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Abstract 

Systematic experiments of high-field (up to 50 kOe) fluctuation magnetoconductivity and Hall magnetoresistivity 
in Hg1-xRexBa2CaCu3O8+d (x=0.18) polycrystalline samples growth by means the quartz tube technique are 
reported. The analysis of the experimental data was performed by using the recognized Kouvel-Fisher method, 
which is frequently applied to study of critical phenomena. Very close to the critical temperature TC, a genuinely 
critical regime of fluctuations characterized by the critical exponent λc=0.32±0.01 was identified in absence of 
magnetic fields. This result is consistent with the full dynamic 3D-XY universality class predicted by the model E 
of Hohenberg-Halperin with a dynamic critical exponent z = 3/2. The genuine critical regime become be unstable 
on the application of external magnetic fields H≈0.1 kOe. Near above the critical temperature TC, the determined 
exponent λG3=0.52±0.02 was interpreted as corresponding to homogeneous fluctuations, which develop in a space 
with three-dimensional geometry. This region is destroyed upon the application of magnetic fields above 0.5 kOe.  
Increasing the temperature, evidences of a homogeneous two-dimensional behavior are observed by means the 
identification of a λG2=1.02±0.04.  Applied fields H>20 kOe destroy this fluctuation regime.  Far above T

C
, effects 

of disorder and planar anisotropy produce a fluctuation spectrum characterized by a fractal topology with a critical 
exponent λG2-G1=1.32±0.04. At last, very far TC, a temperature region with λG1=1.52±0.04 was experimentally 
identified. This corresponds to the confinement of the quasi-particles into the Lowest-Landau-Level, due to the 
quantization of the electronic states around the axe of application of the external field. Measurements of Hall were 
performed. In the normal phase, the Hall resistivity is hole-like and inversely proportional to the temperature. In 
the mixed phase and when the applied field is below μ0H = 2 T, the Hall resistivity shows a double sign reversal. 
For fields above 2 T, the Hall resistivity remains positive, although qualitatively showing the trends observed at 
low fields. We attribute this behavior to two independent contributions with opposite sign. A negative term due to 
thermal fluctuations is relevant near TC, whereas a positive contribution related to vortex motion dominates at lower 
temperatures. Near the zero resistance state, the Hall resistivity varies as a power law of the longitudinal resistivity, 
with a field independent exponent β=1.41. 
PACS: 74.40.+k; 74.25.Bt; 74.60.Ec; 74.72.Bk
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Resumen

En el presente trabajo reportamos experimentos sistemáticos de fluctuaciones en la magnetoconductividad bajo 
la aplicación de altos campos magnéticos (hasta 50 kOe) y respuesta Hall en muestras policristalinas de Hg1-
xRexBa2CaCu3O8+d (x=0.18) crecidas mediante la técnica del tubo de cuarzo.  Los análisis experimentales fueron 
realizados a través del método de Kouvel-Fisher, el cual es frecuente utilizado en estudios de fenómenos críticos. Muy 
cerca de la temperatura crítica T

C
 y en ausencia de campo magnético fue identificado un régimen de fluctuaciones 

genuinamente críticas caracterizado por el exponente λc=0.32±0.01. Este resultado es consistente con el modelo 
3D-XY cuya universalidad dinámica es predicha por el modelo E of Hohenberg-Halperin con un exponente crítico 
dinámico z=3/2. Este régimen se torna inestable bajo la aplicación de campos magnéticos superiores a H≈0.1 
kOe. Cerca y arriba de TC, se observe un exponente λG3=0.52±0.02 que fue interpretado como correspondiente a 
fluctuaciones homogéneas desarrollándose en un espacio de geometría tridimensional. Esta región fue destruida 
cuando campos magnéticos superiores a H=0.5 kOe fueron aplicados. Al aumentar la temperatura, se evidenció un 
comportamiento de fluctuaciones homogéneas bidimensionales identificadas mediante el exponente λG2=1.02±0.04. 
Este régimen desapareció al aplicar campos magnéticos H>20 kOe.  Lejos y arriba de TC, los efectos de desorden de 
anisotropía planar produjeron un espectro de fluctuaciones caracterizados por una topología fractal con un exponente 
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crítico λG2-G1=1.32±0.04.  Muy lejos en temperatura y arriba de TC, se identificó un régimen de fluctuaciones con 
exponente λG1=1.52±0.04, el cual fue interpretado como relativo al confinamiento de cuasipartículas en el nivel 
más bajo de Landau, debido a la cuantización de estados electrónicos alrededor del eje de aplicación del campo 
magnético externo. Por otro lado, se efectuaron medidas de respuesta Hall. En la fase normal, la resistividad Hall 
fue de tipo hueco e inversamente proporcional a la temperatura. En el estado mixto y bajo la aplicación de un campo 
magnético inferior a 20 kOe la resistividad Hall mostró una doble inversión de signo. Para campos por encima de 
este valor, la resistividad Hall permaneció positiva pero conservando la misma forma cualitativa observada a bajos 
campos. Este comportamiento fue atribuido a la existencia de dos contribuciones independientes de signo opuesto: 
ana negativa debida a fluctuaciones térmicas cerca de TC, y otra positiva debida a movimiento de vórtices que 
domina a menores temperaturas. Cerca al estado en que la resistividad se anula, la respuesta Hall varía en forma 
de una función potencial de la respuesta longitudinal, con un exponente independiente del campo aplicado β=1.41. 
PACS: 74.40.+k; 74.25.Bt; 74.60.Ec; 74.72.Bk
Palabras clave: fluctuaciones en la conductividad, fenómenos críticos, estado mixo, superconductividad de alta 
temperatura

1.  Introduction

It is known that in the phase transitions of second order 
the thermodynamic fluctuations of the order parameter 
play an important role in their description (Stanley, 
H.E., 1971). High temperature superconductors (HTSC) 
exhibit characteristics, which are very different from those 
properties of conventional low temperature superconductors.  
In first, the superconducting transition is enhanced and non-
equilibrium Cooper pairs can be to occur in temperature 
intervals above the critical temperature TC. These are the 
origin of precursor effects of the superconducting phase 
still in the normal state. Some equilibrium and transport 
properties change considerably in the neighborhood of the 
transition due to contribution of these fluctuation states.

Ginzburg (1960) effectuated the first estimation of the 
fluctuation effects in the specific heat of superconductor 
materials near TC (Varlamov & Ausloos, 1997). Based 
on Ginzburg-Landau theory, it was shown that the 
superconducting fluctuations increase the specific heat 
above and very close to TC. In 1968 was formulated the first 
microscopic theory for electric conductivity fluctuations of 
superconductors in the proximities of TC, which are known as 
Aslamazov-Larkin theory (1968). These studies shown that 
the size of the fluctuation effects vary inversely proportional 
to the coherence length x, which determines the spatial 
response of superconductor. HTSC possess an electronic 
excitation spectrum extremely anisotropic and very short 
coherence length. As a result of these characteristics, the 
temperature region dominated by thermal fluctuations may 
be attaining some ten degrees (Lobb, C.J., 1987).

*Correspondencia:
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The manifestation of superconducting fluctuations above TC is 
conveniently demonstrated in the electric conductivity case.  In 
first approximation, this is reduced to four distinctive effects:

i )  First effect is direct and consists in the apparition of non-
equilibrium Cooper pairs, with characteristic fluctuation 
time  very close to TC. A number of these pairs 
(depending of the proximity to TC) is ever present in 
certain unitary volume of the normal phase. Concerning 
to electric conductivity, we could be to say that in T > 
TC, a new transference channel of charge, non-dissipative, 
is opened as a consequence of presence of metastable 
Cooper pairs. This direct effect of fluctuations on the 
conductivity is known as paraconductivity or Aslamazov-
Larkin contribution.

ii ) Another consequence of the formation of vanishing- Cooper 
pairs is the decreasing of the electronic state densities 
into the Fermi level. When some electrons involve in the 
pairing, they can not to participate simultaneously in the 
charge transference and in the specific heat as excitations 
of single particle. The several numbers of electronic states 
can be to change due to Cooper interaction and only could 
be occurs one distribution of levels along to the energetic 
axe.  Then, one pseudo-gap of fluctuations in the Fermi 
level is opened (Di Castro, Castellani, Raimondi & 
Varlamov, 1990). The decreasing of state densities of 
single electron into de Fermi level arise a reduction of 
the electric conductivity in the normal state. This indirect 
correction to fluctuation contribution on the electric 
conductivity is denominated contribution of the state 
densities. This have opposite sign when the temperature 
approximates to TC+ from the normal state and may be 
singularly small when compared with paraconductivity 
contribution. That is the reason which this contribution is 
omitted near the transition.

iii ) Third effect have a purely quantic nature and consist of 
fluctuations generated by elastic scattering of coherent 
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electrons, which conform the Cooper pairs. This is known 
as anomalous contribution of Maki-Thompson (1989), 
which some time is important on the conductivity near 
TC. This contribution is extremely sensible to processes 
that modify the electronic wave function. So, inelastic 
scattering processes, as electron-phonon scattering, which 
origin the break of spin pairing of the electron pairs, limit 
the lifetime of quasi particles.

iv ) Besides of these effects, in HTSC was experimentally 
confirmed the existence of a genuine critical regime, which 
is characterized by correlated fluctuations immediately 
above TC. These can be described by mean of the 3D-
XY model (Pureur, Menegotto Costa, Rodrigues, 
Schaf, & J. V. Kunzler, 1993; P. Pureur, R. M. Costa, 
P. Rodrigues Jr., J. V. Kunzler, J. Schaf, L. Ghivelder, 
J. A. Campá and I. Rasines, 1994).  In this model, the 
superconducting order parameter has two components (real 
and imaginary) as a wave function corresponding to one 
condensed. This permits to infer that the thermodynamics 
of superconductor presents a behavior of the type 3D-XY 
near the transition, in analogous form to the He superfluid.

The effects of thermal fluctuations are more evident in tem-
peratures immediately above TC. However, some fluctuation 
effects are strongly relevant in T<TC on application of 
magnetic fields.

One phenomenon, which is very interesting due to diversity 
of possible explanation, is related to the sign reversal of the 
Hall response in the mixed sate of type II superconductors.  
This anomaly is not an exclusive characteristic of the 
HTSC. It was experimentally observed in conventional 
superconductors based on Vanadium and attributed to pinning 
and thermal effects (Usui, Ogaswara, Yasukochi, Tomoda, 
1969). In HTSC, it was proposed that the sign inversion of 
the Hall resistivity is caused by granular effects (Galffy 
& Zirngiebl, 1988), thermoelectric effects (Freimuth, 
Hohn & Galffy, 1991), vortex dynamics (Hagen, Smith, 
Rajeswari, … Lobb, 1993; Rice, Rigakis, Ginsberg & 
J.M. Mochel, 1992; Ambegaokar, Halperin, Nelson & 
Siggia, 1980), thermal fluctuations (Lang, Heine, Schwab, 
Wang, & Bäuerle, 1994; Liu, Clinton, Smith & C.J. 
Lobb, 1997), flux pinning effects (Wang, Dong & Ting, 
1994) or processes of the skew scattering type (Feigel’man, 
Geshkenbein, Larkin, & Vinokur, 1995). Additionally, 
some HTSC exhibits a double sign reversal (Hagen, Lobb, 
Greene & Eddy, 1991; Zavaritsky, Samoilov & Yurgens, 
1991; Artemenko, Gorlova & Latyshev, 1989), introducing 
more difficulties on the theories to explain this anomalous 
phenomenon.  

Section 2 is dedicated to examination of the fluctuation 
theory. Ginzburg-Landau theory and the feature of thermal 
fluctuations above and below the superconducting transition 

in the diagonal and Hall conductivities are remarked. Sample 
characteristics and experimental procedures are specified in 
section 3.  Results of fluctuation analysis in both normal and 
mixed states, low and high magnetic fields, longitudinal and 
Hall conductivities, are discussed in section 4. At last, in 
section 5 the conclusions are presented.

2. Fluctuation theory
2.1.  Ginzburg-Landau Theory

Ginzburg and Landau, based on the phase transitions 
of second order (Abrikosov, A.A., 1988), developed the 
phenomenological theory of superconductivity near the 
superconducting transition. Them proposed the existence of 
an order parameter, which has a null value in T>TC and is 
defined in the simplest form as a complex quantity of the type

                                
( ) ( ) ( )rierr

 φΨ=Ψ ,                         (1.1)

where ( ) snr =Ψ 2  represents the density of superparticles 
(Cooper pairs) and ( )rφ  is the phase.

In the conventional low temperature superconductors, the 
transition between normal and superconducting states is 
correctly described by the Ginzburg-Landau theory, which is 
equivalent to microscopic BSC in the limit T→TC (Gor’kov, 
L.P., 1958; 1959; 1960). Close to TC, in absence of magnetic 
field, ( )rΨ  is small and the density of free energy can be 
to expands in a power series, as performed in the phase 
transitions of second order,    
When there is external magnetic field, it is necessary to 
introduce the corresponding term, , in the density of free 
energy. Furthermore, is important to consider the energy 
associated to the spatial variation of ( )rΨ , induced by the 
application of magnetic fields. Then, the density of free 
energy is given by

, (1.2)

where m* and e* represents the mass and the charge of a 
electron pair, respectively, and fn(T) is the density of free 
energy in the normal state. Minimization of free energy 
(1.2) with respect to the order parameter ( )rΨ , and the 
potential vector A


, conduces to the fundamental equations 

of Ginzburg-Landau theory,

          
( ) 0

2
1 22 *

* =Ψ−∇−+ΨΨ+Ψ Aei
m


bα ,   (1.3)
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*

*

2
Ψ−Ψ∇Ψ−Ψ∇Ψ= .       (1.4)

Equation (1.3) is associated to the coherence length x(T), 
which determines the spatial response of the superconductor, 
while equation (1.4) is related with the London penetration 
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depth, lL, which determines the electromagnetic response of 
the superconducting material.  The corresponding definitions 
are given by

                                   ( ) ( ) 2
1

0 −ex=x T ,                        (1.5)

                              

,                   (1.6)

where x(0) is the coherence length in  T=0 and e = (T-TC)/TC 
is known as reduced temperature.

In T>TC, the density of superparticles is very small. 
This permits the expansion of ( )rΨ  in a Fourier series.  
Introducing this series in the density of free energy (1.2) and 
calculating the thermal media of the density of Cooper pairs, 
we can be to obtain the probability of occurrence of certain 
value of the order parameter (in the Fourier space),

                       

( )
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2
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 .                    (1.7)

Equation (1.7) shows that the probability distribution of the 
Fourier amplitudes, qΨ , has a Gaussian characteristic. So, 
non-correlated thermodynamic fluctuations, obtained by 
mean the Ginzburg-Landau theory to T>TC, are denominated 
Gaussian fluctuations.  The amplitude of thermal fluctuations 
creases and becomes to interact, in temperatures near TC, in 
the so-called genuine critical region, where the fluctuation 
system is dominated by a collective behavior. In this limit, 
Ginzburg-Landau theory is not applicable. Then, the denom-
inated Ginzburg criterion (Varlamov & Ausloos, 1997) is 
used to describe the regime, which is defined in the clean 
limit and in three dimensions as

                ( ) ( ) c

cGB
G T

TT
c
k −

=







xdπ

=e
2

32 08
,          (1.8)

where,  is the jump in the specific heat at TC and kB is the 
Boltzmann constant. This criterion defines a limit in temper-
ature, TG. Below TG the Ginzburg-Landau theory is not more 
valid.  Then, the genuine critical interval is defined by

                                          e e≤ G.                                 (1.9)

2.2. Electric Conductivity Fluctuations at T>TC

One experimental technique, which is much utilized to 
study the phenomenon of thermal fluctuations near the 
superconducting transition, is the electric conductivity. 
Particularly in the normal phase, this method supplies the 
necessary precision to detection of diverse effects as the 
Aslamazov-Larkin contribution, for example. Calculus of this 

contribution is performed based on the microscopic theory 
(Aslamazov & Larkin, 1968), but the Ginzburg-Landau 
theory else permits the derivation of this additional term 
of the conductivity. Contribution of Aslamazov-Larkin to 
the conductivity excess Ds depends of dimensionality of 
system as:

                         ( )
Ds AL

e
=

−2 1
2

32 0x
e    (3D),                 (2.1)

                            
DsAL

e
s

= −
2

1

16
e              (2D),                   (2.2)

                          

( )
DsAL

e
a

=
−π x

e
16

02 3
2


  (1D),                 (2.3)

where s is the thickness of film in the 2D case and a is the 
transversal section area of filament in the 1D case.

The Maki-Thompson contribution, in the 3D case, presents the 
same divergence of Aslamazov-Larkin 3D-paraconductivity.  
In the 2D and 1D cases, this contribution is not relevant for 
the diagonal magnetoconductivity fluctuations. However, 
appropriately defined, these are very significant to study of 
Hall conductivity fluctuation (Gor’kov, L.P., 1958; 1959; 
1960). Then,

           
               (2D),        (2.4)

                   (1D),         (2.5)

where, d=(Tini -TC)/TC is the pair-break parameter and Tini 
is the temperature of superconducting transition without 
despairing effects. 

Lawrence and Doniach (1971) develop a theory to systems 
that have a high planar anisotropy. They propose that in 
this systems the order parameters of adjacent planes are 
weakly coupled through Josephson junctions. In their model, 
the contribution of thermal fluctuations on the electric 
conductivity is 

                            ,                    (2.6)

where s represents the superconducting interplanar distance 
and  defines the coupling parameter which 
models the crossover between 2D, in high temperatures, and 
3D limits near TC. The parameter a is strongly dependent 
from microscopic details of system. 2D and 3D limits are 
quantified by the dimensionless parameter , which 
conduce to ( ) 122 −

= eα d . When d2e >>1 the superconducting 
planes are effectively uncoupled and the fluctuation regime is 
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2D.  In this case, equation (2.6) is similar to 2D-Aslamazov-
Larkin equation (2.2) for systems with thickness s. On the 
contrary, when d2e <<1, superconducting planes are coupled 
and the regime is 3D. The corresponding Lawrence-Doniach 
equation corresponds to Aslamazov-Larkin equation 3D (2.1).  
However, the anisotropic quantity x(0) is substituted by the 
coherence length xc(0).

The Aslamazov-Larkin model, developed to homogeneous 
systems, was enhanced by Char and Kapitulnik (1988) for 
the case of inhomogeneous materials by mean of percolation 
theory. In this model, it is considered that an inhomoge-
neous superconductor is conformed by regions with uniform 
superconducting properties. The global superconductivity is 
conserved through the strong or weak coupling between those 
regions along whole material. Above TC, the superconductor 
is considered homogeneous, with dimensionality d, for length 
scales of homogeneous regions L>x p, where x p is the corre-
lation of percolation. So, Aslamazov-Larkin theory predicts

                                     .                            (2.7)

In the opposite case, when L<x p, we can be to apply the 
result of equation (2.7), by considering a random fractal with 
spectral dimension  Then, the Char-Kapitulnik paraconduc-
tivity is given by
  
                                   .                             (2.8)

This result is general to any fractal.  In the case of percolation 
network, the spectral dimension of the fracton has a universal 
value 3/4~ ≈d  (Alexander & Orbach, 1982; Alexander, 
Laermans, Orbach & Rosenberg, 1983).

The Ginzburg criterion defined by the equation (1.8) delimits 
the validity of Ginzburg-Landau theory very close to TC. 
Then, the thermodynamics of superconductor is not more 
described by the mean field theory as in the Gaussian regimes 
of fluctuations. In the immediate proximity to the transition, 
where TC is different to Ginzburg-Landau critical temperature, 
the fluctuations interact and become to be strongly correlated. 
When the temperature is decreased in direction to TC, the 
long range order of the correlation of fluctuations increases 
progressively up to turn infinite at T=TC. Thus, the region 
where fluctuations become infinitely coherent is denominated 
genuine critical regime. The study of this region is usually 
effectuated by mean the theory of dynamic and static scalings 
(Hohenberg & Halperin, 1977), in which the free energy 
is expanded in a power series of the coherent length, that is 
the relevant scale of longitude for the critical phenomenology 
near the superconducting transition. This theory predicts the 
occurrence of a divergence in the conductivity excess (Ds) 
very close to TC, according to equation

                                 ( )hnes +−+−D dz2~ ,                            (2.9)

where n is the critical exponent related with the coherence 
length, z is the dynamic critical exponent, d is the dimension-
ality of the fluctuation system and h≈0 is the exponent 
associated with the deviation of the correlation function 
respect to mean field behavior. The simplest description of 
transition in the critical regime suggests that the properties 
of type II superconductors, without applied magnetic fields, 
are that predicted by the 3D-XY-model (Pureur, et al, 1993), 
in which n ≈ 3

2 . In his prediction, Lobb (1987) defines two 
regimes at the critical region. First is a static critical regime 
very close to TC, with con n ≈ 3

2 , where the exponents z and 
h conserve the mean field values (z=2 y h=0), resulting in 
a critical exponent to conductivity excess, that is given by 
the equation ( ) 3

22 =+++= hnl dz . Second corresponds 
to a dynamic critical regime, closer to TC, where the effects 
of dynamic scaling are relevant. Then, occurs a change of 
the dynamic critical exponent, which acquire the value z=

2
3 . In this case, it is predicted that the critical exponent of 
conductivity excess in 3D systems is given by the expression  

( ) 3
12 =+++= hnl dz .

2.3. Behavior of Electric Conductivity at T<TC

One very interesting aspect in the granular superconductors 
is the occurrence of a two-step process in the normal-
superconductor transition (Pureur, et al, 1993; Gerber, 
Grenet, Cyrot & Beille, 1990). This phenomenon is 
described by supposing that the electronic pairing stabilizes 
a superconductor state in mesoscopic regions (grains) of the 
sample, very close to the bulk TC. On lower temperatures, 
another critical temperature, TC0, conduce the system to a 
state with effective long range order of the phase coherence, 
by mean like percolative processes which active the weak 
junctions between diverse grains. At T<TC0, is reached the 
rigorously null resistivity-state (Jurelo, Abrego Castillo, 
Roa-Rojas, Ferreira, Ghivelder, Pureur, Rodrigues, 1999).

The theoretical description of this two-step transition is 
performed in terms of a paracoherent-coherent phase 
transition, which is proposed to granular superconductors 
(Rosenblatt, Raboutou, Peyral & Lebeau, 1990; Roa-
Rojas, Menegotto Costa, Pureur & Prieto, 2000). In this 
transition, the fluctuant phases of the Ginzburg-Landau order 
parameter into the grains acquire long range order. One 
scheme of this proposal is shown in figure 1.

As in the vortex-glass model (Rosenblatt, et al, 1990; Roa-
Rojas, et al, 2000), the phenomenology is described through 
the tunneling Hamiltonian of Cooper pairs given by

                          ,                  (2.10)

where, Jij is the intergranular coupling energy and qi, qj 
are the phases i and j of the order parameter, respectively.  
Frustration is introduced by the phase factor ,
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where  is the potential vector and the line integral is 
valued from center of grain i to center of grain j. In absence 
of magnetic field, Hamiltonian is formally the same of a 
disordered 3D-XY-ferromagnet (Jurelo, et al, 1999). When 
magnetic field are applied, the frustration factor Aij conduce 
the system to a like spin-glass state (Rosenblatt, et al, 1990; 
Roa-Rojas, et al, 2000).

Then, near to TC0 a critical region takes place which extension 
can be to estimate by mean of the renormalized Ginzburg 
criterion (Jurelo, et al, 1999). Resistivity measurements 
permit to identify the paracoherent and coherent regions 
as observed in figure 2. It is important to remark that the 
resistivity in the paracoherent regime is related to activation 
and inactivation processes of the weak junctions into material.

Model represented by the intergranular tunneling Hamiltonian 
belongs to the universality class 3D-XY. This implies the 
occurrence of a phase transition paracoherent-coherent 
of second order at the temperature value TC0, where the 
phase of the order parameter turns identical to all grains of 
material. Strong evidences of existence of this transition 
were reported in studies of conductivity excess and specific 
heat measurements.[25]

2.4. Magnetic Effects on Conductivity at T>TC

When applied magnetic field is increased, the occupied 
volume by the fluctuations decrease up to turns minor that the 
coherence length x(T) (Tinkham, M., 1975). On the other 
hand, in sufficiently strong magnetic fields, the quasiparticles 
are effectively confined in the lowest Landau level (LLL), 
due to quantization of the electronic states round the axe 
of application of magnetic field (Bergmann, G. 1969). Is 
denominated LLL the state where transversal fluctuations of 
magnetic field are suppressed due to separation of Landau 

orbital and are characterized by a length scale determined by 
the magnetic field. At sufficiently strong magnetic fields, this 
length scale is given by  (Kim & Trochet, 1992). In 
these circumstances, the dimensionality of system is reduced 
and the fluctuations acquire an effectively one-dimensional 
character along of magnetic field orientation.  When magnetic 
field are applied parallel to crystallographic axe c in a thin 
film, the characteristic volume of a typical fluctuation is slH

2 , 
where s corresponds to the thin film thickness (Gerber, et al, 
1990). This reduction on effective dimensionality increases 
the relevance of fluctuations in certain region, near TC(H), 
which creases proportionally to field creasing, according to 
the Ginzburg criterion as a function of magnetic field (Ikeda, 
Ohmi, Tsuneto, 1989).

                          ,                 (2.11)

Figure 2. Characteristics of the (a) resistivity transition, (b) 
temperature derivative of resistivity and (c) inverse of logarithmic 
derivative of the conductivity excess for the Hg(Re)-1223 sample.
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Figure 1. Linear behavior of resistivity at high temperatures and 
extrapolation to obtain the residual contribution at T=0 K.
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where  is the Ginzburg-Landau parameter and Hc 
represents the thermodynamic critical field.

On the practice, the critical behavior of the type 3D-XY 
is applicable to a few interval of magnetic fields, in the 
proximity of H=0. This means that is possible to observe 
experimentally the genuine critical regime, still in presence 
of weak magnetic fields. In a 3D system, the conductivity 
excess follows a scale law (Salamon, Shi, Overend & 
Howson, 1993)

                              ,                        (2.12)

which relates the critical fluctuations with a behavior 
dominated by the static critical regime 3D-XY.  Then, the 
corresponding dynamic critical exponent is 3

2=n . Very 
close to TC, the dynamic critical region is experimentally 
accessible at certain values of applied magnetic field. In 
high magnetic fields, occur a progressive suppression of 
critical and Gaussian regimes and the fluctuation system 
turns effectively 1D, i.e., is confined into the lowest Landau 
level (Bardeen & Stephen, 1965). In this limit case and to 3D 
systems, a power law governs the conductivity excess:

                       .               (2.13)

2.4. Magnetic Effects on Conductivity at T<TC

Presence of magnetic fields affects meaningfully the super-
conducting transition at T<TC, as shown in figure 3. Picture 
3a reveals that in low magnetic fields the intergranular 
regime of the superconducting transition is affected, 
while figure 3b shows that high magnetic fields become 
to influence the intragranular region. Various models have 
been proposed to explain the behavior of HTSC in the 
mixed phase. More relevant are the classic of flux flow and 
flux creep (Bardeen & Stephen, 1965; Anderson & Kim, 
1964), superconducting glass (Ebner & Stroud, 1985; 
Rodrigues, Schaf & Pureur, 1994;  Morgenstern, Müller 
& Bednorz, 1988) and vortex glass (Roa-Rojas, J., 2002; 
Fisher, Fisher & Huse, 1991). Last is based on dynamic 
scaling theory, as far as results particularly interesting to 
describe the characteristic fluctuations in the mixed phase.

Vortex glass model considers that the flux lines, typical of 
the mixed state, adopt the configuration of magnetic ordering 
which occurs in the spin glasses, where the atomic magnetic 
moments are fix on time but are not oriented on magnetic 
field direction, as in ferromagnetic or antiferromagnetic 
materials. Spin glasses are magnetically disordered and 
frustrated. Disorder remarks the importance of establishing 
of a global state on system in which the interactions between 

all spin pairs can be simultaneously satisfied. Consequently, 
the fundamental state of a spin glass is highly degenerated, 
consisting of most not equivalent configurations. By this 
analogy, the disordered solid phase in HTSC is denominated 
vortex glass phase (Roa-Rojas, J., 2002; Fisher, et al, 1991) 
and is characterized by magnetic frustration and disorder, 
due to existence of pinning centers which immobilize the 
vortex lines.

In the limit case of like granular disorder, the vortex glass 
phase can be formally studied through the Hamiltonian given 
by equation (2.10), . In this theory, 
the phenomenon of dissipation is analyzed in terms of the 
phase correlation of the order parameter. On the vortex glass 
state, where the phase of the order parameter is correlated, 
the longitudinal resistivity is strictly zero, originating a true 
superconducting state. Vortex glass transition, which occurs 
for a certain value of temperature Tg, is continuous and has 
place between the vortex-liquid and vortex-glass phases, as 
observed in figure 4. Most authors relate this fusion line with 
the phenomenon known as irreversibility line (Yeshurun & 
Malozemoff, 1988; Houghton, Pelkovits & Sudbf, 1989; 
Matsushita, T., 1993).

Some divergent quantities and universal laws of scaling charac-
terize the system in the vortex glass transition. Particularly, 
the relevant length for this case is xg, which represents the 
magnitude scale of correlation of the phase of the order 
parameter. By this reason, xg is known as coherence length 
of the vortex glass phase. The divergence in Tg is given by 
(Koch, Foglietti & Gallagher, 1989; Koch, Foglietti & 
Fisher, 1990) 

                                      ( ) nx −−∝ gg TT ,                             (2.14)

where n is the critical exponent related to xg. Associated to this 
correlation length there is a relaxation time, whose scaling 
law can be written as z

gxτ = , where z is the dynamic critical 
exponent. Transport properties near Tg are discussed in terms 
of scaling laws. When a test current density is applied to 
system on a length , the regimes above Tg 
can be analyze as (Abrikosov, A.A., 1988):

i ) In low applied current and Lsc>xg, the phases of the order 
parameter are not correlated due to thermal fluctuations.  
It is expected that the electric response have an ohmic 
behavior. When temperature is reduced in direction to Tg, 
the coherence length of the vortex glass xg creases while 
the resistance diminishes up to the zero resistance state, 
following a power law dependence in temperature

                                    ( ) ( )sgTTAT −=r ,                       (2.15)

    where s=n(z+2-d) and d represents the dimensionality of 
system. The characteristic value of s in the RBa2Cu3O7-d is 
4 (approximately) (Roa-Rojas, et al, 2000).
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ii)  When Lsc<xg, the applied current breaks the phase corre-
lation of the order parameter, originating a dynamic of 
vortex lines. From the dynamic scaling is expected a 
non-ohmic behavior, in the power law form, on the I-V 
characteristic.

3. Experimental procedures
The synthesis of a polycrystalline Hg0.82Re0.18Ba2Ca2Cu3O8+δ 
superconductor was performed by means of the sealed quartz 
tube technique. Rhenium was added to the multiphasic pre-
cursor as ReO2 within a stoichiometric ratio. The resulting 
material was blended with HgO in order to form the final 
compound, following a procedure which is described in 
reference 49 and references therein. The obtained pellet was 
partially powdered for x-ray diffraction experiments. The 
obtained cell parameters from Rietveld analysis of the data 
are a = 3.8519(6) Å and c = 15.686(3) Å. Small amounts of 
BaCuO2+δ were detected. The often present residual phases 
HgCaO2 and Hg(Re)-1212 could be eliminated by a proper 
choice of the partial pressure of oxygen in the cell (Sin, 
Cunha, Calleja, … Obradors, 1999). Samples prepared with 
the same procedure were further characterized by energy-
dispersive x-ray analysis (EDAX). A bar-shaped sample with 
dimensions 8×4×0.34 mm3 was cut out from the Hg(Re)-1223 
pellet for transport measurements. Six contacts were attached 
to the sample with silver paint in the conventional arrangement 
for simultaneous measurements of the longitudinal and Hall 
voltages. A low-frequency alternating current (ac) technique, 
which employs a lock-in amplifier as a null detector, was used 
to measure the transport voltages. In the case of the Hall-effect 
experiments, the longitudinal voltage was used as the primary 
source for the compensation signal in order to eliminate any 
spurious effect from magnetoresistance. The details of this 
technique were reported by Friederich (1976). The current 
density was fixed at 1.45 A.cm−2 in all transport measurements. 
Temperatures were determined with a carbon–glass sensor and 
a Pt resistor corrected for magnetoresistance effects. Fields 
varying from 0 to 5 T were produced with a superconductor 
solenoid. The accuracy and the large number of recorded data 
points allowed us to calculate the temperature derivative of the 
longitudinal resistivity in the region of the superconducting 
transition. Structural characterization of these Hg(Re)-1223 
samples was extensively studied by M.T.D. Orlando et al (Sin, 
Cunha, Calleja, … Obradors, 1998).   

The determination of the irreversibility line was obtained 
from magnetoresistivity measurements and conventional 
magnetization experiments. First were performed in the 
magnetoresistometer defined above and second by means a 
commercial SQUID magnetometer. The zero field cooling 
(ZFC) and field cooled cooling (FCC) prescriptions were 
performed to the determination of the irreversibility line 
in both experimental techniques (Roa-Rojas, et al, 2000; 
Friederich, A., 1976).

4. Results and discussion
4.1 Analysis Method and Resistive Transition

The analysis of results for the fluctuation contribution on 
magnetoconductivity is performed by assuming that the 
conductivity excess is given by (Pureur, et al, 1993)

                                   Rsss −=D ,                              (4.1)

where ( )BT ,ss =  is the measured magnetoconductivity, 
i.e.,  ( ) ( )BTBT ,/1, rs = , with applied field B, and RR rs /1=
is the regular term extrapolated from the high-temperature 
behavior, as shown for several samples in figure 1. Notice 
that the feature of the normal resistivity as a function 
of temperature is approximately linear, which permits 
to perform an easy linear extrapolation to determine rR. 
According to the Aslamazov-Larkin proposal, the fluctuation 
magnetoconductivity diverges as a power law of the type

                                   ( ) les −=D ABT , ,                           (4.2)

where A is a constant,  is the field-dependent 
reduced temperature and l is the critical exponent.

Analogously to the Kouvel-Fisher method of analysis of 
critical phenomena (Roa-Rojas, Pureur, Orlando, Baggio-
Saitovitch, 2000), the logarithmic temperature derivative of 
Ds is given by . Then, is defined the inverse of the 
logarithmic temperature derivative as the quantity

                    .               (4.3)

By substituting equation (4.2) in equation (4.3) it is obtained 
that
                                   .                             (4.4)

Thus, obviating more complex procedures of adjustment, 
simple identification of linear temperature behavior in plots 
of 

 
vs T allows simultaneous determination of critical 

temperature TC of fluctuation regime and the corresponding 
critical exponent, l.  At T<TC, by using the same analysis 
method, we denote the critical exponents related with the 
paracoherent-coherent transition as lp.

The main source of uncertainty in the data analysis comes 
from the extrapolation procedure to estimate sR near TC 
and from the numerical procedure to determination of the 
temperature derivative of conductivity excess

                                            (4.5)

and the logarithmic derivative of Ds

                 .           (4.6)
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Errors introduced by the numerical calculation of equation 
(4.5) and (4.6) are partially compensated because the term 
involving rR is small compared to the term containing the 
total resistivity ( )BT ,r  near TC. Figure 2 exemplifies the 
graphic analysis method by means of adjust of equation (4.4) 
for the Hg(Re)-1223 sample. Picture (2a) shows the resistive 
transition ( )0, =BTr , (2b) exhibits the temperature derivative

 and (2c) presents the corresponding logarithmic 
derivative of the conductivity excess  as a function 
of temperature. In (2c) it is possible to determine the critical 
exponents and the respective critical temperatures of the 
fluctuation regimes, by means of successive straight lines 
which can be fitted to limited but reproducible temperature 
ranges corresponding to these regimes.

By utilizing the temperature derivative of resistivity as a 
function of the temperature, the bulk critical temperature Tp 
for the examined samples were obtained by assuming that 
the temperature position Tp of the sharp maximum in   
corresponds approximately to the bulk critical temperature.  
As a results of resistivity measurements, width of the super-
conducting transition was DTC=Tp-TC0=4.2 K, with Tp=133.2 
K and TC0=129.0 K.

4.2 Magnetoconductivity Fluctuations at T>TC

In the normal state, at temperatures sufficiently far away 
from TC, effects of Gaussian fluctuations predominate in the 
electrical conductivity, as exemplified in figure 3. From the 
analysis of experimental data, four regimes of power law 
dominate by Gaussian fluctuations were identified through 
the exponents lG3, lG2, lG2-G1 and lG1, as showed in table 4.1.  
Meanwhile, note that lG3  was observed only for  H<0.5 kOe. 

The analysis of results was performed based on the 
Azlamazov-Larkin theory (1968) for fluctuations in the 
electrical conductivity. According with this theory the expo-
nents are given by

                                          2
2 d

−=l ,                                (4.7)

where d is the dimension of the fluctuation space. Then, 
this region identified by lG3=0.53(±0.02) corresponds 
to a homogeneous 3D Gaussian regime. With increasing 
temperature, the exponent lG2=1.02(±0.04) corresponds to 
a dimensionality d=2 and, therefore, to 2D homogeneous 
regime. The farthest region from TC, identified by lG1= 
1.52(±0.04), corresponds to a 1D filamentar homogeneous 
regime. The intermediate region between 2D and 1D, defined 
by lG2 - G1=1.32(±0.04), corresponds to a inhomogeneous 
fluctuational regime with spectral dimension given by the 
Char-Kapitulnik model as d~ =1.35. This dimensionality 
is very close to fractal dimensiono f the site-percolation 
problem 34~

=d  (Char, K. & Kapitulnik, A., 1988). 

Figure 3. Gaussian fluctuation regimes identified for the Hg(Re)- 
1223 sample.

χ σ
-1
(K

)

Temperature (k)

Table 4.1: Gaussian exponents for the Hg(Re)-1223 sample. Values 
of TP correspond to the maximum in dr/dT.

H  
(kOe)

TP  
(K)

Gaussian Exponents
lG3 lG2 lG2-G1 lG1

133.7<T<134.1
0.0044<e<0.007

134.1<T<134.8
0.010<e<0.016

134.8<T<142.2
0.015<e<0.073

138.5<T<146.1
0.05<e<0.10

0 133.13 0.54 ± 0.03 1.06 ± 0.03 
0.5 133.07 0.52 ± 0.02 1.02 ± 0.03 1.28 ± 0.04
2.5 132.97 0.98 ± 0.04 1.35 ± 0.04 1.46 ± 0.04

10 132.73 1.09 ± 0.02 1.33 ± 0.02 1.51 ± 0.05
20 132.59 0.94 ± 0.05 1.34 ± 0.03 1.52 ± 0.03
40 132.32 1.31 ± 0.04 1.55 ± 0.04
50 132.27 1.30 ± 0.04 1.58 ± 0.05

 Average 0.53 ± 0.02 1.02 ± 0.04 1.32 ± 0.04 1.52 ± 0.04

It is possible to estimate the correlation length of the 
Gaussian regimes by considering that these regimes vary as 
in the Ginzburg-Landau theory, according to .  
Using the coherence amplitude x(0), typical of the Hg-based 
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superconductors in the orientation parallel and perpendicular 
to the Cu-O planes, xab(0)≈20 Å  and xc(0)≈1 Å, respectively, 
the correlation lengths for the Gaussian regimes xab(T)  and 
xc(T) can be estimate (Shen, Lam & Li, 1998).

For the 1D regime, the correlation length fall in the interval 
63 Å <xab(T)< 72 Å  in the Cu-O planes and 3.2 Å < xc(T) 
< 3.6 Å in the  c-axis. The result along the c-axis is much 
less than the spacing between inner layers of Cu-O in the 
material structure, as shown in Figure 4 (Chmaissen, Huang, 
Antipov, … Santoro, 1993). The non-homogeneous quase-
filamentar regime evidences correlation length 74 Å < 
xab(T) < 162 Å  and  3.7 Å < xc(T) < 8.2 Å for the Cu-O 

planes and in the c-axis respectively. The value in the c-axis 
orientation suggests that the fluctuations are restricted to the 
double Cu-O planes structure. The fractality is due to the fact 
that the superconducting coherence length is less than the 
percolation correlation length, which is a consequence of 
disorder in the material.

For the 2D homogeneous regime, we obtained 158 Å < xab(T) 
< 210 Å  and  8.2 Å < xc(T) <10.1 Å in the Cu-O planes and 
the c-axis respectively. The result for the c-axis reveals that 
the superconductivity is still restricted to the double Cu-O 
planes of the structure.

At last, for the 3D homogeneous regime, the values of the 
coherence length are 239 Å < xab(T) < 301 Å  and  11.9 Å 
< xc(T) <15.7 Å, which indicate that the superconductivity 
reaches 3D-dimensional long range order.

Very close to TC a genuine critical regime was observed. This 
behavior was experimentally determined only for applied 
magnetic fields below 0.5 kO, which is a characteristics of 
the RBaCuO high temperature superconductors (Fabris, Roa-
Rojas & Pureur, 2001). 

The critical exponent lCR=0.32 ± 0.01, determined from the 
linear fitting in the inverse of logarithmic derivative of the 
conductivity excess is shown in figure 5. This exponent is 
explained by the 3D-XY model, according to the equation

                               ( )hnl +−+= dz2 ,                         (4.8)

where n = 2/3,  h ≈ 0,  z = 3/2  and  d = 3, and the complex 
order parameter has two components, which is compatible 
with symmetry s-pure or d-pure of the order parameters. 

Figure 4. Crystalline structure of the Hg-1223 obtained from X-ray 
diffraction experiments (Chmaissen, et al, 1993).

Figure 5. Genuine critical 3D-XY regime observed in the Hg(Re)- 
1223 sample on the application of low magnetic fields.
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A dynamical exponent z=2 is expected (Fisher, et al, 1991), 
which is characteristics of the dissipative dynamics described 
by the model-A of Hohenberg and Halperin (1977). However, 
experimental results (Roa-Rojas, Jurelo, Menegotto Costa, 
et al, 2000) and theoretical calculations (Lidmar, Wallin, 
Wengel, Girvin, Young, 1998) reveal that z=d/2=3/2, as 
in the model-E of Hohenberg and Halperin, which is the 
dynamical universality class for the superfluid transition in 
4He and also for extreme type II superconductors in absence 
of screening (Lidmar, et al, 1998). 

4.3 Magnetoconductivity Behavior at T<TC

4.4 Hall Response at T<TC

As reported for Bi2Ba2CaCu2Oy (Zavaritsky, Samoilov & 
Yurgens, 1991) and Tl2Ba2CaCu2Oy (Hagen, Lobb, Greene 
& Eddy, 1991), the Hall resistivity rxy evidenced a double 
signal change at temperatures below TC for applied fields up 
to H ≤ 20 kOe, as showed in figure 6.      

On the application of high magnetic fields (above H ≤ 20 
kOe), Hall response is positive but the qualitative tendency 
of the curve remains as in low magnetic fields. 

As showed in figure 7, close to the zero resistance state, 
TC0(H), was observed a power law of the type 

                             .                       (4.9)

The characteristic exponent determined by the scaling of 
figure 7 was b = 1.41 ± 0.01, which is lower that other 
reported for DyBa2Cu3O7-d (Fabris, et al, 2001). Low values 
of b are attributed to the occurrence of pinning vortex effects 
introduced by the planar anisotropy of this superconducting 
material and for granular disorder effects (Wang, et al, 1994).

Figure 6:  Behavior of the resistivity (a) diagonal rxx and (b) Hall 
rxy on the application of magnetic fields H = 10, 20, 40 e 50 kOe.

Figure 7:  Scaling of the Hall resistivity at low temperatures with 
the equation 4.9.
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4.5 Hall response at T>TC

In the normal state, Hall resistivity rxy varies inversely with 
temperature, in agreement with the figure 8. Between 170 K 
and 260 K, rxy follows the behavior given by

                         
,                 (4.10)

where rxy is given in mW.cm, H in Tesla and T in Kelvin.

The inverse of the Hall coefficient, 1/RH, is given by the 
denominator of equation 4.10. Then, the carrier density can 
be schematized as showed in figure 9. The feature if carrier 
density in the normal state varies with temperature according 
to the equation

                              3,61T0,62n N
H += ,                        (4.11)

In units of 1020 carriers/cm3. In figure 9 the carrier density 
is presented per volume of the unit cell as a function of 
temperature.
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The Hall angle, defined as the ratio of the diagonal resistive 
response and the Hall resistivity (magnetoresistance), 

, presents a quadratic behavior with temperature, 
as showed in figure 10. This behavior is a universal-like 
behavior of the normal Hall response in high temperature 
superconductors (Roa-Rojas, Pureur, Mendonça-Ferreira, 
Orlando, Baggio-Saitovitch, 2001), according with the 
Anderson’s formula of equation 4.12 (Anderson P. W., 1991)

                                  bαθ += 2TCot H .                         (4.12)

5 Conclusions
In this paper we report fluctuation magnetoconductivity 
analysis and Hall response in polycrystalline samples of Hg1-

xRexBa2CaCu3O8+d (x=0.18) high temperature superconductor.  
Through the Kouvel-Fisher method, a genuinely critical 

regime of fluctuations characterized by the critical expo-
nent lc=0.32±0.01 was identified close to the critical 
temperature TC on the application of low magnetic fields.  
We have interpreted this result on the full dynamic 3D-XY 
universality class predicted by the model E with a dynamic 
critical exponent z = 3/2. When the external magnetic fields 
H≈0.1 kOe, this regime becomes unstable. Above the critical 
temperature Tc, four Gaussian regimes identified by the expo-
nents lG3, lG2, lG2-G1 and lG1 were associated to  fluctuations 
occurring in spaces with geometry 3D (in the Cu-O planes), 
2D (when the correlation between the Cu-O planes is weak), 
2D-1D (determined by a fluctuation spectrum developing in 
a space with fractal topology) and 1D (corresponding to the 
confinement of the quasi-particles into the Lowest-Landau-
Level due to the quantization of the electronic states around 
the axe of application of the external field). Measurements 
of magnetoresistance reveal the anomalous Hall response 
of this material. In the normal phase, the Hall resistivity is 
positive and varies as predicted by the Anderson’s formula. 
In the mixed phase and for applied fields below 2 T, the Hall 
resistivity shows a double sign reversal. On the application 
of applied fields above 2 T, the Hall resistivity returns to 
the positive behavior. This behavior is interpreted as due 
to two independent contributions: a negative term due to 
thermal fluctuations which is relevant close TC and a positive 
contribution related to vortex motion which is dominant 
close to the zero resistance state. Below the bulk critical 
temperature, the Hall resistivity rxy varies as a power law of 
the longitudinal resistivity rxx. The characteristic exponent 
independent of the applied magnetic field was β=1.4. This 
low value of the β is attributed to vortex pinning effects 
introduced by the granular disorder effects which are 
reinforced by the planar anisotropy typical of these high 
temperature superconductors.
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Figure 8: Normal behavior of the Hall response for Hg(Re)-1223 
sample. 

Figure 9: Carrier density in the normal state for Hg(Re)-1223 
material.

Figure 10: Hall angle for Hg(Re)-1223 superconductor.
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