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En este art́iculo damos una estimativa asintótica para integrales oscilantes p−ádicas que
dependen de dos parámetros. Estas integrales son soluciones de ecuaciones seudodiferenciales
p−ádicas del tipo Schrödinger.
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Abstract

In this paper we give an asymptotic estimate for p−adic oscilatory integrals depending
of two parameters. These integrals are solutions of Schrödinger-type pseudo-differential
equations.

Key words: p−adic fields, oscillatory integrals, Igusa local zeta function, Newton poly-
hedra, pseudo-differential equations.

1. Introduction

Let K be p−adic field, i.e. a finite extension of Qp,
RK the ring of integers of K, PK the maximal ideal of

RK , and K = RK/PK the residue field of K. The car-
dinality of the residue field of K is denoted by q, thus
K = Fq. For z ∈ K, v(z) ∈ Z ∪ {+∞} denotes the

1Department of Mathematics and Computer Science, Barry University, 11300 N. E. Second Avenue, Miami Shores, Florida 33161, USA.

email: wzuniga@mail.barry.edu
AMS Subject Classification: Primary 46S10, 11S40.

95



96

valuation of z, |z|K = q−v(z), and ac z = zπ−v(z) where
π is a fixed uniformizing parameter for RK .

Let Ψ denote a standard additive character of K, thus,
for z ∈ K, Ψ (z) = exp

(
2πiTrK/Qp

(z)
)
, where Tr de-

notes the trace.

Let φ(ξ) ∈ RK [ξ], ξ = (ξ1, ..., ξn), be a non-constant
polynomial, t ∈ K, with v (t) < 0, x = (x1, ..., xn) ∈
Kn, with v (xi) < 0, i = 1, ..., n, and

m = min {v (x1) , ..., v (xn) , v (t)} .
We put 〈x, ξ〉 =

∑
i xiξi, for x, ξ ∈ KN . To these data

we associate the following parametric exponential sum

J (x, t, φ,K) = J (x, t)

= q−mn
∑

ξ mod πm

Ψ (tφ (ξ) + 〈x, ξ〉) . (1.1)

The exponential sum J (x, t) can be expressed as an in-
tegral of the form

J (x, t) =
∫

Rn
K

Ψ (tφ (ξ) + 〈x, ξ〉) |dξ| , (1.2)

where |dξ| is the Haar measure of Kn normalized so
that the volume of Rn

K is 1. A more general type of
oscillatory integrals is

Ih (x, t, φ,K) = I (x, t)

=
∫

Kn

Ψ (tφ (ξ) + 〈x, ξ〉)h (ξ) |dξ| , (1.3)

where h is a Bruhat-Schwartz function, i.e. a locally
constant function with compact support. Integrals of
the form

∫
K

Ψ (aξ + bξ)h (ξ) |dξ| are called Gaussian
ones. These integrals have explicitly calculated in se-
veral cases, and they appear in certain p−adic quantum
models [12, Chap. 1, Sect. V, and Chap. 3].

The integrals I (x, t) are the non-archimedean coun-
terpart of

u (x, t) =
∫

Rn

exp (2πi (tφ (ξ) + 〈x, ξ〉)) f̂ (ξ) |dξ| , (1.4)

where f̂ is the Fourier transform of f . Consider the
Schrödinger–type equation

∂u

∂t
= iφ (D)u, u (x, 0) = f (x) , (1.5)

here φ (D) is a pseudo-differential operator having sym-
bol φ (ξ). Then function u (x, t) is a solution for the
initial value problem (1.5) (see e.g. [10, Chap. VII,
VIII]).

As a consequence of the previous considerations it is
natural to ask if integrals (1.2) and (1.3) satisfy some
differential equation. At this point, it is important to
mention that there are deep connections between diffe-
rential equations and exponential sums over finite fields
[5], [7].

Integrals (1.2) and (1.3) satisfy pseudo-differential
equations of Schrödinger–type. Let S(Kn) denote the
C-vector space of Schwartz-Bruhat functions over Kn.
The dual space S ′(Kn) is the space of distributions over
Kn. A pseudo-differential operator of Schrödinger–type
A (∂), with symbol |τ − φ (ξ)|K , is an operator of the
form

A(∂) : S(Kn)→ S(Kn)

Φ→ F−1
(ξ,τ)→(x,t)

(|τ − φ (ξ)|K F(y,�)→(τ,ξ) (Φ)
)
, (1.6)

where

F : S(Kn)→ S(Kn)

Φ→
∫

Kn

Ψ (−〈x, y〉) Φ (x) dx (1.7)

is the Fourier transform. The operator A(∂) has self-
adjoint extension with dense domain in L2 (Kn).

The initial value problem

A(∂)z = 0, z (x, 0) = h (x) ∈ S(Kn) (1.8)

is the non-archimedean counterpart of (1.5). By passing
to the Fourier transform in (1.8), we get

|τ − φ (ξ)|K F(y,�)→(τ,ξ) (z) = 0, (1.9)

from where it follows that any distribution of the form

z(x, t) =
(F−1g

)
(x, t) ,

with g(ξ, τ) a distribution with support in{
(ξ, τ) ∈ Kn+1 | |τ − φ (ξ)|K = 0

}
,

is a solution of A(∂)z = 0. In the case when

g(ξ, τ) = ĥ (ξ) δ (τ − φ (ξ)) ,

where δ is the Dirac distribution, and ĥ is the Fourier
transform of h, the distribution z(x, t) takes the form
(1.3). Finally, since I(x, 0) = h(x), it holds that I(x, t)
is a solution for the initial value problem (1.8). In par-
ticular the exponential sums J (x, t) satisfy (1.8), when
h(x, 0) is equal to the characteristic function of Rn

K .

The theory of non-archimedean pseudo-differential
operators is emerging motivated for its potential use in
p−adic physics [12], [8].
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The main result of this paper (cf. Theorem
3.1) gives an asymptotic estimation of |I(x, t)| for
min (‖x‖K , |t|K)→∞, in the case in which the singular
locus of tφ (ξ)+〈x, ξ〉 is a subset of {(t, x, ξ) | x = ξ = 0},
and φ is a generic polynomial with an algebraically iso-
lated singularity at the origin. The proof of the main
result depends on the description of the poles of the Igu-
sa zeta function for non-degenerate polynomials [3], [4],
[13], [14], and a theorem of Igusa that establishes a con-
nection between the poles of local zeta functions and
the asymptotic expansions of certain p−adic oscillatory
integrals [6, Theorem 8.4.2 (3)].

2. Exponential sums and Newton polyhedra

We set R+ = {x ∈ R | x � 0}. Let f(ξ) =
∑

l alξ
l ∈

K[ξ], ξ = (ξ1, ..., ξn) be a polynomial in n variables sa-
tisfying f(0) = 0. The Newton polyhedron Γ(f) of f is
defined as the convex hull in R

n
+ of the set

⋃
m∈{l∈Nn|al �=0}

(
m+ R

n
+

)
.

We denote by 〈, 〉 the usual inner product of R
n, and

identify R
n with its dual by means of it. We set

〈aγ , x〉 = m(aγ),

for the equation of the supporting hyperplane of a fa-
cet γ (i.e. a face of codimension 1 of Γ(f)) with per-
pendicular vector aγ = (a1, ..., an) ∈ N

n
� {0}, and

σ (aγ) =
∑

i ai.

Definition 2.1. A polynomial f(ξ) =
∑

i aiξ
i ∈ K[ξ],

ξ = (ξ1, ..., ξn), is called globally non-degenerate with
respect to its Newton polyhedron Γ(f), if it satisfies the
following two properties:

(1) the origin of Kn is a singular point of f(ξ);

(2) for every face γ ⊂ Γ(f) (including Γ(f) itself), the
polynomial

fγ(ξ) =
∑
i∈γ

aiξ
i

has the property that there is no ξ ∈ (K � {0})n such
that

fγ(ξ) =
∂fγ

∂ξ1
(ξ) = ... =

∂fγ

∂ξn
(ξ) = 0.

For a polynomial f(ξ) ∈ K[ξ] globally non-degene-
rate with respect to its Newton polyhedron Γ(f), we

set

β(f) = max
τj

{−σ (aj)
m(aj)

},

where τj runs through all facets of Γ(f) satisfying
m(aj) 	= 0. We note that

T0 = (−β(f)−1, ...,−β(f)−1) ∈ Q
n

is the intersection point of the boundary of the Newton
polyhedron Γ(f) with the diagonal {(t, ..., t) | t ∈ R} ⊂
R

n.

We put

E(z, f,K) = E(z, f) =
∫

Rn
K

Ψ (zf (ξ)) |dξ| ,

with z ∈ K. Igusa showed that the asymptotic behavior
of E(z, f,K), when |z|K →∞, is controlled by the lar-
gest pole of the meromorphic continuation of the local
zeta function

Z(s, f, χ) =
∫

Rn
K

χ (ac f (ξ)) |f (ξ)|sK dξ, Re(s) > 0,

(2.1)

associated to f , and a multiplicative character χ of R×
K .

More precisely, if γf the maximum of the real parts of
the poles of Z(s, f, χ), and γ > −1, then

|E(z, f)| ≤ C(K) |z|γf+ε
K , for |t|K →∞, (2.2)

where C(K) is a constant, and ε > 0 (see e.g. [2, Coro-
llary 1.4.5], or [6, Theorem 8.4.2 (3)]).

Theorem 2.2. Let K be a non-archimedean local field,
and let f(ξ) ∈ RK [ξ], ξ = (ξ1, ..., ξn), be a globally
non-degenerate polynomial with respect to its Newton
polyhedron Γ(f). If β(f) > −1, then

|E(z, f)| � C(f,K) | z |β(f)+ε
K , (2.3)

for |z|K → ∞, and any ε > 0, here C(f,K) is constant
depending on f and K.

The theorem follows from (2.2) by showing the follo-
wing two facts. First, the poles of Z(s, f, χ) have the
form

s = − σ (aγ)
m(aγ)

+
2πi
log q

k

m(aγ)
, k ∈ Z,

for some facet γ of Γ(f) with perpendicular aγ , and
m(aγ) 	= 0, or

s = −1 +
2πi
log q

k, k ∈ Z.

Second, the maximum of the real parts of the poles
of Z(s, f, χtriv) is β(f), when β(f) > −1 (cf. [14,
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Theorems A, B] ). The description of the largest pole
of Z(s, f, χtriv) when f is non-degenerate with respect
to its Newton polyhedron Γ(f) and β(f) > −1 follows
from observations made by Varchenko in [11] and was
originally noted in the p−adic case in [9] (although it is
misstated there as α(f) 	= −1). The case β(f) = −1 is
treated in [4]. The case of β(f) < −1 is more difficult
and is established in [4] with some additional conditions
on τ0 by using a difficult result on exponential sums.
The author proved the case β(f) � −1 for polyno-
mials with coefficients in a non-archimedean local field
of arbitrary characteristic [14].

We put ‖x‖K = maxi {|xi|K}, for x ∈ Kn.

Proposition 2.3. Let f (ξ) ∈ RK [ξ], ξ = (ξ1, ..., ξn),
be a non-constant polynomial without singularities on
Kn. Then

|E(z, f)| ≤ C(f,K) |z|−1+ε
K

for |z|K →∞, and any ε > 0, here C(f,K) is a positive
constant depending only on f and K.

Proof. The stationary phase formula implies that
E(z, f) = 0 for |z|K → ∞. The proof is a slightly
variation of the proof of Lemma (2.4) in [14]. �
Proposition 2.4. Let φ (ξ) ∈ RK [ξ], ξ = (ξ1, ..., ξn),
be a globally non-degenerate polynomial with respect
Γ (φ), with β (f) > −1. If the singular locus of the poly-
nomial tφ (ξ) + 〈x, ξ〉 is contained in {(t, x, ξ) | x = 0},
then

|J(x, t)| ≤ C(φ,K) [min (‖x‖K , |t|K)]β(φ)+ε
,

for min (‖x‖K , |t|K) → ∞, and ε > 0, here C(φ,K) a
positive constant depending only on φ and K.

Proof. For x 	= 0, and t 	= 0, tφ (ξ) + 〈x, ξ〉 does not
have singular points on Kn. If ‖x‖K

|t|K ≤ 1, Proposition
2.3 implies that

|J(x, t)| ≤ C0(K) |t|−1+ε
K ,

for |t|K → ∞, and ε > 0. If |t|K
‖x‖K

< 1, Proposition 2.3
implies that

|J(x, t)| ≤ C1(K) ‖x‖−1+ε
K ,

for ‖x‖K → ∞, and ε > 0. Therefore if x 	= 0, and
t 	= 0,

|J(x, t)| ≤ C3(K) min(‖x‖K , |t|K)−1+ε, (2.4)

for min (‖x‖K , |t|K)→∞, and ε > 0.

For x = 0, and t 	= 0, Theorem 2.2 implies that

|J(x, t)| ≤ C4(φ,K) |t|β(φ)+ε
K , (2.5)

for |t|K →∞, and ε > 0. For x 	= 0, and t = 0,

J(x, t) = 0, (2.6)

for |t|K ≥ 1. Since β (f) > −1, estimates (2.4), (2.5),
and (2.6) imply that

|J (x, t)| ≤ C(φ,K) [min (‖x‖K , |t|K)]β(φ)+ε ,

for min (‖x‖K , |t|K)→∞, and ε > 0. �
The proof of the following Proposition is similar to

the previous one.

Proposition 2.5. Let φ (ξ) ∈ RK [ξ], ξ = (ξ1, ..., ξn),
be polynomial such that tφ (ξ) + 〈x, ξ〉 has no singular
points on Kn, for any t ∈ K, and x ∈ Kn, then

|J(x, t)| ≤ C(K) [min (‖x‖K , |t|K)]−1+ε ,

for min (‖x‖K , |t|K) → ∞, and ε > 0, here C(K) a
positive constant.

3. Main Result

We shall say that the origin of Kn is an algebraically
isolated singularity of φ (ξ) ∈ K [ξ1, ..., ξn], if the origin
is the only solution of the system

φ (ξ) =
∂φ

∂ξ1
(ξ) = ... =

∂φ

∂ξn
(ξ) = 0. (3.1)

Theorem 3.1. Let φ (ξ) ∈ RK [ξ1, ..., ξn] be a non-
constant polynomial with an algebraically isolated sin-
gularity at the origin, such that φ (ξ) is globally non-
generate with respect Γ (φ), and β (φ) > −1. If the sin-
gular locus of the polynomial tφ (ξ)+〈x, ξ〉 is contained
in {(t, x, ξ) | x = 0}, then

|I(x, t)| ≤ C(φ,K) [min (‖x‖K , |t|K)]β(φ)+ε
, (3.2)

for min (‖x‖K , |t|K)→∞, and any ε > 0, here C(φ,K)
a positive constant depending only on φ and K.

Proof. Let ∪i (zi + πe0Rn
K) be a finite covering of the

support of h such that h |zi+πe0Rn
K

= h (zi). Then

I(x, t) =
∑

i

ci

∫
Rn

K

Ψ (tφ (zi + πe0ξ) + 〈πe0ξ, x〉) |dξ| ,

(3.3)

where ci = q−e0nh (zi) Ψ (〈zi, x〉) . We put
φ (zi + πe0ξ) = φ (zi) + πe0φ∗i (ξ), with φ∗i (ξ) ∈ K [ξ].
Without loss of generality we may assume that
πe0φ∗i (ξ) ∈ RK [ξ]. With this notation, (3.3) can be
rewritten as
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I(x, t) =
∑

i

ciΨ (tφ (zi))J(x, t, πe0φ∗i (ξ)). (3.4)

If zi is the origin then

|J(x, t, πe0φ∗i (ξ))| ≤
C1(φ,K) [min (‖x‖K , |t|K)]β(φ)+ε ,

(3.5)

for min (‖x‖K , |t|K) → ∞, and any ε > 0, with
C1(φ,K) a positive constant depending only on h and
K (cf. Proposition 2.4).

If zi is not the origin, then πe0φ∗i (ξ) does not have sin-
gularities on Kn. Then Proposition 2.5 implies that

|J(x, t, πe0φ∗i (ξ))|C ≤
C2(K) [min (‖x‖K , |t|K)]−1+ε , (3.6)

for min (‖x‖K , |t|K) → ∞, and any ε > 0, with C2(K)
a positive constant. The result follows from (3.5) and
(3.6) by using the fact that β (φ) > −1.

3.1. Remarks

1. The main result is valid for non-archimedean local
fields of positive characteristic (cf. [14, Theorems
A, B, and Corollary 6.1]).

2. Recently R. Cluckers showed that∣∣∣∣
∫

Rn
K

Ψ (〈y, f (ξ)〉) |dξ|
∣∣∣∣
C

≤ C ‖y‖αK , α < 0 ,

for ‖y‖K →∞, when f (ξ)=(f1 (ξ) , ..., fn (ξ)) is a
dominant polynomial map. This result does not
provide any information about α [1, Chap. VI].
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