfque SCN (65,0025 7 2 Py
with 6, ., = 1. n > p, and 87, # 0, if
p €71 +1t, and a unique MPS {$2;,,(z;n)}n>p,
deg 5, (x;n) = s +t, n > p, such that

n+s

=¢(zr) > 6;,Q(@), (34)

v=n—1

Qti(zin)Ba(x)
forn > p.

Our main result is

Theorem 3.2. Let {By}n>0 be a MOPS and {Qn}nxo
be the MPS satisfying (1.8) - (1.9). For each fixed in-
teger p > t + 1, if we suppose that ¢(x) and B(x) are
coprime for every n > p, then the following statements
are equivalent.

i) Anl(t,s)#0, n2p.
i} There exist a unique SCN (6} JvEa_io n > p,
where 0, .., = 1, n > p, and 07, # 0 if
p < r+t, and a unique MPS {Q33{z;n)}n>p,
deg Q%(z;n) = s, n > p, such that
n+s

Q ( Z VQV

v=n—t

1 n BP- (3‘5)
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Proof. Taking into account ¢(z) and B,{z} are coprime
for every n > p, from (3.4) we deduce that ¢ divides
Q5.i(zin), n > p. So, Q3 (x;n) = ¢(z)2;(x;n), n >
p. Hence, the desired result follows. O

The orthogonal polynomial sequence {B,}n»p and
the polynomial sequence {Q,}n>0 can be related by a
general finite-type relation (see [1]). It reads as follows

F(Qna ---sQn—l) = G(Bn,--'an—s)s

where F' and G are fixed functions.

When F and G are linear functions, some situations
dealing with the inverse problem have been analyzed in
[1,2]. There, necessary and sufficient conditions in order
to {@n}azo be orthogonal are obtained.

This kind of linear relations reads as follows.

There exists ({,s,7) € N, with r > § = max(l, s)
such that

Z Cno@ulT) = Z AowBulz), n 25 (3.6)

v=n—1 v=n-—-3

with Crr—lArr—s # 0. Here, Cnn = /\n,n =1, nz3

More recently, in [5], A. M. Delgado and F. Mar-
cellan exhaustively describe all the set of pairs of quasi-
definite (regular) linear functionals such that their corre-
sponding sequences of monic polynomials { B, }.»p and
{Ra}n>o are related by a differential expression

Pol(z) + s Pr_1(z) = RM(x) + t.RY (), n > 1,

where t,, # 0, for every n > 1, and with the technical
condition ¢, # 5.

Notice that in general {R,[—}]}nzg is not a MOPS.

In the same context of our contribution, we show that
the corresponding inverse finite-type relation between
two sequences satisfying {3.6) is possible under certain
conditions.

Indeed, let consider the MPS {Cy,},»; given by

Clz) = Z AnwBu(z),  nZ3. (3.7)
v=r-—8
With the finite-type relation between the sequences
{Crn}n>s and {Bn}n>s we can associate the determi-
nants A, (0, s), n > §. So, we have.

Corollary 3.3. Let {Bn}n>0 be a MOPS and {@Qn}n>0
be the MPS satisfying (3.6). For each fixed integer

p 2 max(s,!,1), if Ay(0,s) # 0, n > p, then there
exist a unique SCN (¢} ,)025_,, n > p, where (., =

1, n>p, and (., #0ifp < and a unique MPS
{5 (z;n) bnsp, deg Q%(a;n) = 5, n-> p, such that

n+ts

> GuQulz), n>p. (3.8)

v=n—1

Qr(zyn)Bp(x) =

Proof. From Theorem 3.2, with t = 0, there exists
the corresponding inverse finite-type relation associated
with the relation (3.7} if and only if A,(0,5) # 0, n > p.
Equivalently, there exist a unique SCN (8}, )23, n >
p, where 8, ... =1, n>p, and 6], #0, 1fp < r, and
a unique MPS {2} (x:n)}nzp, degQi(zin) = 5, n > p,
such that

n—+3

Q5 (xyn)B Zt?

=

Ax), n>p. 3.9

But from (3.6) and (3.7), the above expression becomes

n+s v
Qzin)Ba(@) = 3 0, S Gu@il2)
v=n i=pv—1
n+3 n+s
=300, > Xiwlr Qilx) n>p,
v=n i=n—|

where, for each pair of integers (i,») such that n — 1 <
i<n+sand n <y <n+s, we took

L i v=i<igy,
X 0, otherwise.
The permutation inside these two sums yields

n+s

> G Qi)

i=n-{

Q5 (@ n)Bu(x) =

where
min{i+{,n+s)

Cr:,:i, = Z 9:‘1,11(1/.1 )

v=max(n,i)

ifn—f{<i<m+s n>p, and

C:,T’—I = 9:.1'(-.7'11”‘1 :fé O!

ifp<r. O
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4, The case: (t,s) = (0,1)

Let {Ba}n>0 be a MOPS with respect to the linear
functional u and satisfying the three-term recurrence re-
lation (1.5).

Consider the following finite-type relation between
{Bn}n>o and {Qn}n>0, with index s = 1, with respect
to ¢{z) = 1,

Qn(x) = Bn(m) + ’\ﬂ-.n—IB ~1($)a n =0, (4-1)

>l Aneer £0. (4.2)

From Lemma 2.1, for every set of complex numbers,
Onn. n 2 0, with 6., # 0, there exists a unique MPS
{€1(z; n)}n>o, where Qi (x;n) = 3: + Upo. n 20, and a
unique set of complex numbers, Cn n—1: 7t = 0, such that

Qn+1($) + en,nQn(I) =y (:L'; n)Bn(:]:)—l-
g’Et().L—an—l(E)y n>0, (4.3)
where

{ An.n-—len,n e L(?n—l + M n 2 1, (4.4)
fnn —vno = —Angyin+ Onyn20.

The determinants associated with (4.1) — (4.2) are given
by

Ao(0,1} =0, An(0,1)=Apn_g, n>1, (4.5)

where Ap(0,1) = Arr—1 # 0. As a consequence of The-
orem 3.2, when t =0 and s = 1, we have the following
result

Proposition 4.1. Let {Bp}n>0 be a MOPS and
{@n}n>0 be the MPS satisfving (4.1) — (4.2). For ev-
ery fixed integer p > 1, the following statements are
equivalent

i) Aot #0, 22 p.

ii) There exist a unique set of complex numn-
bers 8y, # 0, n > p, and a unique MPS
{9(z; %) buzpy deg Qf(zin) = L, m > p, such
that

Qi (z;n) By (x) = Qny1(x) + 0, ,Qn(z), n > p. (4.6)

We write

where

Uno = T+ /\n+1,n b ﬁm nzp. (48)

Example. In order to illustrate the result of Proposi-
tion 4.1, we study the structure relation characterizing
a semi-classical polynomial sequence, { Bp }n>0, orthog-
onal with respect to the linear functional u solution of
the functional equation

v +Yu= 0,(49)
where (z) = —iz? + 2z — i{a — 1) and with regularity
condition & ¢ |J,,5 En, where Eg = {a € C @ F(a) =
0}, Fla) = [77° ‘5 == +ile=Dzge and for each inte-
gern>1 E,={a€C : E,(a) =0}. Here, Ex(a) is
the Hankel determinant associated with u. Notice that
u is a semi-classical linear functional of class one [10].

The recurrence coefficients 3, and v,41, n 2 0, of the
sequence { By, }n>0 are determined by the system [10] :

ntl 2= (B + Busr)s 12 0,

Tn+1

i('7n+2 + ')’n+1) = U)(,Bn-lrl) n >0, (410)
FI

= —i(fo), fo =i ((a)’.

The sequence { By, }, >0 is characterized by the following
structure relation {10] :

Y Yn+1 B

B(z) = Ba(z) -~ —-

n—l(m), n 2 1. (411)

i
Thus, taking into account Apn,—1 = _ It £ 0,

n > 1, we deduce a strictly finite-type relation between
the sequences { By }n>o and {Br[:l}}nzo with index s =1,
with respect to ¢(z) = 1,

From Proposition 4.1. we get the following inverse
relation, for n > 1,

1
(@ + 4 o) Bu(z) = B (z) + D gl (419
Yn+1
N
where v}, 5 = in+1) _ Otttz — Ba, n > 1. The

Y41 n+2
sequence {B;,}n>o could be characterized by a relation
as (4.12). It is the aim of the following result.

Proposition 4.2. Let {Bn}n>0 be a MOPS satisfying
(1.5}. Then the following statements are equivalent.

i) There exists a set of non-zero complex numbers
{An.n—1}n>1 such that, forn > 1,

Bl (z) = Bu(x) + Anjn-1Bn_1(z). {4.13)
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ii} There exists a set of complex numbers {0, } >0,
with g, # 0, n > 1, and gg = 0, such that for
n > {0,

(24 22 4 00=62)Bale) = By (90 BIY(2) . (4.19)

Proof. Assume that i) holds. From Proposition 4.1, we
get

(9:+’;nil +0n—Bn)Bnlx) = B'w[zl-i‘l( )+9"B[]]( hnzl,
n

where g, = ')rn)\ =2l Forn=1, in (4 13), we

n,n—
obhtain Ao = Bo — ﬁl. Then, — n ﬁo . Hence,
’ 2 51 2
+
o+ L~ po)Bofe) = - 222 = B @)+ oY),

i.e. po = 0. Thus, ii) holds. Conversely, let us take
Apm—t = E, n > 1, and consider the MPS {Ap}n>0
defined ban

An{z) = Ba(@) + A n—1Bno1(z), n > 1. (4.15)
From Proposition 4.1, we get

(T 4+ v;0)Bnlr) = Any1(z) + 65 1 An(z), n 21,

where v}, = Totl  on =B n > 1, and 6, =
N ' n+1 '
n

= gp, n 2 1, From the assumption ii) and the
)‘n,n—l

previous relation, it follows that

n+2
Z gn,qu(I) =
where
/\n+2,n+1 + 9n,n+1
A2+ 8120+ 600

Q?(Ir n)Bn(I) + C ,

Ans1(®) + 0ndn(®) = BYL1(2) + 0nBil(z), n > 1.
Equivalently,

An(z)~ B (z) = (f[ 0.)(A(z)-Bz)) =0, n > 1.

v=1
But, from (4.15) for n = 1 we get Ay{x) =1~ Gp + n
&1
From (4.14), with n = 0, we get B{'/(z) =z — 6o + gl
1

Hence, A.{(z) = Bn](a:), i 2 0. Thus according to
(4.15), i) holds. O

5. The case (t,s) = (0,2)

Let {B.}s>0 be a MOPS with respect to the linear
functional v and satisfying (1.5). Consider the follow-
ing finite-type relation between {B, }n>o0 and {Qx }nso,
with index s = 2, with respect to ¢(z) =1, for n > 0,

Qn(z) = Bn(w)+’\n,n-an-] ($)+/\n,n—ZBn—2(55), (5-1)

Ir>2 A2 #0. (5.2)
From Lemma 2.1, for every system of complex num-
bers (8,.,)72. n > 0, where 8,042 = 1, 7 > 0 and
Oy» # 0, there exists a unique MPS {Q(z;n)}n>0,
where Qy(x;n) = 22 4+ vy 12 + U, 7 > 0, and a unique
system of complex numbers, (C,Ef"],,)’;;}z_z. n > {, such
that,

1 Baci(@) + ¢ Baa(e), n 20, (5.3)

= ﬁn-}-l + 13u + Un,1, T =0,
=1 + Bo(Bo + vo,1) + vo,0

An+2.n + 9n.n+1/\n+1.n + 911,1'1 = Yn+t +Vn + .Bn(.@n + 'Un,l) + U, n 21, (54)
9n.n+1’\n+1,n—1 + gn.n/\n.n—l = 'Yn(ﬁn + 01+ Un,l) + dgl,-;_ly n =1,

Gn.n/\n.n*2

The determinants associated with {5.1) — (5.2) are

Ap(0,2) = A4(0,2) =0,
An(oa 2) = A-n,n«?('\n+1,n—l - ')n)a n =2 (55)

As a consequence of Theorem 3.2, wheret = 0 and 5 = 2,

we have the following result

0
= TnYn-1 + CL'];.;,_za n 2 2y

Proposition 5.1. Let {Bp}n>0 be a MOPS anc
{Qn}nzo be the MPS satisfying (5.1) — (5.2). For ev-
ery fixed integer p > 2, the following statements are
equivalent

1} An.‘n—2(/\n+l.-n.—l - 711) £0,n>2p
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ii) There exist a unique SCN (8}, ,)222 n > p,
with8), o=1, n=p and 6], #0, ifp <,
and there exists a unique MPS {Q3(x;n)}nzp,
where deg Q5(x;n) = 2, n > p, such that, for
nzp,

3(21) Bn () = Qn2(2) + 05 11 Qut1 (2) + 07, 2 Pn(2) -

(5.8)
We write

o _ [)\n,n—Q(.@n—l_;Bn-F-l+)\n+2,n+1)~’\”'"“l’yn*1]7n
n,n+1 An'n_z(Aﬂ,-}-],n-—l - FY'"')

1

- FrYn-—1
0= 2dnl
mn )\n,n—2

Q;(CE, TL) - :Ez + ﬂ:t,lm + 'U::,‘OJ n 2 F2 (57)
where

*

Uno = B;,n + ( n+1l,n ﬁn) nat+l — o+l — Tnt
An+2,n + r@n (ﬁn+1
'U:;,l = Op nt1 — B+l — Bn + Anvanit

- )\n+2,n+1)1

Ezample. Let {Bp}n>0 be the sequence of monic poly-
nomials, orthogonal with respect to the linear functional

u such that
+o0 .
{1, p) =/ p{z)e™% dz.

— Q0

This sequence of polynomials was introduced by P
Nevai (see [15]) in the framework of the so-called Freud
measures. These polynomials satisfy the three-term re-
currence relation (1.5), with coefficients g, =0, n > 0,
and where v,,1, n > 0, are given by a non-linear recur-
rence relation (see [3] and [15])
n= 4% (a1 + n + Tn-1), R 2 1,

with 79 = 0 and v = T'(3/4)'(1/4).

The sequence {By}»>0 satisfies the following structure
relation ( see [3])

1[111(1.) = B-n_($) + An.n—?-Bn—Q(fL'), n 2 2, (58)

where

Ann—2 = milTnin-1 # 0 n > 2.

4
n+1
From (5.3), with Q.{z) = B,Elll(;r:), n > 0, and the fact
that the polynomial sequences {Bp}n>o and {BLH},,,ZO

are symmetric, i.e, B,(—z
get, for n > 0,

)= {=1)"Bp{z), n > 0, we
B (@) + 60,n BU(z) = (2% + v4,0) Ba()

+¢¥ 3 Baa(@), (5.9)
where

A2+ 800 =71 + vo,0,
/\n+2,'n + gn,'n, = Yptl T Vn + 1}1'1,0’ n=>1, (510)

gn.n)‘ﬂ,n—‘z = YnTn-1 + C n—2 I Z 2.

Since we have Ay, 2, n > 2, the choice Cn e
2, is possible and yields the inverse relation

=0, 0>

(2% + 255 o) Ba(2) = Bl ,(2) + 65, . BY(2), n > 0,(5.11)

where
. n-+1
gn.n = 4 ’
Tn+1
. n+1 4
Upo = T —Tn— Vnt+l + _'Yn+17n+2')’n+3

4'Yn+1 n+3

Here, the determinants associated with (5.8) are

Vn+2Tn+l — 1]
(5.12)

4 4
An(os 2) - nt 1'7n+1'7121'7n—1{ T2

n > 2, with Ag(0,2) = A1(0,2) = 0.

From Proposition 5.1, we deduce that the uniqueness of
the previous inverse relation requires that Apyqp—1 —

Yo = Yn 'n%%%"f"‘*l - 1} # 0, n > 2. Equivalently,
dp+2Vn+t # 712, n = 2. Indeed, by using (5.8), where
1 is replaced by n + 1 and taking into account the or-
thogonality of the polynomial sequence {Bp }n>0, we get
B (@) = 2Ba(®) + Pnrtine1 = o) Baca (@), n 2 1.
On the other hand, if we suppose that there exists
an integer ng > 2 such that Ay 41 n0-1 = Yoo = 0,
then BELHH( 2) = xByp,(x). In this case (5.11), with
n = np will be written as (z® + ax + vy, o) Bn(z) =

Blio(z) + aByy, () + 65 . BR (), for all a € C. This

contradicts the uniqueness of the inverse relation.
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