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The (variable) transparency of our atmosphere regulates the amount of solar energy
reaching the ground. Also known as clearness index or transmissivity, it has been related
linearly to relative sunshine hours ever since the seminal work of Angstrom, whose regression
model was later modified and generalized, to become a classic tool in the statistical assessment
of the global radiation at the surface of the Earth. In this paper we submit a physico-
meteorological rationale for the polynomial regression between clearness index and relative
sunshine duration.
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Resumen

La transparencia (variable) de nuestra atmésfera regula la cantidad de energia solar recibida
al nivel del mar. Conocida también como indice de claridad o transmisividad, se ha relacionado
linealmente con la heliofania desde el trabajo influyente de Angstrom, cuyo modelo de regre-
sién fue modificado y generalizado mas tarde, convirtiéndose en una herramienta clasica para
la estimacién estadistica de la irradiacion solar en superficie. En el presente articulo propone-
mos una base fisico-meteoroldgica para la regresion polinomial entre el indice de claridad y la
heliofania relativa.

Palabras clave: Insolacién en superficie, regresién de Angstrém-Prescott, transferencia
radiactiva.
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1. Introduction

A vast literature seems to have sprung from a sin-
gle source, an article published in 1924 by Anders
Angstrém, in which a linear relation between a relative
short-wave transparency of the atmosphere and a rela-
tive sunshine duration is put forward. It was later mod-
ified by Prescott (1940), who replaced relative with
absolute transparency.

Sunshine recordings are more widely available than
irradiation measurements. For that reason, attempts
have been and still are made to find, by regressional
methods, the coefficients of what is often called the
Angstrom-Prescott formula.

For many practical purposes, the linear regression has
proved valiable. Recently, however, a quadratic depen-
dence on relative sunshine duration has been shown to
reproduce measured values better, in a statistical sense.

Alternatively, the coefficients in the linear rclation
have been taken to be themselves functions of the re-
gressor variable, giving thereby rise to such a quadratic
dependency of transparency (or clearness index) on rela-
tive (or fractional) sunshine duration (Akinoglu 2008).
Even a third-order polynomial regression between the
two quantities has been used for data quality control
purposes (IDEAM & UPME 2005).

The urge for physical underpinning of the regression
coeflicients has been recurrent, and some of the most
recent attempts, of an ad hoc nature, towards that end
have been surveyed by Akinoglu (2008). On the other
hand, the theory of radiative transfer through atmo-
spheres does afford a physical foundation for the calcu-
lation of atmospheric transparency.

Yet it is too elaborate to be of practical use, par-
ticularly when only limited measurements are available;
little wonder, then, that there is still much room for the
kind of simple statistical modeling that has been car-
ried out in the spirit of Angstrom’s linear regression, a
telling example being the new book edited by Badescu
{2008).

Convinced of the assets of both approaches, a ratio-
nale for systematically deriving regression formulae of
Angstrom-Prescott-type is propounded on the basis of
a simple two-stream model of radiative transfer. But
first we need to look into the original formulae more
closely.

2. Angstrém’s formula and its generalizations

As already asserted, Angstrém (1924) proposed a
linear relation between a relative transparency of the
atmosphere for solar radiation and the relative sunshine
duration, to wit:

Ta =aa+baf (N
where o
_T,Z = Eg_i('rb) (2)
Qo(Tb)

defines a certain (mean) transparency and

(3)

is often referred to as the (average) relative (or frac-

tional} sunshine duration. @4(m,} we define here as the
mean flux density (irradiance, insolation) at the {(hori-
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zontal) surface of the Earth; likewise, Qé(n,) is the mean
flux density, but for a sunny, cloudless day. 73 is the op-
tical depth of the whole atmosphere, a measure of its
opacity with respect to solar radiation; k is represents
a convenient mean of h, itself being the number of sun-
shine hours during a whole day, while H stands for the
maximum possible amount of sunshine at a certain ge-
ographical place and time of the year. It can be calcu-
lated from astronomical considerations of the insolation
distribution on the top of the Earth’s atmosphere.

The hars appearing in these equations remind us that
Angstrom rightly saw his formula to be applicable only
to climatological values of transparency and sunshine,
not to instantaneous ones. The period over which has
to be averaged is a matter of choice; it could refer to
meonthly values, by averaging the daily recordings of so-
lar radiation and sunshine; or it could represent seasonal
averages, even yearly or decadal ones. Furthermore, all
quantities involved are, in principle, spectral ones, and
therefore they depend on the wavelength of the solar ra-
diation reaching sea level. We shall omit both the bars
and any reference to the wavelength dependency, on the
understanding that the quantities involved in this article
are monochromatic averages, unless otherwise stated.
As we will not be dealing with instantaneous irradia-
tion, the model to be laid down disregards from the
outset the actual elevation of the sun’s disk as it varies
with the hour of a day, and thus delivers at best daily
averages of insolation.
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Formula (1) was modified by Prescott (1940) to read

_ @ m) _

()
who introduced absolute transparency, Q'(0) now
standing for the solar flux density at the top of the at-
mosphere (where optical depth vanishes). Also known
as insolation, it is expressed by the formula

a+ bn, (4)

1 — Dy ? s
@ = (F) Queosty 6)
in which Qq is the {monochromatic) extraterrestrial nor-
mal solar flux density (known as the solar constant), fy
being the sun’s (disk) zenith angle, measured with re-
spect to the local normal. D denotes the actual distance
of the Earth from the Sun, D, being an average distance
{the astronomical unit). The daily average of this ex-
pression follows upon integrating (5) over a day’s period,
with the understanding that Q!(0) vanishes during the
night (6 > 7/2):

Do\ Qo oo .
(—-—) — (Ag sin ¥ sin 6 -+ sin Ag cos P cos ).
D ™

Here, + Ag is the hour angle at sunset (+)} or sunrise {—)
for latitude ¢ and declination angle 4. The maximum
possible sunshine hours at a certain location, H, used
in defining n, and the hour angle Ag (in degrees) are
related by H = 2A4/15. All these definitions are well
known from studies of insolation distribution on planets
and need not be discussed here any further.

The Angstrom-Prescott and the original Angstrom
formulas may readily be shown to be related as follows:

Ta(n) = 200 6)

- T(1)
and hence T4(1l) = a4 + by = 1. We expect measure-
ments of T4{n} and 7 (1} to be pertectly correlated. We
therefore are not surprised to learn that Ianetz & Kud-
ish (2008), who think T4{n) to be a “better indicator
of the degree of cloudiness than the oft used 7(n)”, find
them to be highly correlated. They conclude from a
statistical analysis of measurements at Beer Sheva that
the regression coeflicients for monthly averages of both
transparencies explain almost 100% of the data variance.

Many values for the Angstrom-Prescott coefficients a
and b have been published for different places; it is not
the purpose of this article to review them. For the sake

of illustration, I quote only a pair purported to be rep-
resentative of the whole of France: a = 0.2 and b = 0.55
(Guyot 1998). But we must keep in mind that the val-
ues do vary from place to place, depending also on the
averaging period. According to Akinoglu (2008), they
range between the following limits: 0.06 < a < 0.46 and
0.19 < b < 0.87.

We pointed out above that efforts to generalize the
formula of Angstrom or Angstrém-Prescott are not un-
common. It seems that a quadratic relationship be-
tween T and 7 produces better results when compared
with some data (Akinoglu 2008), and even higher or-
der polynomials have been proposed (Sahin & Sen
2008). A third-order polynomial was deemed necessary
by the authors of the solar radiation atlas of Colombia
(IDEAM & UPME 2005}, from where we quote, for
later reference, the following numerical example (corre-
lation cocfficient of 0.56)%

T =0.343 4 0.244n + 0.1137% — 0.0267°.  (7)

Whatever the specific reasons for such generaliza-
tions, it does seem clear that expanding Angstrém’s
original regression mede] to allow for a polynomial re-
gression between 7 and 7 is a natural step. If the regres-
sion cocfficients could be shown to derive from a physical
model of the relation between insolation and sunshine,
our resolve to carry out all the statistical inferences nec-
essary to validate the regression models would thereby
be strengthened .

With this question of the physical origin of statistical
coefficients in mind it is that we put forward a physico-
meteorological rationale for the polynomial regression
between the transparency of the atmosphere and the
relative sunshine duration.

3. A model atmosphere

A model atmosphere simple enough will allow us to
achieve our aim set forth in the last paragraph. Two-
stream models have been found to be parsimonious ap-
proximations to the radiative transfer of electromagnetic
energy through a plane-parallel atmosphere. In their
broadband or semi-gray versions, they enable one to cal-
culate the transmissivity {(transparency) of the model
atmosphere, either with respect to solar or thermal ra-
diation. I shall not discuss two-stream models here, of
which differing versions can be found in many textbooks.

2Unfortunately, the atlas is silent as to locality and period for which the values apply, so this equation should be taken as a mere nu-
merical illustration. I regret not being able to comply with the request of a reviewer, who wished to know the meteorological circumstances
surrounding the regression, so as to bear out our interpretation, in See.3.2.1, of the negative cocflicient.
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While T shall be using my own version (Pelkowski
2007), any other model of the same kind may be laid
down. For most details, however, the reader may also
be referred to the textbook of Petty (2006), or to the
lucid and briefer exposition by Bohren (1987).

The transparency of a plane-parallel atmosphere-a
good model for the vertical energy fluxes in the real
atmosphere-can be calculated starting from the equa-
tion of (monochromatic) radiative transfer, which we
write as:

l(r,p) ﬂfl i N
p—gr— =13 _1P(ﬂ,#)I(T,#)du- (8}

The symbols have the usual meanings®:

I: radiance {intensity) of a light ray inclined with re-

spect to the local normal by a zenith angle # = cos™' p

r: optical depth into the atmosphere at altitude z,

Hy
T(z) = ] kpdz', (9)

in which k is the (specific or mass) extinction coefficient,
p the density of the optically active matter, and H, the
height of the top of the atmosphere

FP: phase function, describing the angular distribution
of radiance at a point where the incident radiation with
zenith angle & = cos™' u' is being scattered into the
ray with zenith angle cos™! u.

a: scattering albedo (the ratio of scattering coefficient
to total extinction coefficient).

Note that in general we should include a thermal source
of photons emitted by matter at the local temperature,
a source that however barely contributes to the short-
wave energy fluzes. It can be safely neglected in our
context.

By next introducing the downward and upward short-
wave energy flux densities at any depth 7, Q!(r) and
Q'(7), respectively, defined as

0
Ql("') = —27r/_1 i, w)udy > 0

and +1
Q'(r) = 2??] I(r, pyudp > 0,
0

we may set up equations apiece, starting from the ra-
diative transfer equation (8) {Petty 2006, Pelkowski

2007):
L
ut deT(T) = (1 —af)Q ) +a(l - HHQI(7) (10)
and
(7
#+_de;( - (1-af)Q() - all - HRHF). (D)

To derive these equations, some simplifying assumptions
were made, an important one being the choice of the
phase function. ut > 0 is independent of 7, but it may
vary with wavelength and total optical depth 75, defined
by Eq. (9) as 7, = 7(0), as shown in Pelkowski (2007).
Note that gt € (0,1]. In Petty’s (2006) two-stream
equations, u* = 0.5, while Bohren’s (1987) two-stream
version corresponds to ut = 1. In our model, a singular
phase function was chosen so that a fraction f of the
energy is effectively scattered into the hemisphere (with
equatorial plane parallel to the atmospheric layers) into
which the energy fiows, the complementary fraction 1— f
being back-scattered. Fraction f is shown in my previ-
ous account to be related to the asymmetry factor g by
f = {1+ 9}/2, while Petty (2006) assumes it as plausi-
ble. The asymmetry factor is a widely used character-
istic of the asymmetry in the distribution of scattered
radiance, reflecting, to a certain extent, the size, shape
and nature of the scattering particles. Plenty of values
can be found in the relevant literature.

Eqgs. (10) and (11) are ordinary differential equations
for the flux densities of solar radiation that cross the
atmosphere either downwards or upwards. The value
of the downwelling flux density at the surface {where
T = 73) is known as the “global” irradiance. This sur-
face insolation Q! (7,) comprises both the direct and the
diffuse irradiance, which may be kept separate, as is
commonly done in studies of its measurement and cal-
culation:

Q' (1) = Qp(m) + Qi(n). (12)
However, we shall not need this distinction beforehand,
since our model, being applicable at best to daily av-
erages, will not include the daily variation of the hour
angle. Only an effective cosine p* is taken into account,

which may be interpreted as an average of the cosine of
the sun’s zenith angle.

As a side remark, and for later reference, I point out
that when no diffuse fluxes are separately measured,
only “global” ones, many an investigator has tried to
infer the former from the latter. For example, Boland

3Almost all quantities are spectral ones but we need not remind ourselves every time of this fact.
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& Ridley (2008) show that by defining the diffuse frac-

tion .
Qu(7p)
= , 13
Q) (13)
which in our notation we write as
75
DIT)=1-= 14
(T)=1-2, (14)

a logistic function can be fitted to the data between
D and T. D tends to be small when the transmis-
sivity is dominated by the direct component 75 =
QlQ(n)/ Q'(0), but if the direct component is absent (as
in overcast skies), then D = 1.

The transparency of the atmosphere, 7T =
Q%(m)/Q*(0), can now be determined for an opticaily
uniform model atmosphere (for which a and g are inde-
pendent of position within the layer) from the solution to
Eq. (10) under appropriate boundary conditions (Petty
2006), including the solar energy reflected isotropically
at the surface, whenever its albedo r, does not vanish.
The following expression for the transparency is thus
arrived at (Pelkowski 2007):

2
T=— e S ., (15)

e —r2 e —ror(e’r —e )

with abbreviations defined as: 7 = n,/pu™,

¥= V(1 -a)(l - ag) (16)
and
VIi—ag-Vi-a

Too = e Toa (1"

Too is the (intrinsic) reflectivity of a semi-infinite scat-
tering layer (see Eq. (20) below, for 77 —— o0).

The transparency may be rewritten more compactly

» t
T= ) 18
I —rer (18)
by means of the intrinsic transmissivity
1-7Z
b= e e (19)
and the intrinsic reflectivity
1— =27
r=Ts (20)

1—r2e 217
of the optically uniform atmosphere.

In establishing these quantites, the atmosphere was
assumed to be optically uniform, so that the solution
of the flux equations (10} and (11} could be found by
standard methods. As we wish to take into account

the observed vertical variations of optical parameters of
the atmosphere, we refine the model by dividing the at-
mosphere into a minimum number of optically uniform
layers. If we agree that cloudiness should be included
in a model purporting to relate transparency and daily
sunshine duration, we perceive at once that a minimum
of three layers is required (Pelkowski 2007): a cloud
layer with variable cloudiness, a cloudless upper layer
and a cloudless lower layer. Every layer is supposed
to be optically uniform, and we shall distinguish cor-
responding quantities in each layer with different sub-
scripts: ¢ refers to cloud properties in the cloud’s layer
(itself distinguished by the subscript n), A refers to the
atmaosphere free of clouds within that cloud layer (in
which the clouds have optical thickness ., the inter-
stices being less deep, Tap = 72 — 71); « shall refer to
the upper layer (of total optical depth 7., = 71 ); finally,
[ is reserved for the lower atmospheric layer {of optical
thickness 1y, = 75—72). All three layers will have a trans-
missivity and reflectivity described by the above formu-
lae, but with surface albedo being replaced by appro-
priate alhedos, corresponding to the layers underneath
{(and to which the surface albedo also contributes). Of
course, in the middle layer (hosting the clouds} we will
have to arrange for the different transmissivities and re-
flectivities of the clouds and interstices, and a careful ac-
counting of all the solar fluxes bouncing back and forth
between the surface and the cloud layer does indeed lead
to simple weighting with cloud amount n:

t
T, = LA 21
1-— Atrn ( )
tn = nt; + (1 — nlta (22)
= NTe + (1 —n)ra. (23)

In Eq. {21}, we replaced r; by the albedo A; of the sys-
tem made up by the surface and the lower atmosphere,
which would be the albedo of the Earth if the middle
and upper layers were not present:

(24)

This expression may be derived in much the same way as
that for the transparency of an optically uniform layer,
Eq.{(18), by first solving the flux equation for the upward
solar radiation, Q'(7), Eq. (11), and then appealing to
the definition of albedo:

N
A= Q (Tz)'
Q4 (m2)
(For a rigorous approach, see Chevallier et al. 2007,
or Kokhanovsky 2006}. The albedo of the upper layer
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A, coincides with the albedo A of the Earth and is given
by the well-known ratio:

1 2
w= g..(_o_) =r,+ .._Jin'_t’f'..._1
Q4H0) 1— A,ry
(A = 0.3 being the presently accepted climatological
value); likewise,

Q' (1) At}
A, =2\ At 26
n Ql(‘rl) Tn+ 1-— Airn ( )
is the albedo of the earth/atmosphere below the depth
71 (the top boundary of the middle layer).

A= (25)

We need all these expressions because they appear
in cur model atmosphere’s transparency, which is found
by multiplying the transmissivities of the three layers
(Pelkowski 2007):
tut, 1
T=TT.T = .

AT A T Apr (1 = A1 — rory)

This is the key expression for the following development.
For a discussion of a similar procedure, but from a rather
advanced level, the patient reader may wish to consult
Kokhanovsky {2006).

(27)

3.1. Transparency of the tri-layered model atmo-
sphere. The transparency (27) may be rewritten as fol-
lows:

T=—"o0 (28)

with t = t,t,t; and

0= (1—ryr)lra(ry + A — rudi(rl —t2)] + rory. (29)
If for a moment we assume that the surface albedo van-
ishes, together with the optical depths of the middle
layer (7o = Tap = 0, so that 1y = 79), this expression
reduces to ¢ = ry7; and the transmissivity of a two-layer
atmosphere is seen to be
tuti
T = ——,
1—r,ym
a result that may be found in the literature (Petty 2006,
Kokhanovsky 2006).

(30)

Returning to the general expression (28), we remark
that since p < 1, we may write the transparency as a
power series

oo
T=ty F=t(l+o+°+..) (31)
k=0
If it were generally true that ¢ < 1, we could approxi-
mate the transparency by the simpler expression:

T~ t(1+p). (32)

Before proceeding any further, we ask how to re-
late the cloud fraction n and the fraction of sunshine
duration, which we have denoted by . Can we express
the cloudiness as a function of , n = f()? Certainly a
relation between them must exist, though it may not be
straightforward to find the right one. If the sun shone
for a whole day, ie., if n = 1, the day’s average of
cloudiness may be reasonably thought of as being nil:
f(1) = 0; vice versa, if no sunshine during the whole
day is recorded (n = 0), we may take that to be due to
day-long overcast conditions: f(0) = 1. These two ex-
treme values may be connected in a linear or nonlinear
way, but we might certainly wish to begin with the sim-
pler linear relation n = 1 — 7, a relation that seemingly
has been found to be useful in the literature {cf., e.g.,
Robinson 1966, and Kondratyev 1969). Of course, a
more general relationship could be envisaged, particu-
larly when cloudiness {(as when mountains are capped),
not affecting sunshine duration at a site, need somehow
to be taken into account. Notwithstanding such a pos-
sibility, we shall abide by the linear relation between an
average cloudiness and the fractional sunshine duration.

With this relation for n, it is now easy to express
the transparency 7 of the atmosphere as a function of
sunshine duration 5. The approximate expression (32),
in which both factors depend on 7, will suffice for our
purposes. By carrying out the multiplication of the two
factors, we may arrange the result to produce a third-
order polynomial in #:

T(n) = ap + a1y + agn® + aan® (33)

wherein the coeflicients are derived functions of reflec-
tivities, albedos and transmissivities, given by the fol-
lowing expressions:

ag = a(l+rm+ %) (34)
ay = a1+ b1+ 7 +0) (35)
G2 = bT e (36)
a3 = -—by (37)

Here we have introduced the following abbreviations:
a = tytct (38)
b=tu{ta — tt (39)

Yo = Telra + A1) — ruA!(TE - tg)

M= (TA_TC)(TI: +AI) - 27'uA! [rc(TA_Tc)"tc(tA"tc)]
Y2 =radif(ra —7e) — (ta — to)?]

Fi=(l-rr)n =012
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Of course, if g is not small enough, instead of (33) we
would get from (31) a polynomial of a higher degree. In-
deed, (31) shows that the transparency is a polynomial
of infinite degree in 7, but we could still get a finite poly-
nomial by lumping together the contributions of certain
higher orders in g into a stochastic process, such that

N
T(n) =) an' +e.
i=0
It is clear that the coefticients a; are in practice random
variables, because the meteorclogical quantities deter-
mining them fluctuate more or less randomly. Hence-
forth we shall restrict our further development to N =3
and shall only consider particular cases of what may
be called the “deterministic” transparency {i.e. with
e =0).

3.2. Conditional transparencies of the tri-layered
atmosphere. By examining different special cases, we
may simplify the interpretation of the coefficients in Eq.
(33). The present section is devoted to some restrictions
that lead to simpler forms of those coeflicients.

3.2.1. Non-scattering interstices between clouds. This
case will allow us to infer something about the coef-
ficient a3, given by (37). When the air in the inter-
stices between the clouds of the middle layer does not
scatter solar radiation, aap = 0 and hence ro = 0. It
is commonly assumed that clouds are almost conserva-
tive scattering media; we may take them to be perfectly
so, with the implication that their scattering albedo is
unity (a. = 1) and r. +{. = 1. Our middle layer
thus consists of conservative clouds (a good assump-
tion about real clouds) and interstices between them not
scattering at all (not an appropriate assumption about
real air but one that is not too critical here). Then
{37) may, after a few transformations, be written as
a3 = —tu(ta —te)ti{l —rer)ru A(1 —ta)(ta + 27 — 1)
With typical values for the quantities involved, it is clear
that a3 < 0. If the interstices are even totally transpar-
ent, i.e. ta = 1, then a3 = 0. In normal conditions
ta will not be much less than unity, and so as can be
expected to have a small magnitude. Eq. (7) reflects
these inferences (a; = —0.026).

3.2.2. Non-scattering upper layer. In this case, the scat-
tering albedo of the upper atmosphere vanishes {a, = 0)
and therefore r, = 0, vo = 7.4, 71 = (ra — ro) Ay,

~v2 = {) and hence a3 = 0. The transparency then reads:
T(n) = ag + a1n + aan’, (40)

with accordingly modified coefficients (34), (35), and
{36).

3.2.3. Non-scattering upper and lower layers. A similar
gquadratic equation is obtained if both the upper and
lower layers do not scatter solar radiation {a, = a; = 0,
implying r,, = r; = 0). Then, from Eqs. (24) and (29)
o= rnrst?; if the atmosphere consisted of only the mid-
dle layer, i.e. the optical depths of the upper and lower
layers were nil or negligible, then by Eq. (19) ¢; = 1 and
the original expression for the transparency (27) would
read T =t,,/(1 —ryr,), which can be further simplified
if we consider only clear skies (n = 0}

ta
T= 1—ryra’
Such a global irradiance under cloudless skies is con-
sidered by Kambezidis & Psiloglou (2008), who call
Ta the albedo of the cloudless sky after introducing,
however, the denominator in an ad hoc manner: “..the
effect of multiple ground-atmosphere reflections can be
accounted for, scaling [Q'(7)] by the adequate factor
(1 —ryra)~?" (Kambezidis & Psiloglou 2008).

3.24. Black surface. In this case, the surface albedo
is zero: ry; = 0. Consequently, % = 7, and by (24)
A; = r;. The polynomial retains its third-order degree.
But if we add the further assumption that the upper
and lower layers do not scatter solar radiation (i.e. have
vanishing scattering albedos), then 4; = 4; = 0 and we
get for the transparency the simple linear relationship

T(n) =a+by (41)

in which the “Angstrom-Prescott coefficicnts” become
ag = a = t,t.d (42)
a1 =b = t,(ta — i)t (43)

It goes without saying that a layer that does not scatter
solar energy can only transmit it as direct, not diffuse,
radiation. Therefore

- +
ty =t2 = e Ter/ia

z € {u,l} (44)

by Egs.(16), (17) and (19). The superscript symboliz-
ing the sun is to remind us that only direct solar ra-
diation is being dealt with. The diffuse compenent, £*
may generally be defined as t — t©. As we did not al-
low for instantaneous values, the direct transmissivities
are only averages, defined for appropriate “effective” air
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masses 1/u7, in agreement with the averaging periods
laid down.

The transparency for overcast conditions is then,
from (41), (42) and (44),

T(0) = a=t2t.t7. {45)

In this limiting case, the transparency is just the product
of the direct transmissivities tg, t? and the total trans-
missivity t. of the cloud layer. Direct transmissivities
are controlled by the absorption of ozone, water vapor,
carbon dioxide, as well as other gases of minor impor-
tance; the transmissivity of the cloud layer is affected
largely by scattering within the cloud layer, brought
about by the air molecules and the cloud elements, and
to a lesser degree by absorption of solar energy in water
vapor and radiatively active gases, and also by the water
itself, albeit this is normally held to be negligible.

Let us turn to the other limiting condition, that of a
sunny, cloudless atmosphere. Then (41), together with
Egs. (42), {43) and (44} yield

T(1) = a+b =ttt +t2(ta — t)t? = t2tat7 (46)

which makes perfectly sense, because now we get the
transparency of the atmosphere by multiplying all three
(cloudless) transmissivities together, that of the mid-
dle atmosphere being the (sum of direct and diffuse)
transmissivity of the air in the absence of clouds (the
“Intersticial” transmissivity ta).

Note that from Eqgs. (1), (6) and (41}, a4 = a/(a+D)},
ba = b/(a+Db), and thus a4 is seen to be the ratio of the
transparency of the overcast atmosphere to that of the
cloudless one, in conformity with Angstrom’s original
meaning,.

It should be clear from the preceding account that
the classic linear relationship between clearness index
(transparency) and relative sunshine duration, known as
the Angstrﬁm-Prescott formula, cannot, on our grounds,
be expected to be valid unless the surface albedo is low
and the optical thickness of the cloudless parts of the
atmosphere due to (non-conservative) scattering is neg-
ligible.

3.2.5. Cloudless and non-scattering model atmosphere.
In this situation we have: n =0 (Le. n = 1); 2y, = aa =
a; = 0. Therefore, r, = ra = r; = 0 and, choosing the

same u't for every layer (cf. also Eq.(51) below),
T(1) = 91242 = ¢ =T/p" g 72/8 g (o)
" (47)
= e T/HT
A possible choice for the effective air mass 1/ut is
- log[2Es(m)]/ 76 (Pelkowski 2007), for then the trans-
parency would correspond to the annual global mean of
the direct transmissivity, with the exponential function
being replaced by twice the exponential integral Es{7),
which is just what one gets for the so-called direct spher-
ical transmissivity (Chevallier et al. 2007, Pelkowski
2007). There are other possibilities to define an effective
air mass which we need not discuss here.

If total optical depth is expressible as the sum of
the optical depths due to ozone, water vapor, well-
mixed absorbing gases and aerosol absorption, then
To = Tb,03 + Tb,Ha0 + Tomg -+ Toaer and we could write
the transparency of the atmosphere as

T(l) = e—"rp,/,u"' = TosTHgOngTaer,

which is what one often finds in studies of (direct or
beam) solar radiation at the surface of the Earth (cf.,
e.g., Kambezidis & Psiloglou 2008).

3.2.6. Conservative cloud layer with overcast skies over
black surface. This situation is described by r,+t. =1,
n =1 and r; = 0. Then, from (33}, (34) and (38),
together with (24),

T(U) =ap

48
= to (1 =7 )t [I+ryry + re(ry+ri—2r,m)). (48)

If in addition the cloudless air would not scatter solar
radiation, this expression would reduce to Eq. (45}. It
is well known that for a conservative cloud the trans-
missivity is given by

Ty

f»"(-:'- + (1 - fc)ch’
T.» being the optical depth of the cloud layer. Petty
(2006) derives (49) for p} = 0.5, but it has often been
presented for 47 = 1. Some flexibility is gained by al-
lowing 1} to assume any value between 0 and 1, but how
should we choose it? A criterion discussed in my previ-
ous work (Pelkowski 2007) is to demand that this cloud
transmissivity reproduce the rigorous value in the case
of isotropic scattering, which corresponds to f, = 0.5,
for then there exist exact expressions (cf., e.g., Rutily
et al. 2008). For the sake of illustration, suffice it to
quote the value pt = 0.663 for a cloud of optical depth
Ter = 16 (Pelkowski 2007). Of course, one may stick

te

(49)
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to a single constant value for p} if one wishes to es-
chew the onerous review of the formulae involved. A
typical value found in the literature is u} = 1/+/3 (the
“diffusivity factor”).

For the transparency (45) we can now write 7(0) =
t242 /{1 + (1 — fo)7es/pt]. It is diminished by the pres-
ence of the cloud layer (unless f. = 1, which case is tan-
tamount to no cloud at all). If the cloud elements would
strongly backscatter (f. < 1)-which they do not-, the
transparency of the atmosphere would fall more than for
the case of isotropic or Rayleigh scattering (f. = 0.5).

3.2.7. The general limit transparencies. In the general
case for which we obtained the polynomial equation
(33), we may write for the limiting transparencies the
following equations:

T(0) = ag = tutsty[l + 1o + (1 — 7,107 ] (50)

T(1)=aq+ a +aa + ag

51
= tufabffl +7rery 4 (1 — rer )T Al (51)

where
Iy =7re{ry, + A1) — ruAl(ri — ti) r=corA (52)

In periods of overcast skies, the transparency of the
model atmosphere is enhanced over a reflecting surface;
likewise, for cloudless conditions we discern that it also
increases over places whose surfaces are not black. [
shall illustrate this in the next subsection, devoted to
the diffuse transmissivity of one of our specialized model
atmospheres.

3.2.8. Diffuse transmissivities under cloudy skies. By
subtracting the direct transmissivity from the trans-
parency (or total transmissivity) given by (33), we get
the diffuse transmissivity 7.(n) = Q{7)/Q*(0). By
(14) it may be written in terms of the diffuse fraction
(13) as 7. (1) = DT ().

A little reflection will make it plain that the direct
radiation is given by

To(m) = t3[(1 — )t + need, (53)
with t2 = exp|—7o/p7]. Then T(n} = T (n} ~ To(n).

Let us now consider the simplified model atmosphere
consisting of both air that does not scatter radiation at
all (@, = aa = a; = 0} and perfectly scattering clouds

(re +t. = 1). Its diffuse transmissivity may be shown
to be expressible as

T.(n) =tt7 (ImHeerat P (122 [te(1-m) 3]}, (54)
where by Eq. (49) and & = e~/

, . A
1+ (1_f6)"'cb/#j
The singular case f. = 1 leads to t. = 1 and hence

r, = 0, which is equivalent to a, = 0, i.e. 7.4 = 0 and
thence t& =1 as well as tX = 0.

—emTelul {55)

From (54) the diffuse transmissivity under overcast
conditions follows at once

7.{0) = tUQt,_.@ [ts + Tsttgz(l — te)te] (56)
while that for cloudless skies is simply
T.(1) =0,

as we expect it to be.

With an overcast sky, there are two extreme val-
ues for which the diffuse transmissivity (56) vanishes:
t. = 1 (the singular case described before, amounting to
a cloud layer with “invisible clouds”) and t. = 0 {opti-
cally deep clouds, 7. — 00).

For all values 7 < 1, 7.(n) has a maximum for a
certain value of 7, say 73. The diffusive transmissiv-
ity first increases with the optical thickness of the cloud,
up to the value 7., thence slowly decreases for .4 > 7o4.

If the ground albedo is low or vanishes, the diffuse
transmissivity simplifies to

T(n}y = t2tP (1 - e, (57)

and under overcast skies 7.(0) = t9t7t%. Clearly, the
diffuse transmissivity over a reflecting ground (or sea) is
greater than over a black surface, unless the cloud layer
is very deep.

It instead of non-scattering air overlying a reflect-
ing surface we consider (besides the scattering clouds)
a scattering lower atmospheric layer resting on a black
surface, we would get the following diffuse transmissiv-
ity {ra =ra =ry =07y # 0):

T.(n) = t9{{tts(1 —m) + tgt?"]][l + 7eri(1 — 1))
+HP (L — p)(tKrerm — )}

For overcast skies, this yields 7,(0) = t2 [t {1 +rery) —
tPt2), while for clear skies we get T.(1) = t21Qtr > 0,

the latter positive contribution being due to the scatter-
ing in the lower atmosphere.

(58)
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Although we could examine the general case (for
ry # 0, x € {Al,s,u}), we will forgo the resulting
lengthy formula for the diffuse transmissivity, as no new
qualitative inferences will follow from it.

4. Discussion

The literature on the Angstrém-Prescott and simi-
lar equations has been reviewed by Akinoglu (2008),
whom I will be citing below. To avoid the clumsy repe-
tition of the publication year in parenthesis, in this sec-
tion I shall omit it on the understanding that his survey
is always being referred to.

Akinoglu states that the Angstrom coefficients a and
b “have been expressed in terins of different geographical
and climatic parameters such as latitude, altitude, sun-
shine fraction”, and he concludes that those coefficients
“depend on all physical, spatial and the dynamic prop-
erties of the atmosphere at the region of interest”. Our
model makes this conclusion compelling, because the
different transmissivities are quantities certainly vary-
ing “dynamically” from one place to another {geograph-
ically).

After a short review of earlier attempts, Akinoglu
presents a model of his own that produces a quadratic
expression in the fractional sunshine duration, with cor-
responding coefficients, the first of which in our notation
reads ap = f,tatits(1 4+ r57.) (the quantities being effec-
tive ones, not dependent upon wavelength). Let us com-
pare this expression with what results from (40) when
we assume r,, = r; = 0. Then, in view of Eqs. {50) and
(52), we get T(0) = ag = tytoti(1 + rerst?). If further-
more we assume that the Jower atmosphere does not ah-
sorb solar radiation, then ¢; = 1 and ap = .21+ rcrs),
which can finally be made to coincide with Akinoglu’s
expression if we also require the interstices of the middle
atmosphere to be transparent (ie., ta = 1). The other
two coefficients proposed by Akinoglu are more diffi-
cult to compare, because they involve “the atmospheric
forward scattering coefficient”, as well as “the total at-
mospheric back-scattering”, which seem to be what we
call reflectivities. The latter “can be defined with two
components” {and seemingly corresponds to our r,}. It
seems t0 me that if Akinoglu’s “forward scattering co-
efficient” is set to zero (being already accounted for in
the reflectivities of our model), and if his tat. is always
properly read to mean only %, then the coefficients can
be made to agree! But however well the coefficients he

proposes and those in our work might eventually com-
pare, I cannot help calling his “derivation” at best a
felicitous ad hoc attempt to confer a definite meaning
to the coefficients of polynomial regression.

In discussing the merits of a quadratic regression
between transparency and relative sunshine duration,
Akinoglu suggests three reasong for “non-linearity”,
among which one is a conjecture based on his model
of the physical meaning of the three coefficients in the
quadratic regression (his ap quoted above being among
them): “Finally, back-scatter effects may lead to a non-
linear term {in] the relation between 7 and 7...”. From
our standpoint, this is again a compelling conclusion,
since a necessary condition for a guadratic formula re-
lating the quantities in question is that the surface be
non-black {r, # 0), i.e. that there exist “back-scatter
effects”.

Akinoglu cites evidence showing that the quadratic
form fits daily data of two locations in Turkey better
than does the linear Angstrom-Prescott formula. He
gives numerical values for the coefficients of the qua-
dratic regression, first for daily and then for monthly av-
erages, those of the latter being az = 0.195, a; = 0.676,
and a; = —0.142. Appealing to expression (40) when
ry = 0 (for then the quadratic form arises naturally
in our scheme), we obtain from (36) for the third co-
efficient as = t,{ta — t.)t (1 — rer;)(ra — rc)A;, which
under normal conditions we expect to be negative, since
tan—1t. >0, ra —7. < 0, The same conclusion is arrived
at if r, = r; = 0, bearing out Akinoglu’s quoted signs
for as.

Sahin and Sen (2008) point out that the coefficients
of the linear or quadratic transparency are not constant
in time. Akinoglu states that they have values de-
pending on the averaging interval. We may say that,
once more, their conclusions are by no means surprising
against the background of our present model.

Conclusion

Modeling surface irradiation, by relating it to the
widely measured sunshine at many places of the world
through the simple linear Angstrom-Prescott regression
formula, has a respectable history. The need for an ex-
tension to include quadratic or even third-order polyno-
mial regression has been increasingly felt in recent, years.
Many statistical analyses have been carried out on this
basis, and many more will follow, including innovative
approaches to parameter estimation {Badescu 2008).
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However, the attempts to furnish a physical interpre-
tation of the regression coefficients have been largely ad
hoc. Here, instead, we submit a rationale for such mod-
els, based on a two-stream approximation of the verti-
cal fluxes crossing an atmosphere fashioned from three
characteristic layers, an approximation which in turn
rests firmly on the phenomenoclogical theory of radiative
transfer through planetary atmospheres.

For years to come, simple and even simplistic mod-
els will be needed in order to cope with the practical
issues regarding the mutual relation between insolation
and relative sunshine duration at sites suffering from a
lack of spatial and temporal coverage. A definite con-
clusion that we draw from this work is that the classic
linear Angstrém-Prescott formula cannot be expected to
be a good regression equation when air scattering and
ground reflectivity are not negligible. In these cases,
at least a quadratic formula between the “clearness in-
dex” and the relative sunshine is required; a still better
regression when scattering prevails ought to be a third-
order polynomial. Even more, a polynomial of higher
order would be called for if we wished to infer the me-
teorological parameters of the model by solving what is
known as the inverse problem.
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