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Abstract

Lifetime and survival data are usually the lives of subjects, units, or systems that has been exposed to multiple risks

or modes of failure. In the analysis of the data, however, is common to ignore the modes of failure because they

are unknown, they are not recorded, or because the complexity of including them in the modeling. It is of interest

knowing when the conclusions might be robust to ignoring the failure modes in the analysis. In particular, it would

be useful to characterize situations where it could be safely said that the modes of failure effect on the analysis

would be negligible or that failing to include such information could completely invalidate the conclusions drawn

from the study. As a first step in identifying when the failure modes have little or large influence on the competing

risks model, this article studies two different competing risks models: (a) a model with independent risks; (b) a

model derived from a multivariate Weibull with dependence.

Key words: competing risks, probability plots, log-location-scale family, Weibull distribution, multivariate Weibull

with dependence, lognormal distribution.

Caracteristicas de dos modelos con riesgos en competencia y riesgos Weibull.

Resumen

Los datos de tiempos de falla y sobrevivencia se refieren generalmente a la vida de individuos, unidades o sis-

temas que han sido expuestos a múltiples riesgos o modos de falla. Sin embargo, en el análisis de los datos es

común ignorar los modos de falla porque son desconocidos, no se registran o por la complejidad de la modelación

al incluirlos. Es importante, por lo tanto, determinar la robustez del análisis ignorando los modos de falla. En

particular, sería útil caracterizar situaciones donde pudiera decirse que el efecto de los modos de falla en el análisis

es despreciable o donde no incluir tal información pudiera invalidar completamente las inferencias del estudio.

Como un primer paso para identificar cuando los modos de falla tienen poca o mucha influencia en el modelo de

riesgos en competencia, este artículo estudia dos modelos de riesgos en competencia: (a) un modelo con riesgos

independientes; (b) un modelo derivado de una distribución Weibull multivariada con dependencia.

Palabras clave: riesgos en competencia, gráficos de probabilidad, familia de log-localización y escala, distribución

Weibull, distribución Weibull multivariada con dependencia, distribución lognormal.
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1. Introduction

In the analysis of lifetimes one is usually dealing with

time to an event of interest like failure of a component

or system, dead of an individual, or end to a subscrip-
tion service. In most cases, there are several competing

reasons (risks or modes of failure) that cause the event
of interest. Say, for example, that we were interested in

the first time that a bicycle fails. In this situation, the

competing risks for failure include: a flat tire, a broken
chain, or the rupture of a brake cable.

The interest in competing risks is old but the formal de-
velopment and application of the methodology to prob-

lems in engineering, survival analysis, and other applied
areas is relatively new. Crowder (2001, 2012) and Pintilie

(2006) provide historical accounts, relevant references,

and methodology.

It is interesting that, for many years, competing risks

were not in the front end of reliability and survival anal-
ysis. Beyond the statistical challenges of handling prop-

erly multiple risks in an analysis, there are, however,

some compelling reason for which the competing risks
might have been ignored in the analysis of the data:

(a) sometimes the competing risks are hidden or un-
known to the observer; (b) the competing risks may be

well known but it is difficult or expensive to identify the

risk that caused the event; (c) in other cases the cost and
time spent on determining the failure cause ends being a

waste of resources because ignoring the competing risks
in the analysis is as good as the analysis that takes them

in consideration. This is the case for example, with the

analysis of the Sho
k Absorber data in Meeker and Es-

cobar (1998) where a simple Weibull analysis, that ig-

nores the failure modes, is basically indistinguishable of

a Weibull analysis that takes in consideration the two ob-
served failure modes.

It would be useful to have a clear understanding on
the situations (e.g., model, data type, risk type) where

the use of the competing risks information makes a dif-
ference in the analysis. Meeker, Escobar, and Hong

(2009, page 157), in the context of a complex model

and analysis, came to the conclusion that in a compet-
ing risks model with two risks that are log-location-scale

distributed with similar shape parameter, the distribu-

tion of the competing risks can be approximated by the
same log-location-scale distribution with a shape param-

eter that is in between those for the marginal distribu-

tions and that the adequacy of the approximation does
not depend strongly on amount of association between

the two risks. One, however, would need a formal study

of the problem to provide a more definitive answer.

The purpose of this article is to study two simple com-

peting risks models with Weibull risks to assess the effect

of the risks on the time to the event of interest and the
inter-relationships between the two models. This might

be useful in setting a simulation study that could provide
broader guidelines on the situations where ignoring the

competing risks information in the analysis could lead

to erroneous conclusions.

The rest of the paper is organized as follows. Section 2 is
an introduction to competing risks models (CRMs) and

some features of their probability plots. Section 3 dis-
cusses the competing risks model with Weibull indepen-

dent risks and its characteristics. Section 4 presents a

competing risks model derived from a bivariate Weibull
distribution with dependent risks. Section 5 describes

generalization of the results to CRMs with k > 2 risks
and anticipate some of the difficulties in generalizing the

results to log-location-scale families in general. Section 6

summarizes the results in the paper and outlines future
related work. Section 7 contains appendixes with tech-

nical details for some of the results given in the paper.

2. Competing Risks Models and Their Proba-
bility Plots

Lifetimes of units or individuals subject to two risks (or

modes of failure), k = 2, can be modeled as a series-
system. Each risk is like a component in a series system

with two components. The unit has a potential lifetime
associated with each risk. The observed lifetime for the

unit is the minimum of these individual potential life-

times Ti, i = 1, 2. Informally, we refer to Ti as the Risk i
and to the model as the competing risks model (CRM).

∗Correspondencia: Sergio Yáñez, syanez@unal.edu.co. Recibido: 23 de junio de 2014. Aceptado: 28 de agosto de 2014
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For a CRM with two risks, a quantity of interest is

Tm = min (T1, T2) which has the cumulative distribution
function (cdf)

Fm(t) = Pr(Tm ≤ t) = 1 − Pr(Tm > t)

= 1 − Pr(T1 > t, T2 > t),

where Pr(T1 > t, T2 > t) is computed with respect to the

joint distribution of (T1, T2).
When the risks are independent

Fm(t) = 1 − Pr(T1 > t) Pr(T2 > t)

= 1 − [1 − F1(t)] [1 − F2(t)] ,

where Fi(t) is the cdf for Ti, i = 1, 2.

In the case of k risks, Fm(t) = 1 − Pr(T1 > t, . . . , Tk > t)
for dependent risks and Fm(t) = 1 − ∏

k
i=1 Pr(Ti > t) =

1 − ∏
k
i=1 [1 − Fi(t)] for independent risks, where Fi(t) is

the cdf for the i risk. See Meeker and Escobar (1998,

chapter 15) for additional information.

2.1. Probability Plots and CRMs

In theoretical and applied work with lifetime data, prob-

ability plots have shown to be useful for multiple pur-
poses, see Meeker and Escobar (1998, chapter 6) for de-

tailed explanation on their construction, interpretation,
and use. In this paper we will use probability plots to

display the distribution function of the competing risks

model along with the distribution of the individual risks.
As illustrated later, with proper choice of the plot scales,

the distributions of the individuals risks, Fi(t), show up
as straight lines in the probability plot, but the CRM cdf,

Fm(t), is usually a non-linear curve in the plot.

Graph of a cdf on a log-location-scale plot

Consider a log-location-scale probability plot defined by

the scales [ln t, Φ−1(p)] where Φ(z) is a standardized
continuous cdf that does not depend on unknown pa-

rameters, 0 < p < 1, t > 0, and ln t denotes the natural
logarithm of t. It is known, see for example Meeker and

Escobar (1998, chapter 6), that in these scales any cdf

of the form Φ[(ln(t) − µ)/σ] (where σ > 0) plots as a
straight line with slope 1/σ.

In a log-location scale probability plot, if a cdf F(t) is a

fairly linear curve, then there is strong information that,
with properly chosen (µ, σ), the cdf F(t) is well approxi-

mated by the distribution function Φ[(ln(t)− µ)/σ]. We

will use this feature of probability plots later in studying
the properties of some CRMs.

The following result considers a probability plot

defined by the scales [ln t, Φ−1(p)] and the plot
{

ln t, Φ−1[F(t)]
}

of a cdf F(t), t > 0 on it.

Result 1. For an absolutely continuous cdf
F(t) = Pr(T ≤ t), t > 0 the slope of the curve
{

x = ln t, y = Φ−1[F(t)]
}

in the probability plot

[ln t, Φ−1(p)] is given by

dy

d ln t
=

t f (t)

φ {Φ−1 [F(t)]}
, (1)

where f (t) and φ(z) are the probability density functions

(pdfs) corresponding to F(t) and Φ(z), respectively.

The proof of (1) follows after differentiation of y with
respect to ln t.

Because t, f (t), and the function φ(z) are all non-
negative, the slope in (1) is non-negative. This is the ex-

pected behavior because the cdf F(t) is a non-decreasing

function of ln(t).

2.2. The competing risks model for independent posi-

tive continuous variables

For the CRM with two independent risks, k = 2,

Fm(t) = 1 − [1 − F1(t)][1 − F2(t)] and

dFm(t)

d ln t
= t f1(t)S2(t) + t f2(t)S1(t),

where Fi(t) and fi(t) are the cdf and pdf of Ti and Si =
1 − Fi(t) for i = 1, 2. Then, using (1) with F(t) = Fm(t),

dy

d ln t
=

t f1(t)S2(t) + t f2(t)S1(t)

φ {Φ−1 [Fm(t)]}
.

The competing risks model for two independent log-

location-scale continuous variables

Now suppose that the individual risks are independent
and log-location-scale distributed. That is, T1 and T2 are
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independent, and Ti ∼ Φ (zi) , i = 1, 2, where

z1 =
ln(t)− µ1

σ1
, z2 =

ln(t)− µ2

σ2
, (2)

−∞ < µi < ∞, σi > 0, and Φ(z) is a differentiable

cdf that does not depend on unknown parameters. In
this case,

Fm(t) = 1 − [1 − Φ(z1)][1 − Φ(z2)] and

dFm(t)

d ln t
=

1

σ1
φ(z1)[1 − Φ(z2)] +

1

σ2
φ(z2)[1 − Φ(z1)], (3)

where φi(z) is the pdf corresponding to the cdf Φi(z), i =
1, 2.

Thus for a competing risks model with two in-

dependent log-location-scale risks, the slope of the

curve
{

x = ln t, y = Φ−1[Fm(t)]
}

in the probability plot
[ln t, Φ−1(p)] is given by

dy

d ln t
=

1

σ1
φ(z1)[1 − Φ(z2)] +

1

σ2
φ(z2)[1 − Φ(z1)]

φ[Φ−1{1 − [1 − Φ(z1)][1 − Φ(z2)]}]
. (4)

In this case, the cdfs of the individual risks Ti appear as
straight lines in the probability plot. But the line corre-

sponding to the CRM cdf is not necessarily linear. For an
example, see Figure 1 which is described in the follow-

ing section.

3. Competing Risks Model With Independent
Weibull Risks

A Weibull cdf F(t) is often written as

F(t) = 1 − exp

[

−

(

t

η

)β
]

(5)

= Φsev

[

ln(t)− µ

σ

]

, t > 0, (6)

where η > 0 is a scale parameter and β > 0 is a shape
parameter. Φsev(z) = 1 − exp[− exp(z)] is the stan-

dard smallest extreme value distribution, µ = ln(η), and

σ = 1/β. When T has a Weibull distribution, we indicate
it by T ∼ WEI(η, β).

Although (5) and (6) are equivalent specifications of the

Weibull cdf, (5) is commonly used in engineering and (6)
is convenient on theoretical developments, for numerical

stability in computations, and for notational standard-

ization with other log-location scale distributions. For
additional details see Meeker and Escobar (1998) and

Lawless (2003).

Then the Weibull competing risks model with two inde-

pendent risks has the cdf

pmiw(t) = Fm(t) = 1 − [1 − Φsev(z1)][1 − Φsev(z2)].
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Figure 1: Weibull probability plot of a competing risks
model with two independent risks. Risk 1 and Risk 2

are WEI((η1 = 150, β1 = 1) and WEI(η2 = 150, β2 = 2)
distributed, respectively.

Figure 1 shows pmiw(t) in a Weibull probability plot with

scales
[

ln t, Φ−1
sev(p)

]

. The plot also shows, as straight
lines, the cdfs for the two Weibull independent risks

defining the CRM model. In this case, because the plot
of pmiw(t) is non-linear, we know that the distribution of

the CRM is not a Weibull distribution. For this and other

figures in the paper, the model parameters values were
chosen for illustration purposes.
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Important properties of the CRM with independent

Weibull risks

The following results characterize the CRM with inde-

pendent Weibull risks.

Result 2. Consider the graph {x = ln t, y =
Φ−1

sev [pmiw(t)]} of the cdf pmiw, for the CRM with inde-

pendent Weibull risks, on a Weibull probability plot. The

following results hold.

(a) The slope of pmiw(t) in the probability plot is the

convex combination

dy

d ln t
=

2

∑
i=1

1

σi

exp(zi)

[exp(z1) + exp(z2)]
. (7)

To prove this result, note that the density and the
quantile functions for Φsev(z) are

φsev(z) = exp[z − exp(z)]

Φ−1
sev(p) = ln[− ln(1 − p)].

(8)

Thus φsev
[

Φ−1
sev(p)

]

= (1 − p)[− ln(1 − p)] and we

get

φsev[Φ
−1
sev(pmiw(t))]

= [1 − Φsev(z1)][1 − Φsev(z2)][exp(z1) + exp(z2)].

From (3) with Φ(z) = Φsev(z) and φ(z) = φsev(z),
one obtains (7).

A more detailed proof of (7) can be obtained as the
special case with θ = 1 in Appendix B.1.

(b) When β1 = β2 = β, pmiw(t) is the cdf of a WEI(η, β)
where

η =
η1η2

(η
β
1 + η

β
2 )

1/β
.

To prove this result, use (7) with σ1 = σ2 = 1/β to
obtain

dy

d ln t
=

1

σ
= β.

Thus pmiw(t) is linear in the Weibull probability plot

which implies that it is a Weibull cdf. The particu-

lar form of the shape parameter is obtained from the
anti-log of µt in (11) with σ1 = σ2 = 1/β.

The fact that, in this case, pmiw(t) is a Weibull cdf is

in agreement with the following known result: the
minimum of k independent Weibulls, that have a

common shape parameter β but possibly differing

scale parameters, is Weibull distributed with shape
parameter equal to β. For details, see, for example,

Meeker and Escobar (1998, page 372) and the related

Result 3 below.

(c) The slope of the curve
{

x = ln t, y = Φ−1
sev[pmiw(t)]

}

is bounded by (β1, β2) as follows. Using (7)

min

(

1

σ1
,

1

σ2

)

≤
dy

d ln t
≤ max

(

1

σ1
,

1

σ2

)

. (9)

Or equivalently,

min(β1, β2) ≤
dy

d ln t
≤ max(β1, β2).

This is consistent with the observation made in

Meeker et al. (2009, page 157) where they found
through simulation and sensitivity work that in mod-

eling competing risks data with a single Weibull dis-
tribution (i.e., ignoring the failure mode), the esti-

mated Weibull shape parameter tend to fall between

the two Weibull shape parameters used to simulate
the data. This result suggest that the closeness be-

tween the shape parameters of the risks’ cdfs might
be an important factor in determining if a single

Weibull model could fit well a Weibull CRM with

independent risks.

(d) In the limit

lim
t→∞

dy

d ln t
= max

(

1

σ1
,

1

σ2

)

= max(β1, β2),

lim
t→0

dy

d ln t
= min

(

1

σ1
,

1

σ2

)

= min(β1, β2).

These limiting behaviors follow directly from (7) and
the relationships βi = 1/σi, for i = 1, 2.

In Figure 1, as ln(t) → −∞, the distribution pmiw(t)
approaches the individual risk F1(t) and also the
derivative of pmiw(t) with respect to ln(t) converges

toward β1. Similarly, when ln(t) → ∞, pmiw(t) ap-

proaches F2(t) and the derivative of pmiw(t) with re-
spect to ln(t) converges toward β2.
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(e) The curve
{

x = ln t, y = Φ−1
sev[pmiw(t)]

}

is concave

when β1 6= β2.

To verify this result, obtaining the derivative of (7)
with respect to ln t to obtain

d2y

d(ln t)2
=

(

1

σ1
−

1

σ2

)2 exp(z1 + z2)

[exp(z1) + exp(z2)]2
(10)

which is positive when σ1 6= σ2. This implies that

the curve (ln t, y) is concave. Because the curvature
of the [ln t, y] is proportional to (10), see for exam-

ple Courant and John (1965, page 357), then is also
proportional to (1/σ1 − 1/σ2)

2 = (β1 − β2)
2. Note

that derivative (10) is a special case of Appendix B.2

when θ = 1.

Large values of (10) are associate with large curva-

tures of the curve (ln t, y) and we can use curvature

as another criteria to help in the decision when is
that a simple Weibull distribution fits well the CRM

model with independent Weibull risks. In particular,
a single Weibull model would fit well a Weibull CRM

cdf with independent risks if the two Weibull shape

parameters in the CRM model are not far apart.
There are situations, however, where the curvature

is large just in an interval with negligible probability
content with respect to the CRM cdf, in those case

the simple Weibull distribution will fit well the CRM

model in an interval of high probability with respect
to the CRM cdf, regardless of sizes of the scale pa-

rameters. See the discussion at the end or Result 3

for a case where the curvature is large just in an inter-
val with negligible probability content with respect

to the CRM cdf.

All the outcomes in Result 2 can be extended readily,

with trivial minor changes, to a CRM with k > 2 inde-

pendent Weibull risks. See Jiang and Murthy (2003) for
results related to items (a) and (d) in Result 2.

CRM with independent Weibull risks and similar

shape parameters

An important problem is the modeling of competing

risks data when the risks are Weibull distributed with
similar shape parameter. The following result considers

that setting in the special case when the risks are inde-

pendent.

Result 3. Consider the cdf pmiw(t) of the CRM T =
min(T1, T2) with independent risks. Suppose Ti ∼
WEI(ηi, βi), i = 1, 2. Then when βi → β > 0, i =
1, 2, pmiw(t) converges to a WEI(η, β) cdf where η =

(η1η2)/(η
β
1 + η

β
2 )

1/β.
To prove this result, it can be shown that (use Ap-

pendix C with θ = 1),

pmiw(t) = 1 − [1 − Φsev(z1)][1 − Φsev(z2)]

= 1 − exp

[

− exp

(

ln(t)− µt

σ1

)]

, (11)

where

µt = −σ1 ln

[

exp

(

−µ1

σ1

)

+ t1/σ2−1/σ1 exp

(

−µ2

σ2

)]

.

The proposed results follows after letting βi → β, i = 1, 2
(which is equivalent to σi → σ, i = 1, 2 where σ = 1/β).

Then

lim
σ1→σ
σ2→σ

pmiw(t) = 1 − exp

[

− exp

(

ln(t)− µ

σ

)]

, (12)

where

µ = −σ ln

[

exp

(

−µ1

σ

)

+ exp

(

−µ2

σ

)]

.

Equation (12) corresponds to a WEI(η, β), where β =
1/σ, η = exp(µ), with

η =
η1η2

(η
β
1 + η

β
2 )

1/β
.

Note that (11) is well approximated by a Weibull distri-
bution when µt is fairly constant. That is, when µt does

not depend strongly on t. Values of σ1 and σ2 closed to

each other might have that effect on µt. Observe, how-
ever, that µt could also be fairly linear in an interval of

high probability content (with respect to the CRM cdf), if
exp(−µ1/σ1) dominates t1/σ2−1/σ1 exp (−µ2/σ2) in that

interval. Or equivalently, when F1(t) > F2(t) in a inter-

val with high pmiw(t) probability content. A similarly
situation arises when the second risk is the dominant
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one, that is when F2(t) > F1(t) in a interval with high

pmiw(t) probability content. Thus to anticipate the lin-
earity of the CRM cdf in a probability plot, two factors

emerge as important to be considered: (a) the closeness

of the shape parameters and (b) the crossing point of the
cdfs F1(t) and F2(t) associated with the two risks in the

model. These two factors may or may not interact de-

pending of the CRM model parameters. Extreme cases
are when the crossing point is too far to the right or to

the left in the plot in whose case the CRM cdf can be
approximated well by a single Weibull distribution.

Next section studies a CRM derived from a bivariate

Weibull distribution with dependence between the risks.

We will see that the properties for the CRM model with
independent Weibull risks extend to this new CRM.

4. Competing Risks Model Derived From a
Bivariate Weibull Distribution

In practical application the competing risks might not be
independent and the dependence can greatly complicate

the statistical modeling and the data analysis, see a de-
tailed account in Crowder (2001, chapter 7).

Here we consider a simple model that allows for posi-
tive dependence. In the analysis of lifetime data, models

that allow for risks with positive dependence are reason-
able because in those cases the risks are jointly leading

toward shorter lives, but see Crowder (1989) for a some-

how dissenting opinion.

The setting here is that the risks (T1, T2) are jointly dis-
tributed with a joint survival function S(t1, t2) = Pr(T1 >

t1, T2 > t2) given by

S(t1, t2) = exp







−

[

(

t1

η1

)θβ1

+

(

t2

η2

)θβ2
]1/θ







, (13)

where ti ≥ 0, βi > 0, ηi > 0, i = 1, 2, and θ > 1. The ηis

are scale parameters and the βis are shape parameters. θ
characterizes the association between the two variables.

In particular, the Kendall’s coefficient of association be-
tween T1 and T2 is equal to 1 − 1/θ.

Johnson and Kotz (1972, pages 268-269) have an early
description of this distribution. Lee (1979, pages 268-269)

discusses this distribution in a larger context of multi-

variate distributions with Weibull properties. Kotz, Bal-

akrishnan, and Johnson (2000, page 408) call it a Weibull

form B and show how to derive it through power trans-

formations of the variables from a bivariate exponential
distribution. It can be shown that (13) corresponds to

a Gumbel-Hougaard survival copula evaluated at two

Weibull survival marginals, see Nelsen (2006, page 96).

This bivariate Weibull has has been used in depen-
dent failure-times analysis, among others, by Hougaard

(1986), Hougaard (1989), and Lu and Bhattacharyya

(1990).

Using the log-location scales wi = [ln(ti)− µi]/σi, with

µi = ln(ηi), σi = 1/βi, the survival distributions in
(13) becomes

S(t1, t2) = exp
{

− [exp(θw1) + exp(θw2)]
1/θ
}

.

The joint distribution function of (T1, T2) is

F(t1, t2) = F1(t1) + F2(t2) + S(t1, t2)− 1, (14)

where F1(t1) and F2(t2) are the Weibull marginal distri-
butions of T1 and T2 given by

Fi(t) = 1 − exp

[

−

(

t

ηi

)βi
]

= Φsev (zi) , i = 1, 2,

where the zi are as in (2).

The distribution F(t1, t2) is absolutely continuous and its

density is (see Appendix D)

f (t1, t2) =
∂2F(t1, t2)

∂t1∂t2
=

∂2S(t1, t2)

∂t1∂t2

= S(t1, t2)
∂ ln[S(t1, t2)]

∂t1

∂ ln[S(t1, t2)]

∂t2

×

[

1 +
(θ − 1)

− ln[S(t1, t2)]

]

where for i = 1, 2

∂ ln [S(t1, t2)]

∂ti
= −

exp(θwi)

σiti
[− ln S(t1, t2)]

1−θ .
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Figure 2: Density contours for the bivariate Weibull
model with parameters (η1 = 150, β1 = 1), and (η2 =
150, β2 = 2), and θ = 1.5.

Figure 2 shows contours of the bivariate Weibull for a

specific and convenient choice of the parameters. The
southwest to northeast orientation of the plot is an effect

of the positive dependence (θ = 1.5) between the two

Weibull risks. With independence, that is θ = 1, and ev-
erything else being the same, the density contours will

be fairly symmetric about a vertical line drawn at time
t1 = 106.

The CRM derived from the Bivariate Weibull

As before, using Tm = min(T1, T2), it follows that the
survival function smdw(t) of Tm is

smdw(t) = Pr(T1 > t, T2 > t) = S(t, t)

= exp







−

[

(

t

η1

)θβ1

+

(

t

η2

)θβ2
]1/θ







= exp
{

− [exp(θz1) + exp(θz2)]
1/θ
}

, (15)

where zi = [ln(t)− µi]/σi, µi = ln(ηi), and σi = 1/βi.

The related distribution function pmdw for the CRM Tm

is

pmdw(t) = 1 − exp
{

− [exp(θz1) + exp(θz2)]
1/θ
}

. (16)

With θ = 1, the pdf pmdw(t) is equal to the cdf pmiw(t)
for the CRM with independent risks T1 and T2.

Result 4. Consider the cdf, pmdw(t), given in (16). Then
(see Appendix A)

1. For each t, pmdw(t) is a monotone decreasing func-

tion of θ.

2. Assuming, without loss of generality, that β1 < β2,

lim
θ→∞

pmdw(t) =

{

F1(t) if t ≤ tc

F2(t) if t ≥ tc,

where tc is the time at which the marginal distri-

butions F1(t) and F2(t) cross. That is, the time at

which z1 = z2, or equivalently

tc =

(

η
β2
2

η
β1
1

)1/(β2−β1)

.

3. When β1 = β2,

lim
θ→∞

pmdw(t) =

{

F1(t) if η1 ≤ η2

F2(t) if η2 ≤ η1

for all t > 0.

Result 4 implies that the cdf pmdw(t) of Tm, for the bi-

variate case with dependence, is bounded from above by
the cdf pmiw of Tm in the model with independent risks

and below by the marginals associated with the Weibull

bivariate risks. For example, in Figure 3, the dashed line
(the one closest to the northwest corner) corresponds to

the CRM with θ = 1. The solid line is the CRM with
θ = ∞. This cdf agrees with the distribution of Risk 1 for

times before the time at which the two marginals cross

each other and with the distribution of Risk 2 for times
after that crossing point of the marginals.
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Figure 3: Weibull probability plot of the competing risks
model with dependent risks. Risk 1 and Risk 2 are

WEI((η1 = 150, β1 = 1) and WEI(η2 = 150, β2 = 2),
respectively. θ = 1.0, 1.5, ∞.

Important properties of the CRM with dependent

Weibull risks

Result 5. Consider the Weibull probability plot {x =
ln t, y = Φ−1

sev [pmdw(t)]} of the cdf pmdw(t) in (16) for

the CRM derived from the bivariate Weibull distribution
in (14). The following results hold.

(a) The slope of pmdw(t) in the probability plot is the

convex combination

dy

d ln t
=

2

∑
i=1

1

σi

exp(θzi)

[exp(θz1) + exp(θz2)]
, (17)

where zi = [ln(t)− µi]/σi.

To verify this result, use (15) to obtain the y–ordinate

y = ln[− ln(smdw(t))]

=
1

θ
ln [exp(θz1) + exp(θz2)] .

Then taking the derivative of y with respect to ln t
yields (17), see Appendix B.1.

The similarity between (7) and (17) is more than a

simple coincidence. We proceed to show that the
CRM pmdw(t) is an extension of the CRM pmiw(t)
with characteristics very similar to the pmiw(t)
model. The similarities between the two models was
unknown to us at the outset of this study.

(b) When β1 = β2 = β, pmdw(t) is the cdf of a WEI(η, β)
where

η =
η1η2

(

η
θβ
1 + η

θβ
2

)1/(θβ)
. (18)

With β1 = β2 = β, then σ1 = σ2 = 1/β and it follows
from (17) that

dy

d ln t
=

1

σ
= β

which implies that pmdw(t) is a WEI(η, β). The spe-

cific value of η is derived in Appendix C.

It is interesting that, even in the presence of depen-

dence, the equality of the shape parameters implies
a Weibull distribution for the CRM cdf, pmdw(t).

See the related Result 6 below which shows that
when the shape parameters of the risks are closed

to each other, the CRM has a distribution that might

be approximated by a simple Weibull distribution.

(c) The slope of the curve [ln t, y] is bounded by (β1, β2)
as follows

min (β1, β2) ≤
dy

d ln t
≤ max (β1, β2) .

To prove this, suppose that maxi {1/σi} = 1/σ2 then

using (17) it can be verified that

1

σ1
≤

2

∑
i=1

1

σi

exp(θzi)

[exp(θz1) + exp(θz2)]
≤

1

σ2
.

As in the case of independent risks it is useful to

know that the CRM cdf has a derivative with respect

to ln t that is bounded by the shape parameters of the
risks defining the model.
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(d) In the limit

lim
t→∞

dy

d ln t
= max (β1, β2)

lim
t→0

dy

d ln t
= min (β1, β2) .

(19)

To prove this, note that if σ1 = σ2 the result holds in
view of item (b) above. Then assume that σ1 6= σ2. If

maxi {1/σi} = 1/σk = βk then

lim
t→∞

exp(θzi)

[exp(θz1) + exp(θz2)]
=

{

1 for i = k

0 for i 6= k
(20)

and

lim
t→0

exp(θzi)

[exp(θz1) + exp(θz2)]
=

{

0 for i = k

1 for i 6= k.
(21)

Using (20) and (21), when taking the limits of
dy/d ln t, yield the results in (19) for the limiting be-

havior of the derivative function.

(e) The curve [ln t, y] is concave when β1 6= β2.

Taking the derivative of (17) with respect to ln t (see
Appendix B.2)

d2y

d(ln t)2
=

(

1

σ1
−

1

σ2

)2 θ exp(θz1 + θz2)

[exp(θz1) + exp(θz2)]2
.

Because this second derivative is positive, the con-
cavity of the curve follows. The concavity, how-

ever, is also proportional to θ and large values of

θ could imply large concavity and curvature of the
curve even in the presence of shape parameters that

are closed to each other. This is different to what

happens in the independent risks case where similar
shape parameters imply small concavity.

CRM with dependent Weibull risks and similar shape

parameters

Result 6. Consider the cdf pmdw(t) of the CRM given

in (16) and derived from the bivariate model with de-
pendence in (14). When βi → β > 0, i = 1, 2, pmdw(t)

converges in distribution to a WEI(η, β) where

η =
η1η2

(

η
θβ
1 + η

θβ
2

)1/(θβ)
.

See Appendix C for justification of the result.

Note that the limiting Weibull distribution WEI(η, β)
was already obtained in (18) as a special case of equal
shape parameters. The special case with independent

risks given in Result 3 is obtained with the value θ = 1.

5. Other Competing Risks Models

As noted earlier, the findings in Result 2 extend di-
rectly to a CRM with k > 2 independent Weibull risks

and cdf pmiw(t) = 1 − ∏
k
i=1[1 − Φsev(zi)], where zi =

[ln(t)− µi]/σi, i = 1, . . . , k.

The bivariate Weibull model described in (13) has
been extended to the case of k > 2 dependent risks.

In this case, the survival function is S(t1, . . . , tk) =

exp

{

−
[

∑
k
i=1 exp(θwi)

]1/θ
}

, where wi = [ln(ti) −

µi]/σi. Lee and Wen (2010) derive the density and the

general moments of the distribution for any integer k ≥
2. They also apply the model to a data set with three vari-

ables. All the properties in Result 5 extend readily to the

CRM cdf, pmdw(t) = 1 − exp

{

−
[

∑
k
i=1 exp(θzi)

]1/θ
}

,

zi = [ln(t)− µi]/σi, derived from this k > 2 dimensional

Weibull distribution with dependent risks.

There is a large number of other Weibull multivari-

ate models. Murthy, Xie, and Jiang (2004) provide a
comprehensive collection of univariate and multivariate

Weibull models and Crowder (1989) proposes an inter-
esting multivariate Weibull model. There is not, however,

assurance that the properties discussed here are satisfied

by those models. For other models of interest, their prop-
erties need to be studied separately.

A natural inquire is if the results presented here extend

to the CRM model derived from log-location-families.
We have not studied this in detail, but the items in

Result 2 do not extend in their full generality to a

CRM derived from a log-location-scale family. This
was surprising and unexpected to us. For example,
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suppose Ti ∼ LOGNOR(µi, σi), i = 1, 2 with T1 and

T2 independent. As before Tm = min(T1, T2). Thus,
Fm(t) = 1 − Φnor(−z1)Φnor(−z2) and the slope of the

curve
{

x = ln t, y = Φ−1
nor[Fm(t)]

}

, see (4), in a lognor-

mal probability plots is

dy

d ln t
=

1
σ1

φnor(z1)Φnor(−z2) +
1
σ2

φnor(z2)Φnor(−z1)

φnor[Φ
−1
nor{1 − Φnor(−z1)Φnor(−z2)}]

,

where φnor(z) and Φnor(z) are the standardized normal

pdf and cdf, respectively. Figure 4 shows the slope of the
curve when µ1 = 5, µ2 = 6, σ1 = 3, and σ2 = 2. Clearly,

dy

d ln t
≥ max

(

1

σ1
,

1

σ2

)

= 0.5

for t > 236. In contrast to the Weibull case, the slope
of the Fm(t) in the lognormal probability plot is not

bounded by the σis as in (9).
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Figure 4: Slope on lognormal probability plot of cdf for

the CRM with independent lognormal risks. Risk 1 and

Risk 2 are LOGNOR(µ1 = 5, σ1 = 3) and LOGNOR(µ2 =
6, σ2 = 2) distributed, respectively.

6. Conclusions and Future Work

The characteristics of the Weibull CRM with indepen-
dent risks and the CRM derived from the bivariate

Weibull with dependence are very similar. For a CRM

with two risks, based on the information drawn from
this work, we can say that important factors in deciding

when the inference is robust to ignoring the failure mode

include: (a) the relative sizes of the Weibull scale param-
eters; (b) the crossing point of the marginal distributions;

and (c) the size of the dependence among the factors.

Similar conclusions apply to the models with k > 2 risks

considered here. A single Weibull model might describe

the CRM well if: (a) the ratio between the largest and the
smallest shape parameters is small and the dependence

among the risks is not large; or (b) there is a dominant
risk.

It is plausible that these continue to be important factors
when studying the CRM for other distributions, but ad-

ditional work is needed to corroborate these preliminary

findings.

There is need to study other distributions beside the

Weibull and the lognormal and to consider other situ-
ations with dependent risks. The brief look into the log-

normal case indicates that caution should be exercised
when trying to generalize the conclusions to other distri-

butions because the results do not seem to be completely

generalizable to other competing risks situations of in-
terest like CRMs derived from general log-location-scale

families.

Eventually, the model robustness problem will have to be

addressed using meaningful and well formulated simu-

lation studies with complete, dependent, and censored
data. Toward that end, the results of studies like the

one pursued here would be useful because a good un-
derstanding of the important factors in a model facilitate

the test planning and the interpretation of a simulation

study.
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7. Appendixes

A. Monotonicity of the CRM cdf pmdw(t) as
a function of θ

From (15), smdw(t) = exp
(

−R1/θ
)

, where R =

exp(θz1) + exp(θz2), and zi = (ln(t)− µi)/σi, i = 1, 2.
Consider

∂ ln R1/θ

∂θ

= −
ln R

θ2
+

θz1 exp(θz1) + θz2 exp(θz2)

θ2R

=
θz1 exp(θz1) + θz2 exp(θz2)− R ln(R)

θ2R

=
(θz1 − ln(R)) exp(θz1) + (θz2 − ln(R)) exp(θz2)

θ2R
.

Note that ln(R) = ln[exp(θz1) + exp(θz2)] >

ln[exp(θzi)] = θzi, for i = 1, 2. Thus for fix t,
[∂ ln(R1/θ)/∂θ] < 0. This implies that R1/θ is monotone

decreasing on θ. Consequently, smdw(t) is increasing on

θ and pmdw(t) = 1 − smdw(t) is decreasing on θ.

B. Important Properties of the CRM

This appendix provides details of the properties of the
CRM derived from the bivariate Weibull defined in (13).

The correspondent properties for the CRM with inde-

pendent Weibull risks are obtained by setting the depen-
dence parameter to θ = 1.

B.1. Slope of the curve
{

ln t, Φ
−1
sev[pmdw(t)]

}

in a

Weibull probability plot

From the definition of φsev(z) and Φ−1
sev(p) in (8) and us-

ing (15) and (16), we get that for 0 < p < 1,

φsev[Φ
−1
sev(p)] = exp {ln [− ln(1 − p)]}

× exp {− exp [ln(− ln(1 − p))]}

= −[1 − p] ln[1 − p].

Then with p = pmdw(t), we get

φsev[Φ
−1
sev(pmdw(t))] = −[1 − pmdw(t)] ln[1 − pmdw(t)]

= smdw(t)× {− ln[smdw(t)]} . (22)

Now we compute t dmdw(t), where dmdw(t) is the den-

sity corresponding to the cdf pmdw(t) given in (16).
Direct differentiation of pmdw(t) yields

t dmdw(t) = smdw(t) {− ln[smdw(t)]}

×
2

∑
i=1

1

σi

exp(θzi)

[exp(θz1) + exp(θz2)]
.

(23)

Taking the ratio between (23) and (22) and using (1),

we get

dy

d ln t
=

2

∑
i=1

1

σi

exp(θzi)

[exp(θz1) + exp(θz2)]

which is the result suggested in (17). Note that with
θ = 1, one obtains the independent risks case suggested

in (7).

B.2. Concavity of the curve
{

ln t, Φ
−1
sev[pmdw(t)]

}

in a

Weibull probability plot

To show that the second derivative of y with respect to
ln t is positive, we write

dy

d ln t
=

1

σ1

1

{1 + exp[θ(z2 − z1)]}

+
1

σ2

1

{1 + exp[θ(z1 − z2)]}
.

Then

d2y

d(ln t)2
=

(

1

σ2
1

−
1

σ1σ2

)

θ exp[θ(z2 − z1)]

{1 + exp[θ(z2 − z1)]}
2

+

(

1

σ2
2

−
1

σ1σ2

)

θ exp[θ(z1 − z2)]

{1 + exp[θ(z1 − z2)]}
2

=

(

1

σ2
1

−
1

σ1σ2

)

θ exp[θ(z1 + z2)]

[exp(θz1) + exp(θz2)]
2

+

(

1

σ2
2

−
1

σ1σ2

)

θ exp[θ(z1 + z2)]

[exp(θz1) + exp(θz2)}
2

=

(

1

σ1
−

1

σ2

)2 θ exp[θ(z1 + z2)]

[exp(θz1) + exp(θz2)]
2
> 0.

For the CRM with independent Weibull risks, use θ = 1.

In this case the second partial derivative is still positive
and takes the value suggested in (10).
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C. Cdf for CRM with Weibull Dependent
Risks and Similar or Equal Shape Parame-
ters

pmdw(t) = 1 − exp
{

− [exp(θz1) + exp(θz2)]
1/θ
}

= 1 − exp

{

−t1/σ1

[

exp

(

−θµ1

σ1

)

+ tθ/σ2−θ/σ1 exp

(

−θµ2

σ2

)]1/θ
}

= 1 − exp

[

− exp

(

ln(t)− µt

σ1

)]

,

where

µt = −
σ1

θ
ln

[

exp

(

−θµ1

σ1

)

+ tθ/σ2−θ/σ1 exp

(

−θµ2

σ2

)]

.

When βi → β > 0, i = 1, 2, it follows that σi → σ =
1/β > 0, i = 1, 2, and

lim µt → µ = −
σ

θ
ln

[

exp

(

−θµ1

σ

)

+ exp

(

−θµ2

σ

)]

.

Thus pmdw(t) is the cdf of a WEI(η, β), where

η = exp(µ) =
η1η2

(

η
θβ
1 + η

θβ
2

)1/(θβ)
. (24)

Note that: (a) when β1 = β2 = β, pmdw(t) is the cdf of
a WEI(η, β) with η given by (24); (b) when β1 = β2 = β

and θ = 1, pmdw(t) = pmiw(t) and they are the cdf of a

WEI(η, β) with η given by (24) evaluated at θ = 1. This is
the CRM cdf with independent Weibull risks considered

in Result 3.

D. Bivariate Density

The density is given by the mixed second partial deriva-
tive of S(t1, t2) with respect to t1 and t2. For simplic-

ity write S = S(t1, t2) and define M = − ln(S) =

[exp(θw1) + exp(θw2)]
1/θ . Using wi = [ln(ti) − µi]/σi

and taking the derivative of ln(S) with respect to t2,

∂ ln(S)

∂t2
= −

∂M

∂t2
.

Equivalently,

∂S

∂t2
= − S

∂M

∂t2
.

Taking the derivative with respect to t1

∂2S

∂t1∂t2
= S

(

∂M

∂t1

∂M

∂t2
−

∂2 M

dt1dt2

)

. (25)

Direct computations yield

∂M

∂t1
= M1−θ exp(θw1)

σ1t1
and

∂2 M

dt1dt2
= (1 − θ)

M2−2θ

M

2

∏
i=1

exp(θwi)

σiti
. (26)

Substituting (26) into (25)

∂2S

∂t1∂t2
= S

[

∂M

∂t1

∂M

∂t2
+ (θ − 1)

M2−2θ

M

2

∏
i=1

exp(θwi)

σiti

]

= S
∂M

∂t1

∂M

∂t2

(

1 +
θ − 1

M

)

= S
∂ ln(S)

∂t1

∂ ln(S)

∂t2

[

1 +
θ − 1

− ln(S)

]

,

where for i = 1, 2

∂ ln (S)

∂ti
= −

exp(θwi)

σiti
[− ln(S)]1−θ .

See Lu and Bhattacharyya (1990, page 554) for an equiv-

alent expression for the density.
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