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En 1985 Montiel & Ros demostraron que los Unicos toros minim&% eayo primer valor propio
del laplacino es 2, son los toros de Clifford. En este articulo demostraremos que es imposible encajar
una botella de Klein en el espacio proyectivo 3-dimensiBf Mas aun, demostraremos que las
Unicas superficies cerradas no-orientables que pueden encajRResem aquellas con caracteristica
de Euler impar. Después de esto, daremos otra demostracion del resultado de Montiel & Ros menciona-
do arriba, esta vez bajo el supuesto de que el toro en consideracion tiene simetria antipodal.
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Abstract

In 1985 Montiel & Ros showed that the only minimal torusSinfor which the first
eigenvalue of the Laplacian is 2, is the Clifford torus. Here, we will show first the non-
existence of an embedded Klein bottl&iP®. Indeed we will prove that the only non orientable
closed surfaces that can be embedddrHhare those with odd Euler characteristic. Later on,
we will give another proof of Montiel & Ros’ result, assuming that the minimal torusxhas {
—x} simmetry. We will also point out that our proof of the non-existence of embedded closed
non-orientable surfaces with even Euler characteritRR# still holds true when we replace
RP2? with a 3-dimensional manifol& constructed in the following way: Letl.
be any simply connected 3-dimensional manifold. Let f : $? = {(z1,z2,23) € RS} — N
be an embedding. Let U and V be the two connected components of N \ f(52). K is the
manifold obtained by taking U, and identifying the points in U so that f(z) = f(—=z).

Key words: Klein bottle, Clifford torus, projective spaces, minimal surfaces.

1 Universidad del Valle, Cali, Colombia. E-mail: osperdom@univalle.edu.co

AMS Classification 2000: 53C42 53A10.



150 REV. ACAD. COLOMB. CIENC.: VOLUMEN XXIX, NUMERO 110-MARZO DE 2005

Introduction

It is well known that it is impossible to embed a non-
orientable closed surface in R® (see [5]). However it is
possible to embed a projective plane, RP?, in RP3. No-
tice that RP? is a non-orientable surface while RP? is
orientable. In the first part of this paper we prove, in
a constructive and simple way, that we cannot embed
either the Klein bottle or a Klein bottle with a finite
number of handles attached in RP?.

Minimal hypersurfaces of spheres have been a subject
of great importance. They represent critical points of a
variational problem, and the study of these hypersurfa-
ces is related to the regularity of the Plateau problem.
A first step in this study was to consider surfaces in
S3. The simplest examples of minimal surfaces are the
equators, which are surfaces isometric to the set

{(w7y)z7w)€R4:w:0 and $2+y2+z2:1}

and the Clifford torus, which are surfaces isometric to
the set

1 1
{(x’y’z’w)€R4izZ+w2 =3 and 2 +y? = 5}.

In 1966, Almgren showed that the only immersed
minimal spheres in S% are the equators [1]. Even though
there are infinitely many ways to minimally immerse a
torus in S3, the only known example that is embedded
is the Clifford torus. The conjecture that asserts that
the Clifford torus is the only embedded minimal torus in
S?2 is known as Lawson’s conjecture. It is not difficult to
prove that, for every immersed closed minimal surface
in $3, 2 is an eigenvalue of the Laplacian operator.

One of the well known conjectures in the study of mi-
nimal hypersurfaces of spheres is Yau’s conjecture. This
conjecture, in the case of surfaces, states that if a clo-
sed surface in S is embedded and minimal, then 2 is
the first eigenvalue of the Laplacian. Montiel & Ros
showed that for minimal torus in $3, Yau’s conjecture
implies Lawson’s conjecture [4].

In the second part of this paper, we will use the main
theorem of the first part to prove Montiel & Ros’ re-
sult in a shorter way under the additional hypothesis
that the minimal torus has antipodal symmetry.

Preliminaries

In this section we will establish some results that
we will use to prove our main theorems. Let us start

with transversality theory. From linear algebra it is
well known that, in general, the intersection of two 2—
dimensional subspaces in R? is a 1-dimensional spa-
ce. When we have two surfaces, M; and M, in a 3-
dimensional manifold N, we have, by the implicit func-
tion theorem, that if these surfaces satisfy

TmM1 NT,.My C TN (1)

is 1—dimensional for every m € M; N M,

then the set M; N My is either empty or it is a 1-
dimensional submanifold of N. When the condition (1)
holds true, we say that M; intersects M transversally.

A theorem in tranversality theory gives us,

Theorem 2.1. Given two smooth surfaces S; and My
in a 3—dimensional manifold N, it is possible to find a
smooth surface M; C N such that S; is homeomorphic
to My and M, N M, is either empty or a 1-dimensional
manifold in N.

Let us state the following theorem on quotient mani-
fold,

Theorem 2.2. Let G x M — M be a properly discon-
tinuous action of a group G on a differentiable manifold
M. The manifold M/G is orientable if and only if the-
re is an orientation of M that is preserved by all the
diffeomorphisms of G.

As a consequence of this theorem we have the follo-
wing examples: Let us denote by S™ = {z € R"*! :
o] =1}

Example 2.1. Let G = {—1,1} act on S™ by (—1,z) —
—z and (1,z) — 2. Clearly this action is properly
discontinuous. The diffeomorphism —1 sends the ba-
sis {v1,...,vn} of T,, 8™ to the basis {—v1,...,—v,} of
T »S™. Let us assume that we are taking the orien-
tation on S™ given by the unit normal vector field
v(m) = m. Using this orientation, we have that if
{v1,...,v,} is an oriented basis of T,,S™, then the same
basis does not provide an oriented basis of T_,,, M. The-
refore, the diffeomorphism —1, which sends the orien-
tation given by a basis {vi,...,v,} of T,,S™ to the
orientation given by the basis {—v1,...,—v,} of T_,, M,
reverses the orientation on S™ if and only if n is even.
Hence RP™ = S§™/{—1,1} is orientable if and only if n
is odd.

Example 2.2. Let M be an embedded torus in S°
such that if m € M then —-m € M. Let v: M — S3
be a unit normal vector field of M as a submanifold
of $3, i.e. v(m) is perpendicular to T,, M and v(m) is
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a vector in T},5%. Since M has antipodal symmetry,
then T,,M = T_,,M for every m € M. Therefore
we have that either v(m) = v(—m) for all m € M or
v(—m) = —v(m) for all m € M. As we pointed out be-
fore, the vector spaces T,,S% and T_,,S% are the same
but they have different orientations; this implies that
if v(m) = v(—m) then the orientations induced by M
on T,,M and T_,,M are also different. Since the bases
{v1,v2} and {—v1, —v2} induce the same orientation on
the vector space {rv; + sv; : 7,3 € R}, we have that if
v(m) = v(—m), then the manifold S = M/{—1,1}is not
orientable. Since the Euler characteristic of M, x(M),
is twice the Euler characteristic of S = M/{—1,1} and
x(M) is zero, S = M/{-1,1} is a Klein bottle. The
same argument shows that if ¥(—m) = —v(m) then
S = M/{-1,1} is again a torus.

Nonembeddability of the Klein bottle in RP?

In this section, we will prove that it is impossible
to embed a Klein bottle or a Klein bottle with a finite
number of handles attached in the 3-dimensional pro-
jective space RP>®. We will achieve this by using some
basic criteria to decide when a surface is orientable and
by making some constructions in order to estimate the
Euler characteristic of any embedded surface in RP3.

Let us identify RP? with the set N of points in R3
with norm less than or equal to 1 where each point in
the boundary is identified with its opposite, i.e. if

B = {(z1,22,23) € R® : 2% + 2 + 23 < 1}
OB = {(z1,22,23) € R3: a:%+xg+x§ =1}

7:0B— 08B, 7(m)=-m,
then N = B/{id, 7} .
We may think that we are identifying N with RP> using
the map é: N — RP?
given by

$(1,2,25) = [(@1, 22,3, /1 — 27 — 23 — a3)] .

Clearly ¢ is well-defined and bijective because antipodal
points on the boundary of B are identified.

Notice that under this identification, RP? is identi-
fied with 8B/{id, 7} C N.

Let us denote by 7 : B — N the natural projection,
ie. m(z) = z if |2| < 1 and w(z) = [z] = {z,—2} if
lz] = 1.

Lemma 3.1. If M C N is an embedded surface
that intersects transversally RP2, then the set C; =
7~ (M N RP?) ¢ S? = OB has one of the following

forms Cl = {a()a a17617 soe 7akvak}

or Cy ={a1,a1,...,ap,ar} ,

where each o; and @; is homeomorphic to a circle and
() =a5

Proof. Let M; = m~Y(M) C B. Notice that C; is a
collection of smooth disjoint closed embedded curves in
OB because (M NRP?) is a collection of smooth closed
disjoint curves and the map 7r|S2 : 52 =8B — RP? is
a covering map. Notice also that M; is an embedded
surface with boundary in R?® and 8M; = C;. By the
identification made on OB we have that if z € C; then
— € Cl.

Let us prove by contradiction that there is at most
one closed curve contained in C; that has antipodal sym-
metry. Let o and o be two disjoint closed curves con-
tained in C}, since ag is an embedded curve in S2, it
divides S? in two simply connected parts U and V; sin-
ce ag has antipodal symmetry, then 7(U) = V, therefore
the area of U is the same as the area of V and both area
are equal to 27 because the area of the S? is 4m; now,
since ag and o are disjoint, then one of the connected
components of S? — o}, let us call it W, is contained in
either U or V, this is a contradiction because the area
of W is 2w. Since there can only be one closed curve
with antipodal symmetry in C; we have that there are
two possibilities for the set C;

Case 1: If C; contains a circle g which is invariant
under 7, then

Cl = {ao,al,ah see ,ak,—a—k} )

where the «;’s are closed curves, 7(ap) = «ap and
(o) =0 , fori=1,2,.., k.

Case 2: If C; does not contain a circle which is inva-
riant under 7, then

Cy ={ay,,. .., 00,0} ,

where the «;’s are closed curves, and 7(o;) = @j for
1=1,2,..,k. N

Theorem 3.1. If M is a closed surface in RP? that in-
tersects transversally RP? and C; = n~'(M N RP?) C
S2? = OB contains a closed curve which is invariant un-
der the antipodal map, then the Euler characteristic of
M is odd.

Proof. In the same way we did before, let us identify
RP? with N = B/{id, 7} and RP? with 8B/{id, 1}.

Since there is a closed curve in C; invariant under the
antipodal map, we have, by Lemma 3.1, that

713210}

C, = {ao,al,al,...,ak,a‘k} = {ﬁo,,@l,...

with T(az‘) = @;.
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For i =1,...,2k, let B; be the connected component
with smaller area of S? . 8;. Let My be the manifold
that is obtained by gluing 2k + 1 disks to M, one along
each ;. It is not difficult to see that we can embed My
in R3, e.g. we can make this gluing in R by choosing
disks of the form

{re:1<r<r; and =z € B;}U{rmz:z€ B;},
for 2 =1,...,2k, and the last disk of the form

{r#:1<r<ry and z€po}U{rez:2€V},

where V is one of the connected components of S2 \ ayg.

Let us denote by x(S) the Euler characteristic of a
surface S. Let us take a triangulation of M such that
each circle m(a;) C M contains exactly 3 edges of the
triangulation. Let F' be the number of faces, E the
number of edges and V' the number of vertices of the
triangulation. Clearly this triangulation induces a trian-
gulation on M; = 7w~ 1(M), the number of faces, edges
and vertices for this triangulation on M; is F', F+3k+3
and V + 3k + 3, respectively. This happens because the
circle oy contains now 6 edges and 6 vertices instead of
the 3 edges and 3 vertices of m(ap) and, fori =1,...,k,
the 3 edges and 3 vertices of 7(c;) give us 3 edges and 3
vertices in o; and @;. Therefore, x(M) = x(M;). Now
taking this triangulation on M;, we define a new trian-
gulation on Ms by adding 6 + 2k new triangles to the
triangulation defined on M; in this way:

(i) The disk attached to the circle oy is thought as 6
triangles with 6 vertices in the boundary and one vertex
in the interior of the disk. The gluing is taken so that
vertices on the boundary of the glued disk are identified
with the 6 vertices of ag.

(ii) Each disk attached to an o; (or @;) is considered
as a single triangle and the gluing is taken so that the 3

vertices of the boundary of the glued disk are identified
with the 3 vertices of o; (or @;).

Having made these considerations, it is not difficult
to see that the new triangulation is going to have 6 + 2k
more faces, 6 more edges and 1 more vertex than the
triangulation on M;, Therefore,

x(My) = x(My) + 2k +1=x(M) +2k +1 .

Since M, is closed and can be embedded in R3, we have
that My is orientable. Thus, its Euler characteristic is
even. This observation, together with the equation abo-

ve, implies that the Euler characteristic of M must be
odd. m

Theorem 3.2. If M is a closed surface in RP? that
intersects transversally RP? and C, = 7~ (M N RP?)
does not contain a circle which is invariant under the
antipodal map, then M is orientable.

Proof. Since none of the closed curves in C is inva-
riant under 7, then

C, = {al,dl,‘..,ak,a—k}

with 7(e;) = @;. Let us assume that k = 1. Let Kj
be the set of points in M; = n~!(M) that are within
a distance € of a; and let K§ be the set of points in
M, that are within a distance ¢ of @;, we will assume
that € has been chosen so that K are smooth surfaces
homeomorphic to cylinders. Let My be the closed surfa-
ce obtained by gluing to M; a cylinder Y. embedded in
R2 \ B, the boundary of this glued cylinder is oy U @;.
Let ¢ : [0,1] — a1 be a regular parametrization of o;.
Notice that the map ¢ is homotopic to the map 70 ¢ in
Y, (this is the key observation in this proof). Therefore
we can define a parametrization

$:[0,1]x[0,1] —» %

Figure 1

In this figure M C RP3 is homeomorphic to RP? and it intersects dB/{—1, 1} in two circles. The inverse image of these circles under
7 : B — RP3 is the union of three circles. One of them, the equator, is invariant under the antipodal map. M; = w~1(M) is the union of

a cylinder and a disk; M2 is the union of two spheres. In this case r1 =r2 =1, ro > 1 and V is the south hemisphere.
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such that

¥(0,v) = 9(1,v) ,9(u,0) = ¢(u) and P(u,1) = 70 $(u).
We will prove that M is homeomorphic to M;. This
would imply that M is orientable because M, is orien-
table. Recall that a closed surface can be embedded in
R3 only if it is orientable. Let ¥; = ([0, 1] x [0,1/2])
and ¥ = 4([0,1]x[1/2,1]). Let v; ¢ = 1,2 be two closed
curves in M such that dK§ = a;Uy; and 8K§ = @;Uys.
Since ¥; is homeomorphic to K, then, we can define two
homeomorphisms ¢; and (s such that

p1: 81— Ki, o1(¥(u,1/2)) = ¢(u,0) =¢(u) ,
e1((u,0)) €71,

p2:Y2 > K3, pa(¥(u,1/2)) = ¢(u,1) =70 $(u) ,
p2(¥(u,1)) €72 .

Since the manifolds M; and M; \ K§ U K§ are homeo-
morphic we can define a homeomorphism ¢3 such that

w3 : M; - M\ KUK
such that
©3(¢(u,0)) = 1@ (x,0)) and @3 (P(u, 1)) = p2((u, 1)).

Using the maps 1, ¢2 and @3, we can define our
homeomorphism £ from M; to M in the following way:

£€m) =[p1(m)] fmeX,,
€m) =[p2(m)] ifmel,,
&(m) =[ps(m)] ifme M; .

The map £ is a continuous well defined map because
of the conditions imposed on the maps ¢;, ¢ = 1,2,3
on the boundary. Therefore M is homeomorphic to
M, which is orientable. When k > 1, let B; be the
connected component with smaller area of S? \ a; for
i=1,...,k. In the case the sets Bi,... By are disjoint,
let us take k disjoint curves, wi,...,wy, contained in
the closure of the set R® \. B such that each w; con-
nects a point p; € B; with the point —p;. Let M, be
the surface obtained by gluing to M; = 7~ }(M) k cylin-
ders ¥1,..., Y. These cylinders are chosen so that the
boundary of each X; is the union of ¢; with @; and the
bounded component of the closed surface ¥;UB;UT(B;)
contains the curve w;, in other words, X; is the cylin-
drical part of the boundary of the solid obtained after
thickening the curve w;. The same procedure that we
did in the case k = 1 shows that the surface M is ho-
meomorphic to the surface Ms, since Ms is embedded in
R3, then M, is! orientable, hence M is also orientable.
The proof in the general case is essentially the same, we
glue X,..., Y, cylinders to the surface M; to obtain
an orientable surface that is homeomorphic to M. In

this general case, the cylinders can be chosen so that
every time B; C B; then, ¥; is contained in the boun-
ded component of the closed surface ¥; U B; U 7(B;).

Figure 2
In this figure M C RP3 is homeomorphic to a double torus and
it intersects B/{—1, 1} in one circle. The inverse image of this
circle under 7 : B — RP3 is the union of two circles. Mi= =—1(M)
is a cylinder with a handdle attached. M3 is again homeomorphic
to a double torus.

Theorem 3.3. A closed non-orientable surface M can
be embedded in RP? if and only if the Euler characte-
ristic of M is odd.

Proof. The set M = {[(2,y,0)] : 22 +3y> <1} Cc N =
B/{id, 7} = RP® shows an embedding of RP? in RP?,
clearly we can attach as many handles as we want in a
embedded fashion to M in a neighborhood of the point
(0,0,0). This shows that every non-orientable closed
surface with odd Euler characteristic can be embedded
in RP2.

Now, let S be a non-orientable surface embedded in
RP3. By Theorem 2.1, there exists an embedded surface
M c RP® homeomorphic to S, that intersects transver-
sally RP2 = 8B/{—1,1}, by Lemma 3.1, Theorem 3.1
and Theorem 3.2, we have that the Euler characteristic
of M must be odd, therefore the Euler characteristic of
S must be also odd. B
Corollary 3.1. It is impossible to embed a Klein bott-
le, or any closed non-orientable closed surface with even
Euler characteristic, in RP3.

Using the same method that we used to prove Theo-
rem 3.3, we can prove the slightly more general result:
Theorem 3.4. Let N be any simply connected 3 di-
mensional manifold. Let

f:8%={(z1,22,23) ER®: 22 + 22 +22 =1} > N
be an embedding. Let U and V be the two connect

components of N \ f(S?). If K is the manifold obtai-
ned by taking U, and identifying the points in 8U so
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that f(x) = f(—=x), then a closed non-orientable surfa-
ce M can be embedded in K if and only if the Euler
characteristic of M is odd.

Proof. Let K; be the manifold obtained by gluing the
unit ball B in R3 to U using the map f. All the argu-
ments made to prove Theorem 3.1 to Theorem 3.3 work
by replacing R? by the simply connected manifold Kj,
and R3 \ B by the set B view as a subset of K;. Notice
also that every non orientable surface embedded in K
must intersect the surface RP? = f(S2)/{1,7} where
7, in this case, is the map from f(S?) to f(S?) defined
by 7(p) = f(=f" (). ®

A partial result on Lawson’s conjecture

Let us start this section with some well known facts
about minimal surfaces in S3. If ¥ M - s
is an immersed minimal surface in $% and ¥(m) =
(z1(m), 22(m), 23(m), £4(m)) then the minimallity of M
is equivalent to the condition Az; = —2z; on the func-
tionsz; : M — S3,i=1,...,4.

Let us denote by v: M — S, and

v(m) = (v1(m), v2(m), vs(m),vs(m)) ,
be the unit normal vector field on M as a submani-
fold of S3. The shape operator at m € M is the sym-
metric linear operator A,, : T,,M — T,,M defined by
A (V) = —duy (v).

By the Codazzi equations and the minimallity of
M, we have that the functions v; : M — S® satisfy
the equation Ay; = —|A|%y; for ¢ = 1,...,4. Here
|A2(m) = | A (1) + [ A (e2)?, where {e1, €2} is any
orthonormal basis of T,, M. Notice that,

A2 (m) =
=A@ )m(er), d2)m (1), ds)m(er), dwa)m ()] +
1)) (e, A (e

_Z(d(Vz)m (e1)? + d(vi)m(e2)?) E|Vuz| (m) .

=1
The eigenvalues k1(m), ka(m) of Am are known as the
principal curvatures of M at m € M. The Gauss equa-
tion applied to surfaces in R? gives us that the Gauss
curvature is the product of the principal curvatures.

For surfaces in S2 the Gauss equation gives us that
the Gauss curvature is the product of the principal cur-
vatures plus 1, i.e. if K(m) is the Gauss curvature of
M c 8% at m € M, we have

K(m) =1+ k1 (m)kre(m) 2) .

Since M is minimal, K1 (m) + k2(m) = 0. Thus

|A]? (m) = K (m) + 53 (m) = 261(m) ,

and therefore the equation (2) can be written as

|Am (e1)]? + |Am(€2)]> =|dum(€1)]? + |dvm (e2)[?

K(m) = -Ljﬂi

In the case that M is topologically a torus, the Gauss
Bonnet formula gives us that | u K = 0 or equivalently

/ |AJ? :/ 2 = 2 times the area of M 3) .
M M

Now we are ready to prove the main theorem in this
section.

Theorem 4.1. If M is an embedded minimal surface
in S which is invariant under the antipodal map and
such that the first eigenvalue of the Laplacian is 2, then
M is the Clifford torus.

Proof. Let v = (v1,2,V3,v4) be the unit normal vec-
tor. By Corollary 3.1 and Example 2.2 we have that
v(—m) = —v(m) for all m € M otherwise M/{-1,1}
will define an embedded Klein bottle in RP2. Therefore
the function v; : M - R, i=1,...,4 are odd functions
and |, u Vi = 0 ie. they are functions perpendicular to
the constant function f = 1 viewed as elements of the
Hilbert space L?(M). Now, since we are assuming that
the first eigenvalue of the Laplacian is 2, we have

\/IVViI2 Z 2/M Vi, T = 1’273a47 (4)

with equality if and only if Ay; = —|A*y; = —2u; . (5)

Notice that if the equation (5) holds true forz =1,...,4,
then |A|2(m) = 2 for all m € M. Summing up the ine-
qualities in (4) above from i =1 to ¢ = 4 we get

[1ar= [ > (6)

but the equation (3) gives us that we have an equality in
the equation (6) instead of an inequality, therefore, we
have an equality in each of the equations in (4), hence,
|A|(m) = 2 for all m € M. This last equation implies
that M must be a Clifford torus by the main result in

2. m
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