INVERSE FINITE-TYPE RELATIONS BETWEEN SEQUENCES OF POLYNOMIALS

By

Francisco Marcellán¹ & Ridha Sfaxi²

Abstract

Let \(\phi \) be a monic polynomial, with \(\deg \phi = t \geq 0 \). We say that there is a finite-type relation between two monic polynomial sequences \(\{B_n\}_{n \geq 0} \) and \(\{Q_n\}_{n \geq 0} \) with respect to \(\phi \), if there exists \((s, r) \in \mathbb{N}^2, r \geq s \), such that

\[
\phi(x)Q_n(x) = \sum_{\nu = n-s}^{n+t} \lambda_{n,\nu} B_{\nu}(x), \quad n \geq s, \quad \text{with } \lambda_{r, r-s} \neq 0. \quad (*)
\]

The corresponding inverse finite-type relation of \((*)\) consists in a finite-type relation as follows:

\[
\Omega^*_s(x; n)B_n(x) = \sum_{\nu = n-t}^{n+s} \theta^*_n,\nu Q_{\nu}(x), \quad n \geq t, \quad \text{with } \theta^*_r, r \neq 0,
\]

where \(\deg \Omega^*_s(x; n) = s, n \geq t \). When the orthogonality of the two previous sequences is assumed, the inverse finite-type relation is always possible [11]. This work essentially studies the case when only the sequence \(\{B_n\}_{n \geq 0} \) is orthogonal. In fact, we find necessary and sufficient conditions leading to inverse finite-type relations. In particular, the structure relation characterizing semi-classical sequences is a special case of the general situation. Some examples will be analyzed.

¹ Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain. Correo electrónico: pacomarc@ing.uc3m.es

² Département des Méthodes Quantitatives, Institut Supérieur de Gestion de Gabès, Avenue Jilani Habib 6002, Gabès, Tunisie. Correo electrónico: ridhasfaxi@yahoo.fr

2000 Mathematics Subject Classification: 42C05, 33C45.
Key words: Finite-type relations, recurrence relations, orthogonal polynomials, semiclassical polynomials.

Resumen

Sea ϕ un polinomio mónico, con $\deg \phi = t \geq 0$. Decimos que hay relación de tipo finito entre dos sucesiones de polinomios mónicos $\{B_n\}_{n \geq 0}$ y $\{Q_n\}_{n \geq 0}$ con respecto a ϕ, si existe $(s, r) \in \mathbb{N}^2$, $r \geq s$, tal que

$$\phi(x)Q_n(x) = \sum_{\nu = n-s}^{n+t} \lambda_{n,\nu} B_\nu(x), \quad n \geq s, \text{ con } \lambda_{r-r-s} \neq 0. \quad (*)$$

La correspondiente relación de tipo finito de $(*)$ consiste en una relación de tipo finito como sigue:

$$\Omega^*_n(x; n)B_n(x) = \sum_{\nu = n-t}^{n+s} \theta^*_n,\nu Q_\nu(x), \quad n \geq t, \text{ con } \theta^*_{r+t-r} \neq 0,$$

donde $\deg \Omega^*_n(x; n) = s, n \geq t$. Cuando se supone la ortogonalidad de las dos sucesiones previas, la relación de tipo finito inversa siempre es posible [11]. En este trabajo se estudia el caso en que solo la sucesión $\{B_n\}_{n \geq 0}$ es ortogonal. De hecho, encontramos condiciones necesarias y suficientes que conducen a relaciones de tipo finito inversas. En particular, la relación de estructura que caracteriza a las sucesiones semiclásicas es un caso especial de la situación general. Se estudian varios ejemplos.

Palabras clave: Relaciones de tipo finito, relaciones de recurrencia, polinomios ortogonales, polinomios semi-clásicos.

1. Introduction and background

Let \mathbb{P} be the linear space of complex polynomials in one variable and \mathbb{P}' its topological dual space. We denote by $\langle u, f \rangle$ the action of $u \in \mathbb{P}'$ on $f \in \mathbb{P}$ and by $(u)_n := \langle u, x^n \rangle$, $n \geq 0$, the moments of u with respect to the polynomial sequence $\{x^n\}_{n \geq 0}$.

We will introduce some useful operations in \mathbb{P}'. For any linear functional u and any polynomial h, let $Du = u'$ and hu be the linear functionals defined by duality

$$\langle u', f \rangle := -\langle u, f' \rangle, \quad f \in \mathbb{P},$$

$$\langle hu, f \rangle := \langle u, hf \rangle, \quad f, h \in \mathbb{P}.$$

Let $\{B_n\}_{n \geq 0}$ be a monic polynomial sequence (MPS), $\deg B_n = n$, $n \geq 0$, and $\{u_n\}_{n \geq 0}$ its dual sequence, $u_n \in \mathbb{P}'$, $n \geq 0$, defined by $\langle u_n, B_m \rangle := \delta_{n,m}$, $n, m \geq 0$, where $\delta_{n,m}$ is the Kronecker symbol.

Let recall the following results [11].

Lemma 1.1. For any $u \in \mathbb{P}'$ and any integer $m \geq 1$, the following statements are equivalent.

i) $\langle u, B_{m-1} \rangle \neq 0, \quad \langle u, B_m \rangle = 0, \quad n \geq m$.

ii) There exist $\lambda_{\nu} \in \mathbb{C}, 0 \leq \nu \leq m - 1, \lambda_{m-1} \neq 0$, such that $u = \sum_{\nu = 0}^{m-1} \lambda_{\nu} u_{\nu}$.

As a consequence, the dual sequence $\{u_n^{[1]}\}_{n \geq 0}$ of the sequence $\{B_n^{[1]}\}_{n \geq 0}$, where $B_n^{[1]}(x) = (n + 1)^{-1}B_{n+1}^{[1]}(x)$, $n \geq 0$, satisfies

$$\langle u_n^{[1]} \rangle' = -(n + 1)u_{n+1}, \quad n \geq 0. \quad (1.1)$$

Definition 1.2. The linear functional u is said to be regular if there exists a monic polynomial sequence $\{B_n\}_{n \geq 0}$ such that

$$\langle u, B_n B_m \rangle = b_n \delta_{n,m}, \quad n, m \geq 0. \quad (1.2)$$

where

$$b_n = \langle u, B_n^2 \rangle \neq 0, \quad n \geq 0. \quad (1.3)$$

Then the sequence $\{B_n\}_{n \geq 0}$ is said to be orthogonal (MOPS) with respect to u.

As a straightforward consequence we get

- The linear functional can be represented by $u = (u_0)_{u_0}$, and the following relations hold

$$u_n = b_n^{-1}B_n u, \quad n \geq 0. \quad (1.4)$$
The sequence \(\{B_n\}_{n \geq 0} \) satisfies the three-term recurrence relation
\[
B_{n+2}(x) = (x - \beta_{n+1})B_{n+1}(x) - \gamma_{n+1}B_n(x), \quad n \geq 0,
\]
\[
B_0(x) = x - \beta_0, \quad B_0(x) = 1,
\]
where \(\gamma_{n+1} \neq 0, \quad n \geq 0 \) (see [4]).

In the sequel and under the assumption of the previous definition, we need to put
\[
b_{n,m}^\nu = b_m^{-1}(u, x^\nu B_mB_n), \quad (n, \nu, m) \in \mathbb{N}^3.
\]
In particular, one has
\[
b_{n,m}^\nu = \begin{cases} 0, & \text{if } \nu + m < n, \quad 0 \leq m < n, \quad \nu \geq 0, \\
(b_n/b_m), & \text{if } \nu = n - m, \quad 0 \leq m \leq n.
\end{cases}
\]

Let \(\phi \) be a monic polynomial, with \(\deg \phi = t \geq 0 \). For any MPS \(\{B_n\}_{n \geq 0} \) and \(\{Q_n\}_{n \geq 0} \) with dual sequences \(\{u_n\}_{n \geq 0} \) and \(\{v_n\}_{n \geq 0} \) respectively, the following formula always holds
\[
\phi(x)Q_n(x) = \sum_{\nu=0}^{n+t} \lambda_{n,\nu} B_{\nu}(x), \quad n \geq 0,
\]
where \(\lambda_{n,\nu} = \langle u_{\nu}, \phi Q_n \rangle, \quad 0 \leq \nu \leq n + t, \quad n \geq 0. \)

Definition 1.3. ([12]) If there exists an integer \(s \geq 0 \) such that
\[
\phi(x)Q_n(x) = \sum_{\nu=0}^{n+t} \lambda_{n,\nu} B_{\nu}(x), \quad n \geq s,
\]
and
\[
\exists r \geq s, \lambda_{r,r-s} \neq 0,
\]
then, we shall say that (1.8) – (1.9) gives a finite-type relation between \(\{B_n\}_{n \geq 0} \) and \(\{Q_n\}_{n \geq 0} \), with respect to \(\phi \).

When instead of (1.9), we take
\[
\lambda_{n,n-s} \neq 0, \quad n \geq s,
\]
we shall say that (1.8) – (1.9)' is a strictly finite-type relation.

The corresponding inverse finite-type relation of (1.8) – (1.9) consists in establishing, whenever it is possible, a finite-type relation between \(\{Q_n\}_{n \geq 0} \) and \(\{B_n\}_{n \geq 0} \), as follows
\[
\Omega_s(x; n)B_n(x) = \sum_{\nu=n-t}^{n+s} \theta_{n,\nu}^* Q_{\nu}(x), \quad n \geq t,
\]
where \(\{\Omega_s(x; n)\}_{n \geq t} \) is a MPS, \(\deg \Omega_s(x; n) = s, \quad n \geq t, \) and
\[
(\theta_{n,\nu}^*)_{\nu=n-t}^{n+s}, \quad n \geq t,
\]
a system of complex numbers (SCN), with \(\theta_{n,n+s}^* = 1, \quad n \geq t. \)

When both two sequences are orthogonal, the inverse relation is always possible. In this case, the polynomials \(\Omega_s(x; n), \quad n \geq 0, \) are independent of \(n \), (see [12], Proposition 2.4). As a current example, we can mention the two structure relations characterizing the classical polynomials, (Hermite, Laguerre, Bessel, Jacobi, see [11]), which could solely be two inverse finite-type relations.

In other studies, we find several situations where one of the two sequences is orthogonal. For example, the structure relations characterizing semi-classical sequences associated with Hahn’s operators \(L_{q,\omega} \), with parameters \(q \) and \(\omega \), [9]. The Coherent pairs and Diagonal sequences are also examples of finite-type relations [7, 12, 13, 14]. But the inverse relations corresponding to other finite-type relations are not yet considered.

The paper essentially gives a necessary and sufficient condition allowing the existence of the inverse finite-type relations when the orthogonality of the sequence \(\{B_n\}_{n \geq 0} \) is assumed. From now on, it would be necessary to study the case where the sequence \(\{Q_n\}_{n \geq 0} \) is orthogonal. It would be very useful to deal with many other situations like General Coherent pairs, see [0, 8] in the framework of Sobolev inner products.

2. A basic result

We use this section to introduce some auxiliary result for the proof of the main theorem in section 3.

Lemma 2.1. Suppose \(\{B_n\}_{n \geq 0} \) is a MOPS and \(\{Q_n\}_{n \geq 0} \) fulfills (1.8) – (1.9), where \(t = 0 \) and \(s \geq 1 \). For any SCN \((\theta_{n,\nu}^*)_{\nu=n-s}^{n+s}, \quad n \geq 0, \) where \(\theta_{n,n+s} = 1, \quad n \geq 0, \) and \(\theta_{r,r} \neq 0, \) there exist a unique MPS \(\{\Omega_s(x; n)\}_{n \geq 0}, \) \(\deg \Omega_s(x; n) = s, \quad n \geq 0, \) and a SCN \((\zeta_{n,\nu}^*)_{\nu=n-s}^{n-1}, \quad n \geq 0, \) such that
\[
\sum_{\nu=n}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{i=n-s}^{n+s} \theta_{n,s}^{[0]} B_i(x)
\]
\[
= \Omega_s(x; n)B_n(x) + \sum_{\nu=n-s}^{n-1} \zeta_{n,\nu}^* B_{\nu}(x), \quad n \geq 0.
\]
where
\[\theta_{n,i}^{[0]} = \sum_{\nu = \max(n,i)}^{\min(n,i)+s} \theta_{n,\nu} \lambda_{\nu, i}, \quad n-s \leq i \leq n+s, n \geq 0, \] (2.2)

\[\theta_{r,r-s}^{[0]} = \theta_{r,r} \lambda_{r, r-s} \neq 0, \] (2.3)

\[\sum_{\nu = n}^{m+s} \theta_{n,\nu} \lambda_{\nu, m} = b_{m}^{-1}(u, \Omega_{s}(x; n) B_{n} B_{m}) + \zeta_{n,m}^{[0]}, \quad n-s \leq m \leq n-1, n \geq 0, \] (2.4)

\[\sum_{\nu = m}^{n+s} \theta_{n,\nu} \lambda_{\nu, m} = b_{m}^{-1}(u, \Omega_{s}(x; n) B_{n} B_{m}), \quad n \leq m \leq n+s-1, n \geq 0. \] (2.5)

Proof. Let \((\theta_{n,\nu})_{n \geq 0}, n \geq 0\), where \(\theta_{n,n+s} = 1, n \geq 0\), and \(\theta_{r,r} \neq 0\), be a SCN. From (1.8) – (1.9), with \(t = 0\) and \(s \geq 1\), we get

\[\sum_{\nu = n}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{\nu = n}^{n+s} \theta_{n,\nu} \sum_{i = \nu-s}^{\nu} \lambda_{\nu, i} B_{i}(x) = \sum_{\nu = n}^{n+s} \theta_{n,\nu} \sum_{i = \nu-s}^{\nu} \chi_{\nu, \nu} \lambda_{\nu, i} B_{i}(x), n \geq 0, \]

where, for each pair of integers \((i, \nu)\) such that \(n-s \leq i \leq n+s\) and \(n \leq \nu \leq n+s\), we took

\[\chi_{\nu, \nu} = \begin{cases} 1, & \text{if } \nu - s \leq i \leq \nu, \\ 0, & \text{otherwise.} \end{cases} \]

The permutation of these two sums yields

\[\sum_{\nu = n}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{i = n-s}^{n+s} \theta_{n,i}^{[0]} B_{i}(x), \]

where

\[\theta_{n,i}^{[0]} = \sum_{\nu = \max(n,i)}^{\min(n,i)+s} \theta_{n,\nu} \lambda_{\nu, i}, \quad n-s \leq i \leq n+s, n \geq 0, \] (2.6)

\[\theta_{r,r-s}^{[0]} = \theta_{r,r} \lambda_{r, r-s} \neq 0. \] (2.7)

Hence, (2.2) and (2.3) are valid.

The Euclidean division by \(B_{n}(x)\) in the right hand side in (2.6) gives

\[\sum_{i = n-s}^{n+s} \theta_{n,i}^{[0]} B_{i}(x) = \Omega_{s}(x; n) B_{n}(x) + \sum_{\nu = 0}^{n-1} \zeta_{n,\nu}^{[0]} B_{\nu}(x), n \geq 0. \]

Multiplying by \(B_{m}(x)\) and using the orthogonality of \(\{B_{m}\}_{n \geq 0}\),

\[\sum_{i = n-s}^{n+s} \theta_{n,i}^{[0]} \delta_{m,i} = b_{m}^{-1}(u, \Omega_{s}(x; n) B_{n} B_{m}) + \sum_{\nu = 0}^{n-1} \zeta_{n,\nu}^{[0]} \delta_{m,\nu}. \]

In particular, for \(0 \leq m \leq n-s-1\) and \(n \geq s+1\), it follows that \(\zeta_{n,m}^{[0]} = 0\). Hence, (2.1) holds. Moreover, for \(n-s \leq m \leq n-1\) and \(n \geq s\), we recover (2.4).

Finally, for \(n \leq m \leq n+s-1\) and \(n \geq 0\), we deduce (2.5).

Proposition 2.2. Assume \(\{B_{n}\}_{n \geq 0}\) is a MOPS and \(\{Q_{n}\}_{n \geq 0}\) fulfills (1.8) – (1.9), with \(t \geq 1\). For any SCN \((\theta_{n,\nu})_{n \geq 0}, n \geq 0\), where \(\theta_{n,n+s} = 1, n \geq 0\) and \(\theta_{r,r} \neq 0\), there exist a unique MPS \(\{\Omega_{s+t}(x; n)\}_{n \geq 0}\), where \(\deg \Omega_{s+t}(x; n) = s+t, n \geq 0\), and a SCN \((\zeta_{n,\nu})_{n \geq 0}

\[\phi(x) \sum_{\nu = n-s-t}^{n+s+t} \theta_{n,\nu} Q_{\nu}(x) = \sum_{i = n-s-t}^{n+s+t} \theta_{n,i}^{[t]} B_{i}(x) = \Omega_{s+t}(x; n) B_{n}(x) + \sum_{\nu = n-s-t}^{n-1} \zeta_{n,\nu}^{[t]} B_{\nu}(x), \] (2.7)

where

\[\theta_{n,i}^{[t]} = \sum_{\nu = \max(n,i)}^{\min(n,i)+s+t} \theta_{n,\nu} \lambda_{\nu, i}, \quad n-s-t \leq i \leq n+s+t, \] (2.8)

\[\theta_{r+r,t-r}^{[t]} = \theta_{r+r} \lambda_{r, r-t} \neq 0, \] (2.9)

\[\sum_{\nu = n}^{n+s+t} \theta_{n,\nu} \lambda_{\nu, t-m} = b_{m}^{-1}(u, \Omega_{s+t}(x; n) B_{n} B_{m}) + \zeta_{n,m}^{[t]}, \quad n-s-t \leq m \leq n-1, \] (2.10)

\[\sum_{\nu = m}^{n+s+t} \theta_{n,\nu} \lambda_{\nu, t-m} = b_{m}^{-1}(u, \Omega_{s+t}(x; n) B_{n} B_{m}), \quad n \leq m \leq n+s+t-1. \] (2.11)

Proof. The case \(t = 0\) was analyzed in Lemma 2.1. Let us take \(t \geq 1\). Consider the MPS \(\{P_{n}\}_{n \geq t}\) defined by

\[P_{n+t}(x) = \phi(x) Q_{n}(x), n \geq 0, \] (2.12)
From (1.8) – (1.9), we have

\[P_n(x) = \sum_{\nu=n-t-s}^{n} \tilde{\lambda}_{n,\nu} B_{\nu}(x), \quad n \geq t, \]

where \(\tilde{\lambda}_{n,\nu} = \lambda_{n-t,\nu}, \quad n - t - s \leq \nu \leq n, \quad n \geq t, \) and \(\tilde{\lambda}_{n+t,r-s} \neq 0. \) Now, let \((\theta_{n,\nu})_{\nu=n-t}^{n+t}, \quad n \geq 0, \) where \(\theta_{n,n+s} = 1, \quad n \geq 0, \) and \(\theta_{r+t,r} \neq 0, \) be a SCN. One has

\[\phi(x) \sum_{\nu=n-t}^{n+s} \theta_{n,\nu} Q_{\nu}(x) = \sum_{\nu=n-t}^{n+s} \theta_{n,\nu} P_{\nu+t}(x) \]
\[= \sum_{\nu=n}^{n+t+s} \tilde{\theta}_{n,\nu} P_{\nu}(x), \quad n \geq 0, \quad (2.13) \]

where \(\tilde{\theta}_{n,\nu} = \theta_{n,\nu-t}, \quad n \leq \nu \leq n + t + s, \quad n \geq 0. \) Obviously, \((\tilde{\theta}_{n,\nu})_{\nu=n-t}^{n+s+t}, \quad n \geq 0, \) is a SCN such that

\[\tilde{\theta}_{n,n+s+t} = \theta_{n,n+s} = 1, \quad n \geq 0, \quad \tilde{\theta}_{r+t,r+t} = \theta_{r+t,r} \neq 0. \]

But from Lemma 2.1, there exist a unique MPS \(\{\Omega_{n+s}(x; n)\}_{n \geq 0} \) and a SCN \((\zeta_{n,\nu})_{\nu=n-t-s}^{n-1}, \quad n \geq 0, \) such that

\[\sum_{\nu=n-t-s}^{n+t+s} \tilde{\theta}_{n,\nu} P_{\nu}(x) = \sum_{i=n-t-s}^{n+t+s} \theta_{n,i} B_{i}(x) \]
\[= \Omega_{n+s}(x; n) B_{n}(x) + \sum_{\nu=n-t-s}^{n-1} \zeta_{n,\nu} B_{\nu}(x), \quad (2.14) \]

for every integer \(n \geq 0, \) where

\[\theta_{n,i}^{[t]} = \frac{\min(n,i)+t+s}{\max(n,i)}, \quad \theta_{r+t,r+s}^{[t]} = \tilde{\theta}_{r+t,r+t+s} \neq 0, \]

\[\sum_{\nu=n-t-s}^{n+t+s} \tilde{\theta}_{n,\nu} \tilde{\lambda}_{n,\nu}(x) = b_{m}^{-1}(u, \Omega_{n+s}(x; n) B_{n} B_{m}) + \zeta_{n,m}, \quad n - t - s \leq m \leq n - 1, \]

\[\sum_{\nu=m}^{n+t+s} \tilde{\theta}_{n,\nu} \tilde{\lambda}_{n,\nu}(x) = b_{m}^{-1}(u, \Omega_{n+s}(x; n) B_{n} B_{m}), \quad n \leq m \leq n + t + s - 1. \]

Finally, by using (2.13), (2.14), and taking into account the expressions of \(\tilde{\lambda}_{n,\nu} \) and \(\tilde{\theta}_{n,\nu}, \) we find the desired results.

3. A matrix approach and main results

In this section, we will work under the assumptions of the Proposition 2.2 and we will give a matrix approach to our problem.

If \(\omega_{n,t+s}(x; n) = \sum_{\nu=0}^{t+s} v_{n,\nu} x^{\nu}, \quad n \geq 0, \) where \(v_{n,t+s} = 1, \) then relation (2.10) reads

\[\sum_{\nu=n}^{m+s+t} \lambda_{n-t,m} \theta_{n,\nu-t} = \sum_{\nu=0}^{t+s-1} b_{n,m}^{\nu} v_{n,\nu} + c_{n,m}^{[t]} + b_{n,m}^{s+t}, \quad n - s - t \leq m \leq n - 1, \]

or, alternatively,

\[\sum_{j=1}^{m+s+t-n-1} \lambda_{j+n-t-1,m} \theta_{n,j+n-t-1} = \sum_{j=1}^{t+s} b_{n,m}^{j-1} v_{n,j-1} + c_{n,m}^{[t]} + b_{n,m}^{s+t}, \]

for every \(n - s - t \leq m \leq n - 1. \)

Replacing \(m \) by \(i + n - s - t - 1, \) we get

\[\sum_{j=1}^{t+s} t_{n,j}^{[i]} \Theta_{n,j} = \sum_{j=1}^{t+s} t_{n,j}^{[i]} V_{n,j} + c_{n,i+n-s-t-1} + b_{n,i+n-s-t-1}^{s+t}, \quad 1 \leq i \leq s + t, \]

where for \(i, j = 1, 2, \ldots, s + t, \)

\[k_{i,j}^{[n]} = \begin{cases} \lambda_{j+n-t-1,i+n-s-t-1}, & 1 \leq j \leq i \\ 0, & \text{otherwise}, \end{cases} \]

and \(t_{n,j}^{[i]} = b_{n,i+n-s-t-1}^{j-1}, \)

\(\Theta_{n,j} = \theta_{n,t+n-1}, \) and \(V_{n,j} = v_{n,j-1}. \)

So we can write it as

\[K_{n} \Theta_{n} = T_{n} V_{n} + W_{n} + E_{n}, \quad n \geq 0, (3.1) \]

where

\[K_{n} = \left(k_{i,j}^{[n]} \right)_{1 \leq i,j \leq s+t}, \quad T_{n} = \left(t_{i,j}^{[n]} \right)_{1 \leq i,j \leq s+t}, \]

\[\Theta_{n} = \left(\Theta_{n,1}, \Theta_{n,2}, \ldots, \Theta_{n,s+t} \right)^{T}, \]

\[V_{n} = \left(V_{n,1}, V_{n,2}, \ldots, V_{n,s+t} \right)^{T}, \]

\[W_{n} = \left(c_{n,s-t}^{[t]}, c_{n,n+1-s-t}^{[t]}, \ldots, c_{n,n-1}^{[t]} \right)^{T}, \] and

\[E_{n} = \left(b_{n,n-s-t}^{s+t}, b_{n,n+1-s-t}^{s+t}, \ldots, b_{n,n-1}^{s+t} \right)^{T}. \]
In the same way, using $\theta_{n,n+s} = 1$, (2.11) can be written as
\[
\sum_{\nu=m}^{n+s+t-1} \lambda_{\nu-t,m} \theta_{\nu,n} = \sum_{\nu=0}^{t+s-1} b_{n,m}^{\nu} \nu_{\nu} + b_{n,m}^{n+s,t} - \lambda_{n+s,m},
\]
for every $n \leq m \leq n+s+t-1$. Replacing m by $i+n-1$, we get
\[
\sum_{j=1}^{t+s} m_{i,j}^{n} \theta_{i+j} = \sum_{j=1}^{t+s} s_{i,j}^{n} \nu_{i+j} + b_{n,i+n-1}^{t+s} - \lambda_{n+s,i+n-1},
\]
where for $i, j = 1, 2, ..., s + t$,
\[
m_{i,j}^{n} = \begin{cases}
\lambda_{j+n-1,i+n-1}, & 1 \leq i \leq j \\
0, & \text{otherwise},
\end{cases}
\]
and
\[
s_{i,j}^{n} = \begin{cases}
b_{n,i+n-1}, & 1 \leq i \leq j \\
0, & \text{otherwise}.
\end{cases}
\]
Thus, we can use the matrix representation
\[
M_{n} \theta_{n} = S_{n} V_{n} + F_{n},
\]
where
\[
M_{n} = (m_{i,j}^{n})_{1 \leq i, j \leq s + t}, \quad S_{n} = (s_{i,j}^{n})_{1 \leq i, j \leq s + t},
\]
and
\[
F_{n} = (b_{n,n}^{t+s} - \lambda_{n+s,n}, b_{n,n+1}^{t+s} - \lambda_{n+s,n+1}, \ldots, b_{n,n+s+t-1}^{t+s} - \lambda_{n+s,n+s+t-1}).
\]
Our data are θ_{n}, E_{n}, F_{n}, M_{n}, S_{n}, T_{n}, K_{n} and our unknowns are V_{n} and W_{n}.

From (3.2), we get
\[
V_{n} = S_{n}^{-1}(M_{n} \theta_{n} - F_{n}).
\]

Thus, substituting in (3.1) we get $K_{n} \theta_{n} - W_{n} - E_{n} = T_{n} S_{n}^{-1}(M_{n} \theta_{n} - F_{n})$, i.e.,
\[
W_{n} = (K_{n} - T_{n} S_{n}^{-1} M_{n}) \theta_{n} + T_{n} S_{n}^{-1} F_{n} - E_{n}.
\]
As a consequence, for every choice of θ_{n}, we get W_{n}. From (3.3), we deduce V_{n}.

On the other hand, there exists a one-to-one correspondence between the vectors W_{n} and Θ_{n} if and only if the matrix of dimension $s + t$, $K_{n} - T_{n} S_{n}^{-1} M_{n}$, is nonsingular.

Under such a condition, there exists a unique choice for Θ_{n} such that $W_{n} = 0$. Thus, we get
\[
\Theta_{n} = (K_{n} - T_{n} S_{n}^{-1} M_{n})^{-1}(E_{n} - T_{n} S_{n}^{-1} F_{n}),
\]
and from (3.3), $V_{n} = S_{n}^{-1} M_{n} \theta_{n} - S_{n}^{-1} F_{n}$.
Then,
\[
V_{n} = (K_{n} M_{n}^{-1} S_{n} - T_{n})^{-1} E_{n} - [(K_{n} M_{n}^{-1} S_{n} - T_{n})^{-1} T_{n} + I_{s+t}] S_{n}^{-1} F_{n},
\]
where I_{s+t} is the unit matrix. Hence, the polynomial $\Omega_{s+t}(x;n)$ is explicitly given.

Let introduce
\[
\Delta_{n}(t,s) = \det(K_{n} - T_{n} S_{n}^{-1} M_{n}), n \geq 0.
\]
Thus, we have proved the following result

Proposition 3.1. Assume $\{B_{n}\}_{n \geq 0}$ is a MOPS and $\{Q_{n}\}_{n \geq 0}$ fulfills (1.8) – (1.9). For a fixed integer $p \geq t + 1$, the following statements are equivalent.

i) $\Delta_{n}(t,s) \neq 0$, $n \geq p$.

ii) There exist a unique SCI $(\theta^{*}_{n,v})_{v=0}^{n+s}$, $n \geq p$, with $\theta^{*}_{n,n+s} = 1$, $n \geq p$, and $\theta^{*}_{r+t,r} \neq 0$, if $p \leq r + t$, and a unique MPS $\{\Omega^{*}_{s+t}(x;n)\}_{n \geq p}$, deg $\Omega^{*}_{s+t}(x;n) = s + t$, $n \geq p$, such that
\[
\Omega^{*}_{s+t}(x;n) B_{n}(x) = \phi(x) \sum_{\nu=n-t}^{n+s} \theta^{*}_{n,v} Q_{\nu}(x),
\]
for $n \geq p$.

Our main result is

Theorem 3.2. Let $\{B_{n}\}_{n \geq 0}$ be a MOPS and $\{Q_{n}\}_{n \geq 0}$ be the MPS satisfying (1.8) – (1.9). For each fixed integer $p \geq t + 1$, if we suppose that $\phi(x)$ and $B_{n}(x)$ are coprime for every $n \geq p$, then the following statements are equivalent.

i) $\Delta_{n}(t,s) \neq 0$, $n \geq p$.

ii) There exist a unique SCI $(\theta^{*}_{n,v})_{v=0}^{n+s}$, $n \geq p$, where $\theta^{*}_{n,n+s} = 1$, $n \geq p$, and $\theta^{*}_{r+t,r} \neq 0$ if $p \leq r + t$, and a unique MPS $\{\Omega^{*}_{s+t}(x;n)\}_{n \geq p}$, deg $\Omega^{*}_{s+t}(x;n) = s$, $n \geq p$, such that
\[
\Omega^{*}_{s+t}(x;n) B_{n}(x) = \sum_{\nu=n-t}^{n+s} \theta^{*}_{n,v} Q_{\nu}(x), n \geq p.
\]
Proof. Taking into account \(\phi(x) \) and \(B_n(x) \) are coprime for every \(n \geq p \), from (3.4) we deduce that \(\phi \) divides \(\Omega_{s+i}(x; n) \), \(n \geq p \). So, \(\Omega_{s+i}(x; n) = \phi(x)\Omega_{s}(x; n) \), \(n \geq p \). Hence, the desired result follows.

The orthogonal polynomial sequence \(\{B_n\}_{n \geq 0} \) and the polynomial sequence \(\{Q_n\}_{n \geq 0} \) can be related by a general finite-type relation (see [1]). It reads as follows

\[
F(Q_n, \ldots, Q_{n-l}) = G(B_n, \ldots, B_{n-s}),
\]

where \(F \) and \(G \) are fixed functions.

When \(F \) and \(G \) are linear functions, some situations dealing with the inverse problem have been analyzed in [1,2]. There, necessary and sufficient conditions in order to \(\{Q_n\}_{n \geq 0} \) be orthogonal are obtained.

This kind of linear relations reads as follows.

There exists \((l, s, r) \in \mathbb{N}^3 \), with \(r \geq s = \max(l, s) \) such that

\[
\sum_{\nu=n-l}^{n} \zeta_{n,\nu}Q_{\nu}(x) = \sum_{\nu=n-s}^{n} \lambda_{n,\nu}B_{\nu}(x), \quad n \geq s,
\]

with \(\zeta_{r, r-l}\lambda_{r, r-s} \neq 0 \). Here, \(\zeta_{n,n} = \lambda_{n,n} = 1, \quad n \geq s \).

More recently, in [5], A. M. Delgado and F. Marcellán exhaustively describe all the set of pairs of quasi-definite (regular) linear functionals such that their corresponding sequences of monic polynomials \(\{P_n\}_{n \geq 0} \) and \(\{R_n\}_{n \geq 0} \) are related by a differential expression

\[
P_n(x) + s_nP_{n-1}(x) = R_n^{[1]}(x) + t_nR_{n-1}^{[1]}(x), \quad n \geq 1,
\]

where \(t_n \neq 0 \), for every \(n \geq 1 \), and with the technical condition \(t_1 \neq s_1 \).

Notice that in general \(\{R_n^{[1]}\}_{n \geq 0} \) is not a MOPS.

In the same context of our contribution, we show that the corresponding inverse finite-type relation between two sequences satisfying (3.6) is possible under certain conditions.

Indeed, let consider the MPS \(\{C_n\}_{n \geq s} \) given by

\[
C_n(x) = \sum_{\nu=n-s}^{n} \lambda_{n,\nu}B_{\nu}(x), \quad n \geq s.
\]

With the finite-type relation between the sequences \(\{C_n\}_{n \geq s} \) and \(\{B_n\}_{n \geq s} \), we can associate the determinants \(\Delta_n(0, s) \), \(n \geq s \). So, we have.

Corollary 3.3. Let \(\{B_n\}_{n \geq 0} \) be a MOPS and \(\{Q_n\}_{n \geq 0} \) be the MPS satisfying (3.6). For each fixed integer

\[
p \geq \max(s, l, 1), \quad \text{if } \Delta_n(0, s) \neq 0, \quad n \geq p, \text{ then there exist a unique SCN } \left(\zeta_{n,\nu}^{*}\right)_{\nu=n-l}^{n+s-1}, \quad n \geq p, \text{ where } \zeta_{n,n+s}^{*} = 1, \quad n \geq p, \text{ and } \zeta_{r,r-l}^{*} \neq 0 \text{ if } p \leq r, \text{ and a unique MPS } \{\Omega_{s}^{*}(x; n)\}_{n \geq p}, \deg \Omega_{s}^{*}(x; n) = s, \quad n \geq p, \text{ such that}
\]

\[
\Omega_{s}^{*}(x; n)B_n(x) = \sum_{\nu=n-l}^{n+s} \zeta_{n,\nu}^{*}Q_{\nu}(x), \quad n \geq p.
\]

Proof. From Theorem 3.2, with \(t = 0 \), there exists the corresponding inverse finite-type relation associated with the relation (3.7) if and only if \(\Delta_n(0, s) \neq 0, \quad n \geq p \). Equivalently, there exist a unique SCN \(\left(\theta_{n,\nu}^{*}\right)_{\nu=n-l}^{n+s-1}, \quad n \geq p, \text{ where } \theta_{n,n+s}^{*} = 1, \quad n \geq p, \text{ and } \theta_{r,r-l}^{*} \neq 0, \text{ if } p \leq r, \text{ and a unique MPS } \{\Omega_{s}^{*}(x; n)\}_{n \geq p}, \deg \Omega_{s}^{*}(x; n) = s, \quad n \geq p, \text{ such that}
\]

\[
\Omega_{s}^{*}(x; n)B_n(x) = \sum_{\nu=n-l}^{n+s} \theta_{n,\nu}^{*}C_{\nu}(x), \quad n \geq p.
\]

But from (3.6) and (3.7), the above expression becomes

\[
\Omega_{s}^{*}(x; n)B_n(x) = \sum_{\nu=n}^{n+s} \theta_{n,\nu}^{*} \sum_{i=\nu-l}^{\nu} \zeta_{\nu,i}Q_{i}(x)
\]

\[
= \sum_{\nu=n}^{n+s} \theta_{n,\nu}^{*} \sum_{i=\nu-l}^{\nu} \chi_{\nu,i}Q_{i}(x), \quad n \geq p,
\]

where, for each pair of integers \((i, \nu) \) such that \(n - l \leq i \leq n + s \) and \(n \leq \nu \leq n + s \), we took

\[
\chi_{\nu,i} = \begin{cases} 1, & \text{if } \nu - l \leq i \leq \nu, \\ 0, & \text{otherwise.} \end{cases}
\]

The permutation inside these two sums yields

\[
\Omega_{s}^{*}(x; n)B_n(x) = \sum_{i=n-l}^{n+s} \zeta_{n,\nu}^{*}Q_{i}(x),
\]

where

\[
\zeta_{n,\nu}^{*} = \sum_{\nu=\max(n, i)}^{\min(n+s, n+l)} \theta_{n,\nu}^{*}\zeta_{\nu,i},
\]

if \(n - l \leq i \leq n + s, \quad n \geq p, \text{ and }
\]

\[
\zeta_{r,r-l}^{*} = \theta_{r,r-l}^{*} \chi_{r,r-l}^{*} \neq 0, \quad \text{if } p \leq r.
\]
4. The case: $(t, s) = (0, 1)$

Let $\{B_n\}_{n \geq 0}$ be a MOPS with respect to the linear functional u and satisfying the three-term recurrence relation (1.5).

Consider the following finite-type relation between $\{B_n\}_{n \geq 0}$ and $\{Q_n\}_{n \geq 0}$, with index $s = 1$, with respect to $\phi(x) = 1$,

$$Q_n(x) = B_n(x) + \lambda_{n,n-1} B_{n-1}(x), \quad n \geq 0, \quad (4.1)$$

$$\forall r \geq 1, \quad \lambda_{r,r-1} \neq 0. \quad (4.2)$$

From Lemma 2.1, for every set of complex numbers, $\theta_{n,n}$, $n \geq 0$, with $\theta_{r,r} \neq 0$, there exists a unique MPS $\{\Omega_1(x;n)\}_{n \geq 0}$, where $\Omega_1(x;n) = x + v_{n,0}$, $n \geq 0$, and a unique set of complex numbers, $\zeta_{n,n-1}$, $n \geq 0$, such that

$$Q_{n+1}(x) + \theta_{n,n} Q_n(x) = \Omega_1(x;n) B_n(x) + \zeta_{n,n-1} B_{n-1}(x), \quad n \geq 0, \quad (4.3)$$

where

$$\left\{ \begin{array}{ll}
\lambda_{n,n-1} \theta_{n,n} = \zeta_{n,n-1} + \gamma_n, & n \geq 1, \\
\theta_{n,n} - v_{n,0} = -\lambda_{n+1,n} + \beta_n, & n \geq 0.
\end{array} \right. \quad (4.4)$$

The determinants associated with (4.1)–(4.2) are given by

$$\Delta_0(0, 1) = 0, \quad \Delta_n(0, 1) = \lambda_{n,n-1}, \quad n \geq 1, \quad (4.5)$$

where $\Delta_r(0, 1) = \lambda_{r,r-1} \neq 0$. As a consequence of Theorem 3.2, when $t = 0$ and $s = 1$, we have the following result

Proposition 4.1. Let $\{B_n\}_{n \geq 0}$ be a MOPS and $\{Q_n\}_{n \geq 0}$ be the MPS satisfying (4.1)–(4.2). For every fixed integer $p \geq 1$, the following statements are equivalent

i) $\lambda_{n,n-1} \neq 0$, $n \geq p$.

ii) There exist a unique set of complex numbers $\theta_{n,n}$, $n \geq p$, and a unique MPS $\{\Omega_1(x;n)\}_{n \geq p}$, deg $\Omega_1(x;n) = 1$, $n \geq p$, such that

$$\Omega_1^*(x;n) B_n(x) = Q_{n+1}(x) + \theta_{n,n}^* Q_n(x), \quad n \geq p. \quad (4.6)$$

We write

$$\theta_{n,n}^* = \frac{\gamma_n}{\lambda_{n,n-1}}, \quad n \geq p, \quad (4.7)$$

$$\Omega_1^*(x;n) = x + v_{n,0}^*,$$

where

$$v_{n,0}^* = \frac{\gamma_n}{\lambda_{n,n-1}} + \lambda_{n+1,n} - \beta_n, \quad n \geq p. \quad (4.8)$$

Example. In order to illustrate the result of Proposition 4.1, we study the structure relation characterizing a semi-classical polynomial sequence, $\{B_n\}_{n \geq 0}$, orthogonal with respect to the linear functional u solution of the functional equation

$$u' + \psi u = 0, \quad (4.9)$$

where $\psi(x) = -ix^2 + 2x - i(\alpha - 1)$ and with regularity condition $\alpha \notin \bigcup_{n \geq 0} E_n$, where $E_0 = \{\alpha \in \mathbb{C} : F(\alpha) = 0\}$, $F(\alpha) = \int_{-\infty}^{+\infty} e^{i\alpha x} x^{2+\epsilon(\alpha-1)} dx$, and for each integer $n \geq 1$, $E_n = \{\alpha \in \mathbb{C} : \Xi_n(\alpha) = 0\}$. Here, $\Xi_n(\alpha)$ is the Hankel determinant associated with u. Notice that u is a semi-classical linear functional of class one $[10]$.

The recurrence coefficients β_n and γ_{n+1}, $n \geq 0$, of the sequence $\{B_n\}_{n \geq 0}$ are determined by the system $[10]$

$$\begin{bmatrix}
\frac{n+1}{\gamma_{n+1}} \\
\frac{i(\gamma_{n+2} + \gamma_{n+1})}{\gamma_1} \\
\frac{i(\gamma_{n+2})}{\gamma_1}
\end{bmatrix}
= 2 - i(\beta_n + \beta_{n+1}), \quad n \geq 0, \quad (4.10)$$

$$\Gamma_1 = -i\psi(\beta_0), \quad \beta_0 = -\frac{i}{F'(\alpha)}.$$

The sequence $\{B_n\}_{n \geq 0}$ is characterized by the following structure relation $[10]$

$$B_n^{[1]}(x) = B_n(x) - \frac{i\gamma_n}{n+1} B_{n+1}(x), \quad n \geq 1. \quad (4.11)$$

Thus, taking into account $\lambda_{n,n-1} = -\frac{i\gamma_n}{n+1} \neq 0, \quad n \geq 1$, we deduce a strictly finite-type relation between the sequences $\{B_n\}_{n \geq 0}$ and $\{B_n^{[1]}\}_{n \geq 0}$ with index $s = 1$, with respect to $\phi(x) = 1$,

From Proposition 4.1, we get the following inverse relation, for $n \geq 1$,

$$(x + v_{n,0}^*) B_n(x) = B_{n+1}(x) + \frac{i(n+1)}{\gamma_{n+1}} B_n^{[1]}(x), \quad (4.12)$$

where $v_{n,0}^* = \frac{i(n+1)}{\gamma_{n+1}} - \frac{i\gamma_{n+1}\gamma_{n+2}}{n+2} - \beta_n, \quad n \geq 1$. The sequence $\{B_n\}_{n \geq 0}$ could be characterized by a relation as (4.12). It is the aim of the following result.

Proposition 4.2. Let $\{B_n\}_{n \geq 0}$ be a MOPS satisfying (1.5). Then the following statements are equivalent.

i) There exists a set of non-zero complex numbers $\{\lambda_{n,n-1}\}_{n \geq 1}$ such that, for $n \geq 1$,

$$B_n^{[1]}(x) = B_n(x) + \lambda_{n,n-1} B_{n-1}(x). \quad (4.13)$$
ii) There exists a set of complex numbers \(\{ \varrho_n \}_{n \geq 0} \), with \(\varrho_n \neq 0 \), \(n \geq 1 \), and \(\varrho_0 = 0 \), such that for \(n \geq 0 \),

\[
(x + \frac{\gamma_{n+1}}{\varrho_{n+1}} + \varrho_n - \beta_n)B_n(x) = B_{n+1}^{[1]}(x) + \varrho_nB_n^{[1]}(x),
\]

(4.14)

Proof. Assume that i) holds. From Proposition 4.1, we get

\[
(x + \frac{\gamma_{n+1}}{\varrho_{n+1}} + \varrho_n - \beta_n)B_n(x) = B_{n+1}^{[1]}(x) + \varrho_nB_n^{[1]}(x), \quad n \geq 1,
\]

where \(\varrho_n = \gamma_n \lambda_{n-1}^{-1}, \ n \geq 1 \). For \(n = 1 \), in (4.13), we obtain \(\lambda_{1,0} = \frac{\beta_0 - \beta_1}{2} \). Then, \(\frac{\gamma_1}{\varrho_1} = \frac{\beta_0 - \beta_1}{2} \). Hence,

\[
(x + \frac{\gamma_1}{\varrho_1} - \beta_0)B_0(x) = x - \frac{\beta_0 + \beta_1}{2} = B_1^{[1]}(x) + \varrho_0B_0^{[1]}(x),
\]

i.e. \(\varrho_0 = 0 \). Thus, ii) holds. Conversely, let us take \(\lambda_{n-1} = \frac{\gamma_n}{\varrho_n}, \ n \geq 1 \), and consider the MPS \(\{ A_n \}_{n \geq 0} \) defined by

\[
A_n(x) = B_n(x) + \lambda_{n-1}B_{n-1}(x), \quad n \geq 1.
\]

(4.15)

From Proposition 4.1, we get

\[
(x + \varrho_{n,0}^* A_n(x) = A_{n+1}(x) + \varrho_{n+1}^* A_n(x), \quad n \geq 1,
\]

where \(\varrho_{n,0} = \frac{\gamma_{n+1}}{\varrho_{n+1}} + \varrho_n - \beta_n, \ n \geq 1 \), and \(\varrho_{n,0} = \frac{\gamma_n}{\lambda_{n-1}} = \varrho_n, \ n \geq 1 \). From the assumption ii) and the previous relation, it follows that

\[
\sum_{\nu = n}^{n+2} \theta_{n,\nu} Q_\nu(x) = \Omega_2(x;n)B_n(x) + \zeta_{n,n-1}^{[0]} B_{n-1}(x) + \zeta_{n,n-2}^{[0]} B_{n-2}(x), \quad n \geq 0.
\]

(5.3)

where

\[
\begin{cases}
\lambda_{n+2,n+1} + \theta_{n,n+1} = \beta_{n+1} + \varrho_n, \ n \geq 0, \\
\lambda_{2,0} + \theta_{0,1} + \theta_{0,0} = \gamma_1 + \gamma_2 + \varrho_0, \\
\lambda_{n+2,n} + \theta_{n,n+1} \lambda_{n+1,n} + \theta_{n,n} = \gamma_{n+1} + \gamma_{n+2} (\beta_n + \varrho_n), \ n \geq 1, \\
\theta_{n+1,n} + \lambda_{n,n-1} + \theta_{n,n} \lambda_{n,n-1} = \gamma_n + \gamma_{n-1} + \lambda_{n,n-1}, \ n \geq 2,
\end{cases}
\]

(5.4)

The determinants associated with (5.1) – (5.2) are

\[
\Delta_0(0,2) = \Delta_1(0,2) = 0,
\]

\[
\Delta_n(0,2) = \lambda_{n,n-2} (\lambda_{n+1,n-1} - \gamma_n), \ n \geq 2.
\]

(5.5)

As a consequence of Theorem 3.2, where \(t = 0 \) and \(s = 2 \), we have the following result

\[
A_{n+1}(x) + \varrho_n A_n(x) = B_{n+1}^{[1]}(x) + \varrho_n B_n^{[1]}(x), \quad n \geq 1.
\]

Equivalently,

\[
A_n(x) - B_n^{[1]}(x) = \prod_{\nu = 1}^{n} (\varrho_\nu) (A_1(x) - B_1^{[1]}(x)) = 0, \quad n \geq 1.
\]

But, from (4.15) for \(n = 1 \) we get \(A_1(x) = x - \beta_0 + \frac{\gamma_1}{\varrho_1} \).

From (4.14), with \(n = 0 \), we get \(B_1^{[1]}(x) = x - \beta_0 + \frac{\gamma_1}{\varrho_1} \).

Hence, \(A_n(x) = B_n^{[1]}(x), \ n \geq 0 \). Thus according to (4.15), i) holds.

\[
5. \text{ The case } (t,s) = (0,2)
\]

Let \(\{ B_n \}_{n \geq 0} \) be a MOPS with respect to the linear functional \(u \) and satisfying (1.5). Consider the following finite-type relation between \(\{ B_n \}_{n \geq 0} \) and \(\{ Q_n \}_{n \geq 0} \), with index \(s = 2 \), with respect to \(\phi(x) = 1 \), for \(n \geq 0 \),

\[
Q_n(x) = B_n(x) + \lambda_{n-1} B_{n-1}(x) + \lambda_{n-2} B_{n-2}(x), \quad (5.1)
\]

\[
\exists r \geq 2, \quad \lambda_r, r = 2 \neq 0. \quad (5.2)
\]

From Lemma 2.1, for every system of complex numbers \(\{ \vartheta_{n,\nu} \}_{n=0}^{n+2} \), \(n \geq 0 \), where \(\vartheta_{n,n+2} = 1, \ n \geq 0 \) and \(\vartheta_{r,2} \neq 0 \), there exists a unique MPS \(\{ \Omega_2(x,n) \}_{n \geq 0} \), where \(\Omega_2(x,n) = x^2 + v_{n,1} x + v_{n,0} \), \(n \geq 0 \), and a unique system of complex numbers, \(\{ \lambda_{n,n-1} \}_{n=0}^{n-1} \), \(n \geq 0 \), such that

Proposition 5.1. Let \(\{ B_n \}_{n \geq 0} \) be a MOPS and \(\{ Q_n \}_{n \geq 0} \) be the MPS satisfying (5.1) – (5.2). For every fixed integer \(p \geq 2 \), the following statements are equivalent

i) \(\lambda_n \neq 0, \lambda_{n+1} - \gamma_n \neq 0, \ n \geq p \).
ii) There exist a unique $\text{SCN} (\theta_{n,p}^*)_{n \geq p}$, $n \geq p$, with $\theta_{n,n+2}^* = 1$, $n \geq p$, and $\theta_{r,r}^* \neq 0$, if $p \leq r$, and there exists a unique $\text{MPS} \{\Omega_n^*(x;n)\}_{n \geq p}$, where $\deg \Omega_n^*(x;n) = 2$, $n \geq p$, such that, for $n \geq p$,

$$\Omega_n^*(x;n)B_n(x) = Q_{n+2}(x) + \theta_{n,n+1}^* Q_{n+1}(x) + \theta_{n,n}^* Q_n(x), \quad (5.6)$$

We write

$$\theta_{n,n+1}^* = \frac{\lambda_{n,n+2} - \beta_{n+1} + \lambda_{n+2,n+1} - \lambda_{n-1}}{\lambda_{n,n+2} \lambda_{n+1,n+1} - \lambda_{n-1}} \gamma_n,$$

$$\theta_{n,n}^* = \frac{\gamma_n}{\lambda_{n,n-2}}.$$

$$\Omega_n^*(x;n) = x^2 + v_{n,1}^* x + v_{n,0}^*, \quad n \geq p, \quad (5.7)$$

where

$$v_{n,0}^* = \theta_{n,n}^* + (\lambda_{n+1,n} - \beta_n) \theta_{n,n+1}^* - \gamma_n - \gamma_n + \lambda_{n+2,n} + \beta_n - \lambda_{n+2,n+1},$$

$$v_{n,1}^* = \theta_{n,n+1}^* - \beta_{n+1} - \beta_n + \lambda_{n+2,n+1}.$$

Example. Let $\{B_n\}_{n \geq 0}$ be the sequence of monic polynomials, orthogonal with respect to the linear functional u such that

$$\langle u, p \rangle = \int_{-\infty}^{+\infty} p(x) e^{-x^2} dx.$$

This sequence of polynomials was introduced by P. Nevanlinna (see [15]) in the framework of the so-called Freud measures. These polynomials satisfy the three-term recurrence relation (1.5), with coefficients $\beta_n = 0$, $n \geq 0$, and where γ_n, $n \geq 0$, are given by a non-linear recurrence relation (see [3] and [15])

$$n = 4 \gamma_n (\gamma_n + \gamma_n - \gamma_n), \quad n \geq 1,$$

with $\gamma_0 = 0$ and $\gamma_1 = \Gamma(3/4) \Gamma(1/4)$.

The sequence $\{B_n\}_{n \geq 0}$ satisfies the following structure relation (see [3])

$$B_n^{[1]}(x) = B_n(x) + \lambda_{n,n-2} B_{n-2}(x), \quad n \geq 2, \quad (5.8)$$

where

$$\lambda_{n,n-2} = \frac{4}{n+1} \gamma_n (\gamma_n + \gamma_n - \gamma_n) \neq 0, \quad n \geq 2.$$

From (5.3), with $Q_n(x) = B_n^{[1]}(x)$, $n \geq 0$, and the fact that the polynomial sequences $\{B_n\}_{n \geq 0}$ and $\{B_n^{[1]}\}_{n \geq 0}$ are symmetric, i.e., $B_n(-x) = (-1)^n B_n(x)$, $n \geq 0$, we get, for $n \geq 0$,

$$B_{n+2}^{[1]}(x) + \theta_{n,n} B_n^{[1]}(x) = \left(x^2 + v_{n,0}^* \right) B_n(x) + \zeta_{n,n-2}^{[0]} B_{n-2}(x), \quad (5.9)$$

where

$$\begin{cases}
\lambda_{2,0} + \theta_{0,0} = \gamma_1 + v_{n,0}, \\
\lambda_{n+2,n} + \theta_{n,n} = \gamma_{n+1} + \gamma_n + v_{n,0}, \quad n \geq 1, \\
\theta_{n,n} \lambda_{n,n-2} = \gamma_{n-1} + \zeta_{n,n-2}^{[0]}, \quad n \geq 2.
\end{cases} \quad (5.10)$$

Since we have $\lambda_{n,n-2}, \quad n \geq 2$, the choice $\zeta_{n,n-2}^{[0]} = 0$, $n \geq 2$, is possible and yields the inverse relation

$$(x^2 + v_{n,0}^*) B_n(x) = B_{n+2}^{[1]}(x) + \theta_{n,n} B_n^{[1]}(x), \quad n \geq 0, \quad (5.11)$$

where

$$\theta_{n,n} = \frac{n+1}{4 \gamma_{n+1}}.$$

$$v_{n,0}^* = \frac{n+1}{4 \gamma_{n+1}} - \gamma_n - \gamma_{n+1} + \frac{4}{n+3} \gamma_{n+1} \gamma_{n+2} \gamma_{n+3} + 3.$$

Here, the determinants associated with (5.8) are

$$\Delta_n(0,2) = \frac{4}{n+1} \gamma_{n+1} \gamma_{n+2} \left[\frac{4}{n+2} \gamma_{n+2} \gamma_{n+3} + 1 \right] / \left[\frac{4}{n+3} \gamma_{n+1} \gamma_{n+2} \gamma_{n+3} + 3 \right]. \quad (5.12)$$

$n \geq 2$, with $\Delta_0(0,2) = \Delta_1(0,2) = 0$.

From Proposition 5.1, we deduce that the uniqueness of the previous inverse relation requires that $\lambda_{n+1,n-1} - \gamma_n = \gamma_n \left[\frac{4}{n+2} \gamma_{n+2} \gamma_{n+1} - 1 \right] \neq 0$, $n \geq 2$. Equivalently, $\lambda_{n+2,n+1} \neq n+2$, $n \geq 2$. Indeed, by using (5.8), where n is replaced by $n+1$ and taking into account the orthogonality of the polynomial sequence $\{B_n\}_{n \geq 0}$, we get

$$B_{n+1}^{[1]}(x) = x B_n(x) + (\lambda_{n+1,n-1} - \gamma_n) B_{n-1}(x), \quad n \geq 1.$$

On the other hand, if we suppose that there exists an integer $n_0 \geq 2$ such that $\lambda_{n_0+1,n_0-1} - \gamma_{n_0} = 0$, then $B_{n_0+1}(x) = x B_{n_0}(x)$. In this case (5.11), with $n = n_0$ will be written as $(x^2 + \alpha x + v_{n,0}) B_n(x) = B_{n+2}(x) + \alpha B_{n+1}(x) + \theta_{n,n} B_{n+1}(x)$, for all $\alpha \in \mathbb{C}$. This contradicts the uniqueness of the inverse relation.

Acknowledgements: The first author (FM) was supported by Dirección General de Investigación (Ministerio de Educación y Ciencia) of Spain under grant MTM 2006-13000-C03-02. The work of second author (RS) was supported by Entreprise Kilani at Gabès and Institut Supérieur de Gestion de Gabès, Tunisie.
References

Recibido el 16 de diciembre de 2007
Aceptado para su publicación el 14 de marzo de 2008